def Number_by_Source(tweets): tweets['statusSource_new'] = '' for i in range(len(tweets['statusSource'])): m = re.search('(?<=>)(.*)', tweets['statusSource'][i]) try: tweets['statusSource_new'][i] = m.group(0) except AttributeError: tweets['statusSource_new'][i] = tweets['statusSource'][i] # print(tweets['statusSource_new'].head()) tweets['statusSource_new'] = tweets['statusSource_new'].str.replace('</a>', ' ', case=False) tweets['statusSource_new'] = tweets['statusSource_new'].str.replace('</a>', ' ', case=False) #print(tweets[['statusSource_new','retweetCount']]) tweets_by_type= tweets.groupby(['statusSource_new'])['retweetCount'].sum() #print(tweets_by_type) tweets_by_type.transpose().plot(kind='bar',figsize=(10, 5)) #plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.title('Number of retweetcount by Source') plt._show()
def drawLine(f1, f2, feature1TestData, feature2TestData, test_Y, w1, w2, b): color = ['grey', 'blue'] # test_Y += 1 plt.scatter(feature1TestData, feature2TestData, c=test_Y, cmap=matplotlib.colors.ListedColormap(color)) plt.xlabel(f1, fontsize=20) plt.ylabel(f2, fontsize=20) cb = plt.colorbar() loc = np.arange(0, max(test_Y), max(test_Y) / float(len(color))) cb.set_ticks(loc) lbls = le.inverse_transform(np.unique(test_Y)) cb.set_ticklabels(lbls) pointX, pointY = [], [] x2 = min(feature1TestData) - 5 x1 = ((-w2 * x2) - b) / w1 pointX.append(x2) pointY.append(x1[0]) x1 = max(feature1TestData) + 5 x2 = ((-w1 * x1) - b) / w2 pointX.append(x1) pointY.append(x2[0]) plt.plot(pointX, pointY, color='green', linewidth=2) plt._show()
def plot_simplearray(x_array=None, y_array=None, x_label=None, y_label=None, label=None, show=True): """ Plot a simple two dimensional array :param x_array: elements of x axis :type x_array: tuple :param y_array: elements of y axis :type y_array: tuple :param x_label: x label :type x_label: str :param y_label: y label :type y_label: str :param label: label for the entire plot :type label: str :param show: shot the plot :type show: bool :return: plot a simple 2d array """ pyplot.plot(x_array, y_array, label=label) pyplot.ylabel(y_label) pyplot.xlabel(x_label) pyplot.legend(loc='upper center', shadow=True) if show is True: pyplot._show()
def step1(): image = [[255, 7, 3], [212, 240, 4], [218, 216, 230]] imageConv = sg.convolve(image, [[1., -1]], mode="valid") plt.imshow(imageConv) plt._show() print(imageConv)
def drawLine(f1, f2, feature1TestData, feature2TestData, classTestData, w1, w2, b): color = ['grey', 'blue'] classTestData += 1 plt.scatter(feature1TestData, feature2TestData, c=classTestData, cmap=matplotlib.colors.ListedColormap(color)) plt.xlabel(f1, fontsize=20) plt.ylabel(f2, fontsize=20) cb = plt.colorbar() loc = np.arange(0, max(classTestData), max(classTestData) / float(len(color))) cb.set_ticks(loc) lbls = le.inverse_transform(np.unique(classTestData)) cb.set_ticklabels(lbls) # line x2 = 2 x1 = ((-w2 * x2) - b) / w1 # X1, 2 point1 = [x1, 2] x1 = 3 x2 = ((-w1 * x1) - b) / w2 # 3, X2 point2 = [3, x2] plt.plot(point1, point2, color='red', linewidth=3) plt._show()
def draw_hist(): mu = 100 sigma = 20 x = mu + sigma * np.random.randn(20000) # 样本数量 plt.hist(x, bins=100, color='green', normed=True) # bins:显示有几个直方,normed是否对数据进行标准化 plt._show()
def plot_angle_trajectories(self,trajs): plt.title("2-D DMP demonstration") plt.xlabel("Time(t)") plt.ylabel("Angle Position(deg)") time = np.arange(0, self.tau + self.dt, self.dt) for i in range(0,len(trajs)): # plt.plot(time,des_trajs[i]) plt.plot(time,trajs[i]) plt._show()
def plotdna2(DNA, dyads, nucl, plt_range=500): ''' Plot DNA and show the location of the dyads Parameters ---------- DNA : instance of HelixPose the DNA to be plotted dyads : list list of bp indices of the dyads plt_range : int, optional xyz range (nm), default is 50 nm ''' #plt.close() rb_width = 2.0 rb_width = 2.0 color = 'kb' rb_vec = DNA.rb_vec coord = DNA.coord NRL = 198 #NRL = dyads[1]-dyads[0] fig = plt.figure() ax = p3.Axes3D(fig) ax.scatter3D(coord[dyads, 0], coord[dyads, 1], coord[dyads, 2]) ax.plot3D(coord[:, 0], coord[:, 1], coord[:, 2], color[0] + '-') color2 = 'kbgr' a = 100 for d in dyads: fixed_frame = np.transpose(DNA.frames[d + nucl.fixed_i[7] - NRL % 2]) fixed_origin = coord[d + nucl.fixed_i[7] - NRL % 2] Q = nuc.of2coords(fixed_origin, fixed_frame) P = nuc.of2coords(nucl.coords[nucl.d_index+nucl.fixed_i[7]], \ np.transpose(nucl.frames[nucl.d_index+nucl.fixed_i[7]])) tf = nuc.get_transformation(P, Q) n_coord = nuc.apply_transf_coords(nucl.n_coords, tf) for i in range(1, 4): ax.plot3D([n_coord[0,0],n_coord[0,0]+a*(n_coord[i,0]-n_coord[0,0])],\ [n_coord[0,1],n_coord[0,1]+a*(n_coord[i,1]-n_coord[0,1])],\ [n_coord[0,2],n_coord[0,2]+a*(n_coord[i,2]-n_coord[0,2])], color2[i]+'-') ax.scatter3D(coord[nucl.fixed_i + d, 0], coord[nucl.fixed_i + d, 1], coord[nucl.fixed_i + d, 2]) ax.set_xlabel('X (nm)') ax.set_ylabel('Y (nm)') ax.set_zlabel('Z (nm)') if plt_range is None: plt_range = DNA.n_bp * 0.34 ax.set_xlim3d(-plt_range / 2, plt_range / 2) ax.set_ylim3d(-plt_range / 2, plt_range / 2) ax.set_zlim3d(0, plt_range) plt._show()
def plotScatterFigure(X, Y, filename, xlabel, ylabel): plt.scatter(X, Y, c="red", alpha=0.5, edgecolors="black") plt.title(xlabel + "_VS_" + ylabel) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.savefig(filename) plt._show() pass
def draw_confusion_matrix(y_test, y_predict, c1, c2): lbls = [] if c1 == -1: c1Test = y_test[0:20] lbls.append("Iris-setosa") elif c1 == 0: c1Test = y_test[20:40] lbls.append("Iris-versicolor") elif c1 == 1: c1Test = y_test[40:60] lbls.append("Iris-virginica") if c2 == -1: c2Test = y_test[0:20] lbls.append("Iris-setosa") elif c2 == 0: c2Test = y_test[20:40] lbls.append("Iris-versicolor") elif c2 == 1: c2Test = y_test[40:60] lbls.append("Iris-virginica") desired = np.append(c1Test, c2Test).reshape(40, 1) # print("classTest type", type(classTest)) # print("classTest shape", classTest.shape) desired.sort(axis=0) # print("desired after sort") # print(desired) # print("\n\ny predict") # print(y_predict) # print("type y_predict in fn confusion", type(y_predict[0, 0])) confusion = confusion_matrix(desired, y_predict) # , labels=["AAAAAAA", "BBBBBB"]) print("confusion", confusion) # print("confusion shape", confusion.shape) # print("confusion type", type(confusion)) # # print("lbls") # print(lbls) df_cm = pd.DataFrame(list(confusion), index=[i for i in lbls], columns=[i for i in lbls]) # print("\ndf_cm", df_cm) # print("df_cm shape", df_cm.shape) # print("df_cm type", type(df_cm)) plt.figure(figsize=(10, 7)) sn.heatmap(df_cm, annot=True) plt._show()
def draw_confusion_matrix(y_test, y_predict): lbls = ["Iris-setosa", "Iris-versicolor", "Iris-virginica"] confusion = confusion_matrix(y_test, y_predict) print("Confusion Matrix:") print(confusion) df_cm = pd.DataFrame(list(confusion), index=[i for i in lbls], columns=[i for i in lbls]) plt.figure(figsize=(10, 7)) sn.heatmap(df_cm, annot=True) plt._show()
def wordcloud_by_province_Demonetization(tweets): stopwords = set(STOPWORDS) stopwords.add("https") stopwords.add("00A0") stopwords.add("00BD") stopwords.add("00B8") stopwords.add("ed") stopwords.add("demonetization") stopwords.add("Demonetization co") stopwords.add("lakh") wordcloud = WordCloud(background_color="white",stopwords=stopwords,random_state = 2016).generate(" ".join([i for i in tweets['text_new'].str.upper()])) plt.imshow(wordcloud) plt.axis("off") plt.title("Demonetization") plt._show()
def Number_by_Source_bis(tweets): tweets['statusSource_new2'] = '' for i in range(len(tweets['statusSource_new'])): if tweets['statusSource_new'][i] not in ['Twitter for Android ','Twitter Web Client ','Twitter for iPhone ']: tweets['statusSource_new2'][i] = 'Others' else: tweets['statusSource_new2'][i] = tweets['statusSource_new'][i] #print(tweets['statusSource_new2']) tweets_by_type2 = tweets.groupby(['statusSource_new2'])['retweetCount'].sum() tweets_by_type2.transpose().plot(kind='pie',figsize=(6.5, 4)) plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.title('Number of retweetcount by Source bis') plt._show()
def wordcloud_by_province_narendramodi(tweets): a = pd.DataFrame(tweets['text'].str.contains("narendramodi").astype(int)) b = list(a[a['text']==1].index.values) stopwords = set(STOPWORDS) stopwords.add("narendramodi") stopwords.add("https") stopwords.add("00A0") stopwords.add("00BD") stopwords.add("00B8") stopwords.add("ed") stopwords.add("demonetization") stopwords.add("Demonetization co") stopwords.add("lakh") wordcloud = WordCloud(background_color="white",stopwords=stopwords,random_state = 2016).generate(" ".join([i for i in tweets.ix[b,:]['text_new'].str.upper()])) plt.imshow(wordcloud) plt.axis("off") plt.title("Tweets with word 'narendramodi'") plt._show()
def PlotGraph(self, hoursAccuracyTuplesList, xlabel, ylabel, classifier, postType): import matplotlib.pyplot as plt import numpy as np accuracies = None hourList = [] for idx, hoursAccuracyTuples in enumerate(hoursAccuracyTuplesList): hour, AccuracyListFrom2Fold = hoursAccuracyTuples hourList.append(hour) if idx == 0: accuracies = np.array([AccuracyListFrom2Fold]) else: accuracies = np.concatenate((accuracies, [AccuracyListFrom2Fold]), axis=0) averageAccuracies = np.average(accuracies, axis=0) indexOfMaxAvg = np.argmax(averageAccuracies) kValueForMaxAvg = indexOfMaxAvg + 2 avgMaxAccuracies = np.array( [[accuracies[rowIndex][indexOfMaxAvg] for rowIndex in range(0, len(accuracies))]]) maxHourIndex = np.argmax(avgMaxAccuracies) avgMaxAccuracies = avgMaxAccuracies * 100 plt.plot(hourList, avgMaxAccuracies[0], c="red") plt.axis([0, 28, 30, 100]) #plt.annotate('Best k-fold value ' + str(kValueForMaxAvg), # xytext=(hourList[maxHourIndex]-3, avgMaxAccuracies[0][maxHourIndex] - 10), # ) plt.title(classifier + "K = " + str(kValueForMaxAvg) +": "+ xlabel + "_vs_" + ylabel) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.savefig("Images_" + postType +"/"+classifier + "Classifier.png") plt._show() pass
def plot_simplearray(x_array, y_array, x_label, y_label, label, show=True): # print label # fig, ax = pyplot.subplots() pyplot.plot(x_array, y_array, label=label) pyplot.ylabel(y_label) pyplot.xlabel(x_label) # Now add the legend with some customizations. pyplot.legend(loc='upper center', shadow=True) # # # The frame is matplotlib.patches.Rectangle instance surrounding the legend. # frame = legend.get_frame() # frame.set_facecolor('0.90') # # # Set the fontsize # for label in legend.get_texts(): # label.set_fontsize('large') # # for label in legend.get_lines(): # label.set_linewidth(1.5) # the legend line width if show is True: pyplot._show()
def draw_confusion_matrix(y_test, y_predict, c1, c2): lbls = [] if c1 == -1: lbls.append("Iris-setosa") elif c1 == 0: lbls.append("Iris-versicolor") elif c1 == 1: lbls.append("Iris-virginica") if c2 == -1: lbls.append("Iris-setosa") elif c2 == 0: lbls.append("Iris-versicolor") elif c2 == 1: lbls.append("Iris-virginica") print("y predict", y_predict) print(" len y predict", len(y_predict)) print("y_test", y_test) print("y_test", len(y_test)) confusion = confusion_matrix(y_test, y_predict) print("confusion") print(confusion) # # print("lbls") # print(lbls) df_cm = pd.DataFrame(list(confusion), index=[i for i in lbls], columns=[i for i in lbls]) # print("\ndf_cm", df_cm) # print("df_cm shape", df_cm.shape) # print("df_cm type", type(df_cm)) plt.figure(figsize=(10, 7)) sn.heatmap(df_cm, annot=True) plt._show()
plt.pie(y) plt.title("pie") plt.subplot(234) plt.bar(x, y) plt.title("bar") # 2D data import numpy as np delta = 0.025 x = y = np.arange(-3.0, 3.0, delta) X, Y = np.meshgrid(x, y) Z = Y**2 + X**2 plt.subplot(235) plt.contour(X, Y, Z) plt.colorbar() plt.title("contour") # read image import matplotlib.image as mpimg img = mpimg.imread('marvin.jpg') plt.subplot(236) plt.imshow(img) plt.title("imshow") plt.savefig("matplot_sample.jpg") plt._show("matplot_sample.jpg") # Reference : http://www.cnblogs.com/vamei/archive/2013/01/30/2879700.html
import matplotlib matplotlib.use('TkAgg') matplotlib.get_backend() matplotlib.get_configdir import matplotlib.pyplot as plt plt.plot([1, 2, 3], [5, 6, 7]) plt._show() #import gensim #gensim.download() #import nltk #nltk.download('averaged_perceptron_tagger') #from nltk.tokenize import sent_tokenize, word_tokenize #exapleText='My name is Ujwal Singh. I can Cook food. I can Drive Car. I am a smart guy' #print(sent_tokenize(exapleText)) #print(word_tokenize(exapleText))
def drawIrisData(): #################x1,X2################# x1 = X1_train.append(X1_test) x2 = X2_train.append(X2_test) label = np.append(labeled_Y_train + 1, labeled_Y_test + 1) colors = ['grey', 'blue', 'purple'] plt.scatter(x1, x2, c=label, cmap=matplotlib.colors.ListedColormap(colors)) plt.xlabel('X1', fontsize=20) plt.ylabel('X2', fontsize=20) cb = plt.colorbar() loc = np.arange(0, max(label), max(label) / float(len(colors))) cb.set_ticks(loc) cb.set_ticklabels(['C1-setosa', 'C2-versicolor', 'C3-virginica']) plt._show() #################x1,X3################# x1 = X1_train.append(X1_test) x3 = X3_train.append(X3_test) label = np.append(labeled_Y_train + 1, labeled_Y_test + 1) colors = ['grey', 'blue', 'purple'] plt.scatter(x1, x3, c=label, cmap=matplotlib.colors.ListedColormap(colors)) plt.xlabel('X1', fontsize=20) plt.ylabel('X3', fontsize=20) cb = plt.colorbar() loc = np.arange(0, max(label), max(label) / float(len(colors))) cb.set_ticks(loc) cb.set_ticklabels(['C1-setosa', 'C2-versicolor', 'C3-virginica']) plt._show() #################x1,X4################# x1 = X1_train.append(X1_test) x4 = X4_train.append(X4_test) label = np.append(labeled_Y_train + 1, labeled_Y_test + 1) colors = ['grey', 'blue', 'purple'] plt.scatter(x1, x4, c=label, cmap=matplotlib.colors.ListedColormap(colors)) plt.xlabel('X1', fontsize=20) plt.ylabel('X4', fontsize=20) cb = plt.colorbar() loc = np.arange(0, max(label), max(label) / float(len(colors))) cb.set_ticks(loc) cb.set_ticklabels(['C1-setosa', 'C2-versicolor', 'C3-virginica']) plt._show() #################x2,X3################# x2 = X2_train.append(X2_test) x3 = X3_train.append(X3_test) label = np.append(labeled_Y_train + 1, labeled_Y_test + 1) colors = ['grey', 'blue', 'purple'] plt.scatter(x2, x3, c=label, cmap=matplotlib.colors.ListedColormap(colors)) plt.xlabel('X2', fontsize=20) plt.ylabel('X3', fontsize=20) cb = plt.colorbar() loc = np.arange(0, max(label), max(label) / float(len(colors))) cb.set_ticks(loc) cb.set_ticklabels(['C1-setosa', 'C2-versicolor', 'C3-virginica']) plt._show() #################x2,X4################# x2 = X2_train.append(X2_test) x4 = X4_train.append(X4_test) label = np.append(labeled_Y_train + 1, labeled_Y_test + 1) colors = ['grey', 'blue', 'purple'] plt.scatter(x2, x4, c=label, cmap=matplotlib.colors.ListedColormap(colors)) plt.xlabel('X2', fontsize=20) plt.ylabel('X4', fontsize=20) cb = plt.colorbar() loc = np.arange(0, max(label), max(label) / float(len(colors))) cb.set_ticks(loc) cb.set_ticklabels(['C1-setosa', 'C2-versicolor', 'C3-virginica']) plt._show() #################x3,X4################# x3 = X3_train.append(X3_test) x4 = X4_train.append(X4_test) label = np.append(labeled_Y_train + 1, labeled_Y_test + 1) colors = ['grey', 'blue', 'purple'] plt.scatter(x3, x4, c=label, cmap=matplotlib.colors.ListedColormap(colors)) plt.xlabel('X3', fontsize=20) plt.ylabel('X4', fontsize=20) cb = plt.colorbar() loc = np.arange(0, max(label), max(label) / float(len(colors))) cb.set_ticks(loc) cb.set_ticklabels(['C1-setosa', 'C2-versicolor', 'C3-virginica']) plt._show()
def __pyplot_show(*args, **kwargs): return pyplot._show(*args, **kwargs)
def plotvlines(cdfdata, labels, filename,gfolder, xlabel='',ylabel='', islog=False,figwidth=6, figlen=4, resolution=0.0001, neglect=[], showlen=False,colors=True, legendposition = 'lower right', title =None,xlimit=None,topdata=None, mindatalen = 1,extension='.pdf',xrange=None): return fig = plt.figure(figsize=(figwidth,figlen)) plt.axvline(x=5, ymax=10) plt.axvline(x=10, ymax=100) plt.axvline(x=0, ymax=5) plt.show() plt.ylim([0,100]) empty = True markervalues = ['*','o','.']#,'_', '^','x','s','v', '<', '>', '1', '2', '3', '4', '8', 's', 'p', 'D', 'd', '_' ] colorvalues = ['b','g', 'r', 'k', 'y', 'm', 'c','#CCCCCC', '#808080'] dashes = [[]]#[3,3,3,3], [],[3, 3, 3, 3], [], [3, 3, 3, 3], [5, 1, 5, 1]] leng = 0 maxx = 0 try: if topdata != None: mindatalen = min(sorted([len(x) for x in cdfdata], reverse=True)[:topdata]) except: mindatalen = 1 i = 0 numdata = len(labels) for v in range(len(labels)): vindex = v color = colorvalues[v%len(colorvalues)] if topdata != None: color = colorvalues[i%len(colorvalues)] marker = markervalues[v%len(markervalues)] dash = dashes[v%len(dashes)] label = labels[v] dat = cdfdata[v] i+=1 #try: for d in dat: print dat.index(d)*numdata+vindex,d plt.axvline(x=d, ymax=float(d/max(dat))) continue plt.axvline(x=dat.index(d)*numdata+vindex,ymin=0,ymax=d, color=color) #, label=label,color=color,dashes=dash)#, marker=marker)#, dashes=dash)#+'('+str(len(data))+')' #except: #pass #plt.legend(loc=legendposition, fontsize=10) if xlimit != None: plt.xlim(xlimit) if xrange != 0: plt.xlim(xrange) def setFigLinesBW(fig): """ Take each axes in the figure, and for each line in the axes, make the line viewable in black and white. """ for ax in fig.get_axes(): setAxLinesBW(ax) if not colors: setFigLinesBW(fig) plt.locator_params(nbins=5, axis='x') if title != None: plt.title(title) plt.ylabel(ylabel) plt.xlabel(xlabel) title = filename.replace(' ','') if islog: plt.gca().set_xscale('log') plt.tight_layout() plt.savefig(gfolder+'/'+title+extension) plt._show() plt.close()
import matplotlib import matplotlib.pyplot as pt import numpy as np from mpl_toolkits.mplot3d import axes3d fig = pt.figure() chart = fig.add_subplot(1, 1, 1, projection='3d') x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] y = [1, 2, 3, 5, 7, 9, 3, 2, 1, 0] z = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] dx = np.ones(10) dy = np.ones(10) dz = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] chart.set_xlabel("X axis") chart.set_ylabel('Y axis') chart.set_zlabel('Z axis') chart.bar3d(x, y, z, dx, dy, dz, color="red") pt._show()
def CreateFigures(LTM=10): urk = np.loadtxt('SolutionDet.txt') ussls = np.loadtxt('SolutionSto.txt') uas = np.loadtxt('SolutionStoAs.txt') t= ussls[:,0] #Pots Vs Time plt.close() w=1.0 fig_width_pt =538.58*w # Get this from LaTeX using \showthe\columnwidth(190mm) inches_per_pt = 1.0/72.27 # Convert pt to inch golden_mean = (np.sqrt(5) - 1.0) / 2.0 # Aesthetic ratio fig_width = fig_width_pt * inches_per_pt # width in inches fig_height = fig_width*golden_mean # height in inches fig_size = [fig_width, fig_height] params = {'backend': 'ps', 'axes.labelsize': 10, 'text.fontsize': 10, 'legend.fontsize': 8, 'xtick.labelsize': 8, 'ytick.labelsize': 8, 'text.usetex': True, 'figure.figsize': fig_size} rcParams.update(params) ## fig1, ax1 = plt.subplots() #plt.title('Jerez-Chen Model Experimental Parameters') OC_line = mlines.Line2D([], [], color='#000000', linestyle='-', lw=2, marker='', markersize=1) OB_line = mlines.Line2D([], [], color='#666666', linestyle='-', lw=2, marker='', markersize=1) sOC_line = mlines.Line2D([], [], color='#666666', linestyle='-.', lw=4, marker='', markersize=1) sOB_line = mlines.Line2D([], [], color='#000000', linestyle='-.', lw=4, marker='', markersize=1) # ax1.plot(urk[:, 0], urk[:, 1], color='#000000', linestyle='-', lw=2, marker='', label='osteoclast' ) ax1.plot(ussls[:, 0], ussls[:, 1], color='#666666', linestyle='-.', lw=3, marker='', label='Sto osteoclast' ) ax1.set_xlabel('time (days)') ax1.set_ylabel('OCs (u1)', color='k') ax2 = ax1.twinx() # ax2.plot(urk[:, 0], urk[:, 2], color='#666666', lw = 2, linestyle='-', marker='', label='osteoblast' ) ax2.plot(ussls[:, 0], ussls[:, 2], color='#000000', linestyle='-.', lw=3, marker='', label='Sto osteoblast' ) ax2.set_xlabel('time (days)') ax2.set_ylabel(r'OBs (u2)') ax2.grid(True) plt.legend([OC_line, OB_line, sOC_line, sOB_line], ["OCs", "OBs", "stoOCs", "stoOBs"], bbox_to_anchor=(0., 1.02, 1., .5), loc=3, ncol=4, mode="expand", borderaxespad=0. ) plt.savefig("CellsTime.eps") plt._show() # # #Phase Potrait fig1, ax3 = plt.subplots() #plt.title('Stochastic Power Law Bone Remodeling') ax3.set_xlim(-1, 13) ax3.set_ylim(-50, urk[:,2].max()*1.15) ax3.plot(urk[:, 1], urk[:, 2], color='#000000', linestyle='-', lw=3, label='Deterministic' ) ax3.plot(StoPlbrmJC.Ubar[0], StoPlbrmJC.Ubar[1], 'o', mfc='none', ms=8, #label=r'$\bar{u}$' ) ax3.plot(StoPlbrmJC.Uzero[0], StoPlbrmJC.Uzero[1], 's', mfc='#666666', ms=8 ) ax3.plot(ussls[:, 1], ussls[:, 2], color='#666666', ms=1, label='Stochastic Short Time' ) ax3.plot(uas[:, 1], uas[:, 2], color='#666666', lw=1, linestyle='-.', label='Long Time Stochastic') #ax3.plot(uas[0,0], uas[0,1], 'x', mfc='green', ms=12) ax3.set_xlabel(r'$u_1$') ax3.set_ylabel(r'$u_2$') ax3.grid(True) ax3.legend(loc=0) plt.savefig("PhasePotrait.eps") plt.show() # # fig = plt.figure() #ax = fig.gca(projection='3d') ax = Axes3D(fig) ax.set_xlabel(r'$u_1$') ax.set_ylabel(r'$t$') ax.set_zlabel(r'$u_2$') ax.view_init(elev=20., azim=195) # ax.plot(urk[:, 1], t, urk[:, 2], color='#000000', lw=1, linestyle='-', label='Deterministic' ) ax.plot(ussls[:, 1], t, ussls[:, 2], color='#666666', lw=1, linestyle='-', #label='Sto Short Time' ) ax.plot(urk[:, 1], LTM*t[-1]+t, urk[:, 2], color='#000000', lw=1, linestyle='-', #label='Det Long Time' ) ax.plot(uas[:, 1], LTM*t[-1]+t, uas[:, 2], color='#666666', lw=1, linestyle='-', label='Stochastic' ) ax.legend() plt.savefig("PhasePotrait3d.eps") plt.show()
nsamp=[90,90,90,90,90,90,90,699] ncancer=[0,2,1,5,2,3,6,9] dose=[0,1,2,4,1,2,4,0] if (False): #all schwannomas in males, no control nsamp=[90,90,90,90,90,90,90] ncancer=[3,3,5,7,4,4,7] dose=[0,1,2,4,1,2,4] param_guess=numpy.asarray([0.03,0.03]) step_size=numpy.asarray([0.01,0.01]) mychain=run_chain(param_guess,20000,step_size,nsamp,ncancer,dose) plt.clf() plt.plot(mychain[:, 0], mychain[:, 1], ".") ax = plt.gca() ax.set_yscale("log") ax.set_xscale("log") plt._show()