Пример #1
0
def plot_latent_sweep(latent, n_pairs):
    for d in range(latent.shape[1]):
        dim = latent[:, d]
        fig, ax = plt.subplots(1, 1, figsize=(10, 10))
        data_df = pd.DataFrame()
        data_df["Label"] = n_pairs * ["Left"] + n_pairs * ["Right"]
        data_df["Latent"] = dim[:2 * n_pairs]
        data_df["Index"] = list(range(n_pairs)) + list(range(n_pairs))
        ax = sns.scatterplot(data=data_df,
                             x="Index",
                             y="Latent",
                             hue="Label",
                             ax=ax,
                             s=15)
        add_connections(
            range(n_pairs),
            range(n_pairs),
            dim[:n_pairs],
            dim[n_pairs:2 * n_pairs],
            ax=ax,
            color="grey",
        )
        remove_spines(ax)
        ax.xaxis.set_major_locator(plt.FixedLocator([0]))
        ax.yaxis.set_major_locator(plt.FixedLocator([0]))
        ax.set_title(f"Dimension {d}")
Пример #2
0
def plotMatrix(matrix, plot_path, labels, title, ticks, vmin=-1., vmax=1.):
    """Plot matrix. 
	param matrix: two dimensional array. The matrix to plot
	param plot_path : string. Full path and name of the plotting picture
	param labels: list. The labels 
	param title: string. The title of the plot
	param ticks: list. The ticks of the plot
	vmin: float. Minimum value
	vmax: float. Maximum value
	return: None
	"""
    ticks = list(map(lambda x: x - 0.5, ticks))
    ticks_middle = [(((ticks[i + 1] - ticks[i]) / 2) + ticks[i])
                    for i in range(0,
                                   len(ticks) - 1)]
    fig, ax = plt.subplots()
    fig.set_size_inches(16.5, 9.5)
    ax.xaxis.set_minor_locator(plt.FixedLocator(ticks[1:]))
    ax.yaxis.set_minor_locator(plt.FixedLocator(ticks[1:]))
    ax.grid(color='black', linestyle='-', linewidth=1.2, which='minor')
    plt.title(label=title, fontsize=20)
    plotting.plot_matrix(matrix, colorbar=True, axes=ax, vmin=vmin, vmax=vmax)
    plt.yticks(ticks_middle, list(labels))
    plt.xticks(ticks_middle,
               list(labels),
               rotation=55,
               horizontalalignment='right')
    for item in (ax.get_xticklabels() + ax.get_yticklabels()):
        item.set_color(net_dic.labelToColorDic[item.get_text()])
        item.set_fontsize(14)
    fig.savefig(plot_path)
    plt.close()
Пример #3
0
def visualize_samples(samples, discretized_samples, grid, low=None, high=None):
    """Visualize original and discretized samples on a given 2-dimensional grid."""

    fig, ax = plt.subplots(figsize=(10, 10))
    
    # Show grid
    ax.xaxis.set_major_locator(plt.FixedLocator(grid[0]))
    ax.yaxis.set_major_locator(plt.FixedLocator(grid[1]))
    ax.grid(True)
    
    # If bounds (low, high) are specified, use them to set axis limits
    if low is not None and high is not None:
        ax.set_xlim(low[0], high[0])
        ax.set_ylim(low[1], high[1])
    else:
        # Otherwise use first, last grid locations as low, high (for further mapping discretized samples)
        low = [splits[0] for splits in grid]
        high = [splits[-1] for splits in grid]

    # Map each discretized sample (which is really an index) to the center of corresponding grid cell
    grid_extended = np.hstack((np.array([low]).T, grid, np.array([high]).T))  # add low and high ends
    grid_centers = (grid_extended[:, 1:] + grid_extended[:, :-1]) / 2  # compute center of each grid cell
    locs = np.stack(grid_centers[i, discretized_samples[:, i]] for i in range(len(grid))).T  # map discretized samples

    ax.plot(samples[:, 0], samples[:, 1], 'o')  # plot original samples
    ax.plot(locs[:, 0], locs[:, 1], 's')  # plot discretized samples in mapped locations
    ax.add_collection(mc.LineCollection(list(zip(samples, locs)), colors='orange'))  # add a line connecting each original-discretized sample
    ax.legend(['original', 'discretized'])
Пример #4
0
def psshow(f, a, title):
    # Take the fourier transform of the image.
    f1 = fftpack.fft2(f)
    print(f.shape)

    # Now shift the quadrants around so that low spatial frequencies are in
    # the center of the 2D fourier transformed image.
    f2 = fftpack.fftshift(f1)

    # Calculate a 2D power spectrum
    psd2D = np.abs(f2)**2

    # Display at log 10
    psd2D_log = np.log10(psd2D)

    min5 = np.percentile(psd2D_log, 5)
    print(min5)
    max95 = np.max(psd2D_log)
    print(max95)

    a.imshow(psd2D_log, vmin=min5, vmax=max95, cmap='gray')

    # Look and feel
    a.xaxis.set_major_locator(plt.FixedLocator([len(psd2D[0]) - 1]))
    a.yaxis.set_major_locator(plt.FixedLocator([len(psd2D[0]) - 1]))
    a.set_title(title)
Пример #5
0
def imshow(frame, a, title):
    # Calculate events at super resolution
    min5 = np.percentile(frame, 1)
    max95 = np.percentile(frame, 99)

    a.imshow(frame, vmin=min5, vmax=max95, cmap='gray')

    # Look and feel
    a.xaxis.set_major_locator(plt.FixedLocator([len(frame[0]) - 1]))
    a.yaxis.set_major_locator(plt.FixedLocator([len(frame[0]) - 1]))
    a.set_title(title)

    return frame
Пример #6
0
def obspred_plot(paramsplot, fityrs, startage, endage, 
        trans = 'none', trans_time_coords = False, trans_y_coords = False):
    obsframe = paramsplot['test'].rx2('obs')
    ptype = paramsplot['ptype']
    obsage = obsframe.rx2('age')
    predage = base.seq(startage, endage, by = 5)
    xlinlab = r'$\mathrm{log}(t)$'
    ratelinlab = r'$\mathrm{log}(r(t))$'
    survlinlab = r'$\mathrm{log}[-\mathrm{log}[S(t)]]$'
    plotlabs = {'none': {'x': '$t$', 'rate': '$r(t)$', 'surv': '$S(t)$'},
            'gomp_lin': {'x': '$t$', 'rate': ratelinlab, 'surv': survlinlab},
            'weib_lin': {'x': xlinlab,'rate': ratelinlab, 'surv': survlinlab}}
    plt.close()
    fig = plt.figure()
    ax = fig.add_subplot(111)

    def trans_y_ticks(x, p):
        ticks_round = np.round(predcols['none'][ptype], 6)
        return str(ticks_round[p]).replace('.', ',')

    for yr in fityrs:
        obs = obsframe.rx2(str(yr))
        pred = stats.predict(paramsplot['test'].rx2('sourcefit').rx2(str(yr)), 
                newdata = ro.r['list'](age = predage)) 
        obscols = transdict(np.array(obsage), np.array(obs))
        predcols = transdict(np.array(predage), np.array(pred))
        obsplot = ax.plot(obscols[trans]['x'], obscols[trans][ptype], 
                'o', label = str(yr))
        curcolor = obsplot[0].get_color()
        predplot = ax.plot(predcols[trans]['x'], predcols[trans][ptype], 
                color = curcolor)
    
    plt.legend(loc = 2, framealpha = 0.5)
    ax.set_title('Observerad vs förutsedd ' + paramsplot['plottitle'])
    
    if (trans_time_coords):
        ax.xaxis.set_major_locator(plt.FixedLocator(predcols[trans]['x']))
        ax.xaxis.set_major_formatter(plt.FixedFormatter(predcols['none']['x']))
        ax.set_xlabel(plotlabs['none']['x'])
        plt.xticks(rotation = 90)
    else:
        ax.set_xlabel(plotlabs[trans]['x'])

    if (trans_y_coords):
        ax.yaxis.set_major_locator(plt.FixedLocator(predcols[trans][ptype]))
        ax.yaxis.set_major_formatter(plt.FuncFormatter(trans_y_ticks))
        ax.set_ylabel(plotlabs['none'][ptype])
    else:
        ax.set_ylabel(plotlabs[trans][ptype])
Пример #7
0
def plotMatrix(matrix, plot_path, labels, title, ticks, vmin, vmax):
    """Plot matrix. 
	param matrix: two dimensional array. The matrix to plot
	param plot_path : string. Full path and name of the plotting picture
    param labels: list. The labels 
    param title: string. The title of the plot
    param ticks: list. The ticks of the plot
    vmin: float. Minimum value
    vmax: float. Maximum value
	return: None
    """
    ticks = list(map(lambda x: x - 0.5, ticks))
    labelToColorDic = {
        "Uncertain": "olive",
        "SSH": "cyan",
        "SSM": "orange",
        "CO": "purple",
        "Auditory": "m",
        "DMN": "red",
        "Memory": "grey",
        "Visual": "blue",
        "FP": "gold",
        "Salience": "black",
        "Subcortical": "brown",
        "VAN": "teal",
        "DAN": "green",
        "Cerebellum": "purple"
    }
    ticks_middle = [(((ticks[i + 1] - ticks[i]) / 2) + ticks[i])
                    for i in range(0,
                                   len(ticks) - 1)]
    fig, ax = plt.subplots()
    fig.set_size_inches(16.5, 9.5)
    plt.yticks(ticks_middle, labels)
    plt.xticks(ticks_middle, labels, rotation=55, horizontalalignment='right')
    ax.xaxis.set_minor_locator(plt.FixedLocator(ticks[1:]))
    ax.yaxis.set_minor_locator(plt.FixedLocator(ticks[1:]))
    ax.grid(color='black', linestyle='-', linewidth=1.2, which='minor')
    plt.title(label=title, fontsize=20)
    for item in (ax.get_xticklabels() + ax.get_yticklabels()):
        item.set_color(labelToColorDic[item.get_text()])
        item.set_fontsize(14)
    plotting.plot_matrix(matrix,
                         colorbar=True,
                         figure=fig,
                         vmin=vmin,
                         vmax=vmax)
    fig.savefig(plot_path)
    plt.close()
Пример #8
0
 def plotBar(pos, cases, dt, color, title):
     """
     This plots based base on the time series data
     :param pos:
     :param cases:
     :param dt:
     :param color:
     :param title:
     :return:
     """
     labels = [val[1] for val in cases]
     labels2 = [
         "Test"
     ] + labels  # this is to overcome a bug in the bar function
     x = np.arange(len(labels))  # the label locations
     axs[pos].bar(x, [val[0] for val in cases],
                  color=color,
                  edgecolor='k')
     axs[pos].set_title("{} on {}".format(title, str(dt)), fontsize=15)
     axs[pos].xaxis.set_major_locator(plt.FixedLocator(x))
     axs[pos].xaxis.set_major_formatter(plt.FixedFormatter(labels))
     #axs[pos].set_xticklabels(labels2)
     axs[pos].grid(axis="y")
     plt.setp(axs[pos].xaxis.get_majorticklabels(),
              rotation=35,
              fontsize=12)
Пример #9
0
def generate_histrogram_strings(buckets, title, x_label, y_label, output):
    fig = plt.figure()
    ax = fig.add_subplot(111)
    sorted_keys = sorted(buckets.keys(),
                         key=lambda item: int(''.join(x for x in item
                                                      if x.isdigit())))
    indexes = np.arange(0, len(sorted_keys))  # the x locations for the groups
    width = 0.1  # the width of the bars

    ax.set_yscale('log')
    ax.grid(zorder=0, axis="y")

    bars1 = ax.bar(indexes, [buckets.get(sorted_keys[i], 0) for i in indexes],
                   align='center',
                   color='blue')

    # axes and labels
    ax.set_ylim(0.5, max(buckets.values()) + 1)
    ax.set_xlabel(x_label)
    ax.set_ylabel(y_label)
    ax.set_title(title)

    ax.xaxis.set_major_locator(plt.FixedLocator(indexes))
    ax.xaxis.set_major_formatter(plt.FixedFormatter(sorted_keys))
    labels = ax.get_xticklabels()
    for tick in labels:
        tick.set_rotation(90)

    plt.tight_layout()

    fig.savefig(output)
Пример #10
0
def plot_bar_from_counter(counter, title, xlabel, ylabel, ax=None):
	""""
    This function creates a bar plot from a counter.

    :param counter: This is a counter object, a dictionary with the item as the key
     and the frequency as the value
    :param ax: an axis of matplotlib
    :return: the axis wit the object in it
    """
	
	if ax is None:
		fig = plt.figure()
		ax = fig.add_subplot(111)
	
	frequencies = counter.values()
	names = list(counter.keys())
	
	x_coordinates = np.arange(len(counter))
	ax.bar(x_coordinates, frequencies, align='center')
	
	ax.xaxis.set_major_locator(plt.FixedLocator(x_coordinates))
	ax.xaxis.set_major_formatter(plt.FixedFormatter(names))
	ax.xaxis.set_label_text(xlabel)
	ax.yaxis.set_label_text(ylabel)
	ax.set_title(title)
	plt.autoscale(enable=True, axis='x')
	
	DefaultSize = fig.get_size_inches()
	fig.set_size_inches((DefaultSize[0] * 5, DefaultSize[1] * 2.5))
	mkdir_p(IMG_URL)
	plt.savefig(IMG_URL + 'GIST Data Histogram.png')
	plt.close()
	im = crop_image(IMG_URL + 'GIST Data Histogram.png')
	return ax
Пример #11
0
def plot_bar_from_counter(counter, ax=None):
    """"
    This function creates a bar plot from a counter.

    :param counter: This is a counter object, a dictionary with the item as the key
     and the frequency as the value
    :param ax: an axis of matplotlib
    :return: the axis wit the object in it
    """

    if ax is None:
        fig = plt.figure()
        ax = fig.add_subplot(111)

    frequencies = counter.values()
    names = counter.keys()

    x_coordinates = np.arange(len(counter))
    ax.bar(x_coordinates, frequencies, align='center')
    for idx in xrange(len(frequencies)):
        x = x_coordinates[idx]
        y = frequencies[idx]
        ax.text(x + 3, y + 3, str(v), color='red', fontweight='bold')
    ax.xaxis.set_major_locator(plt.FixedLocator(x_coordinates))
    ax.xaxis.set_major_formatter(plt.FixedFormatter(names))
    ax.set_ylim(0, np.max(frequencies) * 1.1)

    return ax
Пример #12
0
def ohlc_plot(ax, df, open_='open', high_='high', low_='low', close_='close', t_='trading_day', width_=0.7, n_=10):
    assert isinstance(df, pd.DataFrame)
    assert all([x in df.columns for x in (open_, high_, low_, close_)])
    n = len(df)
    width = width_
    offset = width / 2.0

    for i in range(n):
        op = df[open_].values[i]
        hi = df[high_].values[i]
        lo = df[low_].values[i]
        cl = df[close_].values[i]

        x = i
        y = min(op, cl)
        height = abs(cl - op)
        is_raise = op < cl
        clr = 'red' if is_raise else 'green'
        fill = True  # True if is_raise else False

        rect = Rectangle((x - offset, y), width, height, facecolor=clr, edgecolor=clr, linewidth=1, fill=fill)
        vline = Line2D(xdata=(x, x), ydata=(lo, hi), linewidth=1, color=clr)

        ax.add_patch(rect)
        ax.add_line(vline)

    ax.autoscale_view()

    x_label_idx = n_ * np.array(range(len(df) // n_ + 1))
    x_labels = df[t_].iloc[x_label_idx].values
    ax.xaxis.set_major_locator(plt.FixedLocator(x_label_idx))
    ax.xaxis.set_major_formatter(plt.FixedFormatter(x_labels))
Пример #13
0
    def plot_summary(self):
        fig_size = (30, 20)
        multi_plot = plt.figure(figsize=fig_size, dpi=300)
        plot_order = ['wind_speed', 'wind_dir', 'T', 'rh_air', 'H']
        for sub_name in plot_order:
            sub_plot = multi_plot.add_subplot(
                self._get_pos(sub_name, plot_order),
                xlim=[self.data.index[0].date(), self.data.index[-1].date()],
                ylim=self.config.plot_settings[sub_name]['ylim'])
            plt.plot(self.data[sub_name],
                     self.config.plot_settings[sub_name]['style'],
                     **self.config.plot_settings[sub_name]['params'])

            sub_plot.tick_params(axis='both',
                                 length=10,
                                 which='major',
                                 direction='in',
                                 labelsize=14)

            sub_plot.xaxis.set_major_formatter(dates.DateFormatter('%m/%d'))
            sub_plot.xaxis.set_major_locator(dates.DayLocator())
            sub_plot.set_xlabel('Date', fontsize=18)

            sub_plot.set_ylabel(self.config.plot_settings[sub_name]['label'],
                                fontsize=18)
            sub_plot.yaxis.set_major_locator(
                plt.FixedLocator(
                    self.config.plot_settings[sub_name]['y_ticks']))

        # multi_plot.tight_layout()
        os.makedirs(self.config.plot_path, exist_ok=True)
        plt.savefig(self.config.plot_path + '\\all_ADV.png')
        plt.close(multi_plot)
Пример #14
0
def setup_axis():
    ax = plt.gca()

    # ax.xaxis.set_major_locator(plt.MultipleLocator(50.0))  # 设置x主坐标间隔 1
    # ax.xaxis.set_minor_locator(plt.MultipleLocator(10.0))  # 设置x从坐标间隔 0.1
    ax.yaxis.set_major_locator(
        plt.FixedLocator([
            70,
            77,
            78,
            84,
            85,
            92,
            97,
            100,
        ]))  # 设置y主坐标间隔 1
    ax.yaxis.set_minor_locator(plt.MultipleLocator(1))  # 设置y从坐标间隔 0.1

    ax.spines['top'].set_linewidth(0.2)
    ax.spines['bottom'].set_linewidth(0.2)
    ax.spines['left'].set_linewidth(0.2)
    ax.spines['right'].set_linewidth(0.2)
    #
    ax.grid(which='major', linewidth=0.2, linestyle='-')
    ax.grid(which='minor', linewidth=0.1, linestyle='-')
Пример #15
0
def display_all_etas(etas, event_names, groups=None):
    for i, event in enumerate(etas):
        for j, neuron in enumerate(event):
            if neuron > 1000:
                etas[i][j] = 1000
            elif neuron < -1000:
                etas[i][j] = -1000
    etas = [[etas[i][n] for i in range(len(etas))]
            for n in range(len(etas[0]))]
    etas = normalise_vrvs(etas)
    fig, ax = plt.subplots()
    fig.set_size_inches(1.85 * len(event_names), 20)
    if groups:
        ordered_atas = []
        indexes = [
            j for sub in [groups[i] for i in groups.keys()] for j in sub
        ]
        for i in indexes:
            ordered_atas.append(etas[i])
        ax.pcolor(ordered_atas, cmap='coolwarm')

        transition_points = [
            len(groups[key]) for i, key in enumerate(groups.keys())
        ]
        cumulative_tps = []
        for i, t in enumerate(transition_points):
            if i == 0:
                continue
            cumulative_tps.append(sum(transition_points[:i]))
        transition_points = cumulative_tps

        # cluster_labels = [i for i in range(len(transition_points))]

        def format_func_cluster(value, tick):
            for i, tp in enumerate(transition_points):
                if value < tp:
                    return i
            return len(transition_points)

        for t in transition_points:
            ax.axhline(t, color="black", linewidth=1)
        ax.set_yticks(transition_points, minor=True)
        ax2 = ax.secondary_yaxis("right")
        # ax2.yaxis.grid(True, which='minor', linewidth=20, linestyle='-', color="b")
        ax2.yaxis.set_major_locator(plt.FixedLocator(transition_points))
        ax2.yaxis.set_major_formatter(plt.FuncFormatter(format_func_cluster))
        ax2.set_ylabel("Cluster ID", fontsize=40)
        ax2.tick_params(axis='y', labelsize=20)
    else:
        # atas, t, cat = order_vectors_by_kmeans(atas)
        ax.pcolor(etas, cmap='coolwarm')
    # ax.grid(True, which='minor', axis='both', linestyle='-', color='k')
    plt.xticks(range(len(event_names)), [i for i in event_names], fontsize=25)
    # ax.set_yticks(lat_grid, minor=True)
    ax.tick_params(axis="x", labelrotation=45)

    ax.set_ylabel("Neuron", fontsize=20)
    ax.set_xlabel("Event", fontsize=40)
    fig.tight_layout()
    plt.show()
Пример #16
0
def plot_bar_from_counter(counter, ax=None):
    """"
	This function creates a bar plot from a counter.

	:param counter: This is a counter object, a dictionary with the item as the key
	 and the frequency as the value
	:param ax: an axis of matplotlib
	:return: the axis wit the object in it
	"""

    if ax is None:
        fig = plt.figure(figsize=(7, 5))
        ax = fig.add_subplot(111)

    frequencies = [f[1] for f in counter]
    names = [f[0] for f in counter]

    x_coordinates = np.arange(len(counter))
    ax.barh(x_coordinates, frequencies, align='center')

    ax.yaxis.set_major_locator(plt.FixedLocator(x_coordinates))
    ax.yaxis.set_major_formatter(plt.FixedFormatter(names))
    ax.yaxis.set_tick_params(labelsize=10)
    ax.set_ylim(-1, len(counter) + 1)
    ax.set_xlim(0, max(frequencies) + 300)
    for i, v in enumerate(frequencies):
        ax.text(v + 20,
                i - 0.25,
                str(v),
                color='black',
                fontweight='normal',
                fontsize=10)

    fig.subplots_adjust(left=0.4)
    return ax
Пример #17
0
def graph_flow_generator(total):
    ticket_dict = {}
    ticket_dict["Information"] = total[0]
    ticket_dict["Mineure"] = total[1]
    ticket_dict["Majeure"] = total[2]
    ticket_dict["Bloquante"] = total[3]
    ticket_dict["Autre"] = total[4]

    fig = plt.figure()
    ax = fig.add_subplot(111)

    frequencies = ticket_dict.values()
    names = ticket_dict.keys()

    x_coordinates = np.arange(len(ticket_dict))
    ax.bar(x_coordinates, frequencies, align='center')

    ax.xaxis.set_major_locator(plt.FixedLocator(x_coordinates))
    ax.xaxis.set_major_formatter(plt.FixedFormatter(names))

    plt.savefig("flow" + contract_id + ".svg")
    # plt.show()

    img_insert("Repartition des demandes", "flow" + contract_id + ".svg",
               "Repartition des demandes")
Пример #18
0
def plot_bar_graph_within(names, observered_data, result_data, title, fig,
                          sub_plot_index):
    """
    :param names: labels of x-axis
    :param observered_data: as variable name
    :param result_data: as variable name
    :param title: the title of the subplot
    :param fig: the fig object
    :param sub_plot_index: the index number is in order,
        such 221 means the generate a graph has 2 by 2 figure, which could have 4 subplots in it
        the 1 means the first subplot in the figure.
    :return: the fig object
    """
    # define the subplot
    ax = fig.add_subplot(sub_plot_index)

    x = np.arange(names.__len__()) * 2
    # set the value
    ax.bar(x, observered_data, align='center', color='red')
    ax.bar(x + 1, result_data, align='center', color='blue')

    # create the patch
    red_patch = mpatches.Patch(color='red', label='Observed Value')
    blue_patch = mpatches.Patch(color='blue', label='Simulated Value')

    # Set the label x-axis
    ax.xaxis.set_major_locator(plt.FixedLocator(x + 0.5))
    ax.xaxis.set_major_formatter(plt.FixedFormatter(names))
    ax.set_title(title)

    plt.legend(handles=[red_patch, blue_patch])

    return fig
Пример #19
0
def plot_distr(binned_data_list,binning_increment):
	norm_concs = []
	bin_mids = []
	for row in binned_data_list:
		bin_mid = row[0]
		bin_conc = row[1]
		bin_conc_norm = bin_conc/(math.log(bin_mid+binning_increment/2.,10)-math.log(bin_mid-binning_increment/2.,10))
		norm_concs.append(bin_conc_norm)
		bin_mids.append(bin_mid)


	popt,perr = SP2_utilities.fitFunction(SP2_utilities.lognorm,bin_mids,norm_concs,p0=(100,180,0.5))

	fit_bin_mids = np.arange(10,1000,5)
	fit_concs = []
	for fit_bin_mid in fit_bin_mids:
		fit_conc_norm  = SP2_utilities.lognorm(fit_bin_mid, popt[0], popt[1], popt[2])
		fit_concs.append(fit_conc_norm)
	
	
	ticks = [10,20,30,40,50,60,80,120,200,300,400,600,1000]
	fig = plt.figure()
	ax1 = fig.add_subplot(111)
	ax1.plot(fit_bin_mids,fit_concs)
	ax1.scatter(bin_mids,norm_concs)
	ax1.xaxis.set_major_formatter(plt.FormatStrFormatter('%d'))
	ax1.xaxis.set_major_locator(plt.FixedLocator(ticks))
	ax1.set_xscale('log')
	ax1.set_xlim(10,1000)
	ax1.set_ylabel('dM/dlogD (ng/m3)')
	ax1.set_xlabel('rBC VED (nm)')
	plt.show()
Пример #20
0
def make_graph(humidities, dates_):
    firstdate = dates_[0]
    lastdate = dates_[-1]
    graph_title = "{} - {}".format(firstdate.strftime(DAY_FORMAT),
                                   lastdate.strftime(DAY_FORMAT))
    debug_print("Making graph for {}".format(graph_title))

    # create new plot
    fig, ax = plt.subplots()
    fig.set_size_inches(40.5, 20.5)
    fig.subplots_adjust(bottom=0.2)
    # configure axes
    ax.xaxis_date()
    ax.xaxis.set_major_locator(DayLocator())
    ax.xaxis.set_minor_locator(HourLocator())
    ax.xaxis.set_major_formatter(DateFormatter(DATE_FORMAT))
    ax.yaxis.set_major_locator(
        plt.FixedLocator([
            10, 20, 30, 110, 120, 130, 140, 150, 160, 300, 350, 365, 380, 400,
            430, 480
        ]))
    ax.set_xlim(firstdate, lastdate)
    ax.set_ylim(10, 500)
    ax.autoscale_view()
    plt.setp(plt.gca().get_xticklabels(),
             rotation=45,
             horizontalalignment='right')
    plt.xticks(rotation=15)
    # add data
    plt.plot(dates_, humidities, ".")
    plt.grid()
    plt.title(graph_title)
    return fig
Пример #21
0
def matrix_plot(fig, ax, matrix, position='right'):
    ''' Create a matrix plot of pop. rates for the stabilization manuscript
    '''
    ax.yaxis.set_ticks_position('none')
    cm = plt.get_cmap('rainbow')
    cm = cm.from_list('mycmap', [myblue, myblue2,
                                 'white', myred2,  myred], N=256)
    masked_matrix = np.ma.masked_where(np.isnan(matrix), matrix)
    cm.set_under('0.3')
    cm.set_bad('k')
    im = ax.pcolormesh(masked_matrix, norm=LogNorm(
        vmin=0.001, vmax=500.), cmap=cm)
    ax.set_xlim(0, 32)

    ax.set_xticks([0.5, 3.5, 14.5, 24.5, 28.5])
    ax.xaxis.set_major_locator(plt.FixedLocator([0, 1, 4, 9, 24, 31]))
    ax.xaxis.set_major_formatter(plt.NullFormatter())
    ax.xaxis.set_minor_locator(plt.FixedLocator([0.5, 2.5, 6.5, 16.5,
                                                 27.5, 31.5]))
    ax.set_xticklabels([8, 7, 6, 5, 4, 2], minor=True, size=8)
    ax.tick_params(axis='x', which='minor', length=0.)

    ax.set_xlabel('Architectural type', labelpad=-0.2)

    y_index = list(range(8))
    y_index = [a + 0.5 for a in y_index]
    t = plt.FixedLocator([0.01, 0.1, 1., 10., 100., 500.])
    cb = plt.colorbar(im, ticks=t, ax=ax)

    if position == 'left':
        ax.set_yticklabels(population_labels, size=8)
        ax.set_yticks(y_index[::-1])
        ax.set_ylabel('Population', labelpad=-0.1)
        cb.remove()
    elif position == 'center':
        ax.set_yticks([])
        cb.remove()
    elif position == 'right':
        ax.set_yticks([])
        ax.text(45., 6, r'$\nu (\mathrm{spikes/s})$', rotation=90)
    if position == 'single':
        ax.set_yticklabels(population_labels)
        ax.set_yticks(y_index[::-1])
        ax.set_ylabel('Population', labelpad=-0.1)
        ax.text(45., 6, r'$\nu (\mathrm{spikes/s})$', rotation=90)
def rate_matrix_plot(fig, ax, matrix, position):
    ''' Create a matrix plot of pop. rates for the stabilization manuscript
    '''
    cm = plt.get_cmap('rainbow')
    cm = cm.from_list('mycmap', [myblue, myblue2, 'white', myred2, myred],
                      N=256)
    masked_matrix = np.ma.masked_where(np.isnan(matrix), matrix)
    cm.set_under('0.3')
    cm.set_bad('k')

    im = ax.pcolormesh(masked_matrix,
                       norm=LogNorm(vmin=0.01, vmax=500.),
                       cmap=cm)
    ax.set_xlim(0, 32)

    R = plt.Rectangle((area_list.index('TH') + 1, 4),
                      1,
                      2,
                      edgecolor='none',
                      facecolor='k')
    ax.add_patch(R)

    ax.set_xticks([0.5, 3.5, 14.5, 24.5, 28.5])
    ax.xaxis.set_major_locator(plt.FixedLocator([0, 1, 4, 9, 24, 31]))
    ax.xaxis.set_major_formatter(plt.NullFormatter())
    ax.xaxis.set_minor_locator(
        plt.FixedLocator([0.5, 2.5, 6.5, 16.5, 27.5, 31.5]))
    ax.set_xticklabels([8, 7, 6, 5, 4, 2], minor=True)
    ax.tick_params(axis='x', which='minor', length=0.)
    ax.set_xlabel('Arch. type', labelpad=-0.2)

    y_index = list(range(8))
    y_index = [a + 0.5 for a in y_index]
    t = plt.FixedLocator([0.01, 0.1, 1., 10., 100.])
    cb = plt.colorbar(im, ticks=t, ax=ax)

    if position == 'left':
        ax.set_yticklabels(population_labels)
        ax.set_yticks(y_index[::-1])
        ax.set_ylabel('Population')
        ax.yaxis.set_label_coords(-0.2, 0.5)
        # cb.remove()
    elif position == 'right':
        ax.set_yticks([])
        ax.text(42, 5, r'$\nu (1/\mathrm{s})$', rotation=90)
Пример #23
0
def get_midi_to_performance_difference(midi_hz,
                                       measured_hz,
                                       performance_key,
                                       plot=False,
                                       plot_dir="./"):
    """
    Computes frame-wise differences in cents between the midi score and measured f0 when both are non-silent.
    :param midi_hz: numpy array of frame-wise MIDI frequencies in Hz
    :param measured_hz: numpy array of frame-wise performance pitch track frequencies in Hz
    :param performance_key: Performance identifier
    :return: array of differences in cents when both arrays are non-zero (not silent)
    """
    # find non-silent frames
    singing_region = np.where((measured_hz > 1.0) & (midi_hz > 1.0))[0]
    # compute the differences in cents
    cent_differences = np.log2((midi_hz[singing_region] + 1e-10) /
                               (measured_hz[singing_region] + 1e-10)) * 1200
    if plot:
        fig, ax = plt.subplots()
        ax.set_xlabel("Frames")
        ax.set_ylabel("Cents")
        ax.set_title("Difference between MIDI and pYIN in non-silent frames")
        plt.plot(cent_differences)
        plt.tight_layout()
        plt.savefig(os.path.join(
            plot_dir,
            "midi_performance_diff_cents_" + performance_key + ".eps"),
                    format="eps")
        plt.close()
        fig, ax = plt.subplots(figsize=(6, 4))
        ax.set_xlabel("Frames")
        ax.set_ylabel("Scientific pitch")
        note_names = [
            'Gb4', 'G4', 'Ab4', 'A4', 'Bb4', 'B4', 'C5', 'Db5', 'D5', 'Eb5',
            'E5', 'F5', 'Gb5', 'G5', 'Ab5', 'A5', 'Bb5', 'B5', 'C6'
        ]
        ax.set_ylim(np.log2(370), np.log2(940))
        ax.yaxis.set_major_locator(
            plt.FixedLocator(np.log2(440 * np.power(2,
                                                    np.arange(-3, 14) / 12))))
        ax.set_yticklabels(note_names, fontsize='small')
        for label in (ax.get_xticklabels()):
            label.set_fontsize('small')
        plt.plot(np.log2(midi_hz[singing_region][500:1500]),
                 color="green",
                 label="MIDI")
        plt.plot(np.log2(measured_hz[singing_region][500:1500]),
                 color="purple",
                 label="pYIN")
        plt.legend(loc=4, fontsize='small')
        plt.tight_layout()
        plt.savefig(os.path.join(
            plot_dir,
            "midi_and_pyin_aligned_active_" + performance_key + ".eps"),
                    format="eps")
        plt.close()
    return cent_differences
Пример #24
0
def palplot(k, cmap="viridis"):
    pal = sns.color_palette(palette=cmap, n_colors=k)
    fig, ax = plt.subplots(1, 1)
    pal = np.array(pal)
    pal = pal.reshape((k, 1, 3))
    ax.imshow(pal)
    ax.xaxis.set_major_locator(plt.NullLocator())
    ax.yaxis.set_major_formatter(plt.FixedFormatter(np.arange(k, dtype=int)))
    ax.yaxis.set_major_locator(plt.FixedLocator(np.arange(k)))
    return ax
Пример #25
0
def plot_bar_from_counter(counter):
    ax = fig.add_subplot(1, 1, 1)

    x_coordinates = np.arange(len(counter))
    ax.bar(x_coordinates, counter.values(), align='center')

    ax.xaxis.set_tick_params(rotation=90)
    ax.xaxis.set_major_locator(plt.FixedLocator(x_coordinates))
    ax.xaxis.set_major_formatter(plt.FixedFormatter(list(counter.keys())))

    return ax
Пример #26
0
    def plot2d(self, **kwargs):
        """2D Colormap plot of the Rainflow matrix

        Args:
            **kwargs: **kwargs are passed to plt.imshow()

        Returns:
            figure: matplotlib figure object
            axes: matplotlib axes object
        """
        # create fig, ax
        fig = plt.figure()
        ax = fig.add_subplot((111))

        # imshow plot
        cax = ax.imshow(self.values,
                        cmap=plt.get_cmap("Blues"),
                        extent=(self.bins[0][0], self.bins[0][-1],
                                self.bins[1][-1], self.bins[1][0]),
                        **kwargs)

        # create colorbar
        fig.colorbar(cax)

        # create grid and ticks
        ax.grid(which='minor', alpha=0.8, linewidth=0.3)
        ax.xaxis.tick_top()
        ax.xaxis.set_label_position('top')
        ax.xaxis.set_minor_locator(plt.FixedLocator(self.bins[0]))
        ax.yaxis.set_minor_locator(plt.FixedLocator(self.bins[0]))
        ax.tick_params(which="minor", direction="in")
        if self.matrixtype == 'FromTo':
            ylabel = 'From'
            xlabel = 'To'
        elif self.matrixtype == 'RangeMean':
            ylabel = 'Range'
            xlabel = 'Mean'
        ax.set_xlabel(xlabel)
        ax.set_ylabel(ylabel)
        fig.tight_layout()
        return fig, ax
Пример #27
0
def draw_together(n, Ts, c_num, s, pmin):
    fig, ax = plt.subplots(figsize=(11, 3))

    sim_num = 6
    colors = ['b', 'g', 'r', 'c', 'm']
    c_show_max = 15

    major_ticks = []
    minor_ticks = []

    ymax = 0
    for i, T in enumerate(Ts):
        df = read_csv("results/simu_n{}t{}cnum{}pmin{}.csv".format(
            n, T, c_num, pmin),
                      index_col=0)
        for c in df.columns:
            if int(c) > c_show_max:
                continue
            tick = (c_show_max + 1) * i + int(c)
            ax.plot([tick] * (sim_num - 1), df[c].values, 'o', color=colors[i])
            ymax = max(ymax, np.max(df[c].values))
            if int(c) % 2 == 0:
                major_ticks.append(tick)
            minor_ticks.append(tick)

    save_path = "results/simu_n{}cnum{}pmin{}".format(n, c_num, pmin)

    ax.xaxis.set_major_locator(plt.FixedLocator(major_ticks))
    ax.xaxis.set_minor_locator(plt.FixedLocator(minor_ticks))
    ax.xaxis.set_major_formatter(plt.FuncFormatter(format_func))

    ax.yaxis.set_major_locator(
        plt.FixedLocator(get_yticks_my_way(0, int(ymax))))
    ax.yaxis.set_minor_locator(plt.FixedLocator(list(range(0, int(ymax) + 1))))

    # save png and low quality jpg
    fig.savefig(save_path + ".png", dpi=500)
    fig.savefig(save_path + ".jpg", dpi=100, optimize=True, quality=30)

    # clean before doing next graph
    plt.clf()
Пример #28
0
def imshow(e, a):
    # Calculate events at super resolution
    x = e['x'] * super_resolution
    y = e['y'] * super_resolution
    data = np.ones(len(x))
    d = scipy.sparse.coo_matrix((data, (y, x)), shape=(shape, shape), dtype=np.uint32)
    frame = d.todense()

    min5 = np.percentile(frame, 5)
    max95 = np.percentile(frame, 95)

    im = a.imshow(frame, vmin=min5, vmax=max95, cmap='gray')

    # Look and feel
    a.xaxis.set_major_locator(plt.FixedLocator([shape - 1]))
    a.yaxis.set_major_locator(plt.FixedLocator([shape - 1]))

    # Color bar
    # colorbar(im)

    return im
Пример #29
0
def plot_inertia_silhouette(inertia_vect, silhouette_vect, strategy):
    """Plot inertia and silhouette vs number of clusters."""
    fig, axs = plt.subplots(1, 2)
    k_vect = np.arange(2, 2 + len(inertia_vect))
    
    for ax, y, label in zip(axs, (inertia_vect, silhouette_vect), LABELS):
        ax.plot(k_vect, y)
        ax.xaxis.set_major_locator(plt.FixedLocator(k_vect))
        ax.set(xlabel="k", ylabel=label)
    
    fig.suptitle(f"Strategy: {strategy}", fontsize=16)
    plt.show()
Пример #30
0
def plot_cdf_raw(values, ax, **kwargs):
    """Plot the cdf of values.

    :param values: values to plot. 
    :param ax: axis to plot.
    :param kwargs: any other kwargs that are passed to plot function. 
    """
    probabilities = np.linspace(0, 1, len(values))
    ax.plot(np.sort(values), probabilities, **kwargs)
    ax.yaxis.set_major_locator(plt.FixedLocator(np.linspace(0, 1, 5)))
    ax.set_ylabel('cdf')
    ax.grid(True)