Пример #1
0
def percentage_removed(data,
                       percentage=None,
                       threshold=None,
                       embedding_technique=None):
    if (embedding_technique == "node_centrality"):
        fst_val = 1
        snd_val = 0.
    else:
        fst_val = data
        snd_val = 0.
    if (plt.is_numlike(percentage) and (plt.is_numlike(threshold))):
        print(
            "You can use only the percentage or the threshold not both at the same time"
        )
        return -1
    elif (plt.is_numlike(percentage)):
        triu = np.triu(
            data, k=1
        )  # choose symetric upper triangular matrix without its diagonal
        triu = np.sort(np.reshape(
            triu, [1, len(triu)**2]))  # reshape it to 1-D vector
        triu = np.trim_zeros(
            np.squeeze(triu))  # remove any leading or trailing zeros
        percentage *= 100
        th = ((len(triu) - 1) * percentage) // 100
        data = np.where(data > triu[th], fst_val,
                        snd_val)  # binary adjacency matrix
    elif (plt.is_numlike(threshold)):
        data = np.where(data > threshold, fst_val,
                        snd_val)  # binary adjacency matrix

    return percentage, th, data, triu
Пример #2
0
def checkfield(u, v, varnames=["u", "v"]):
    """
    Perform sanity checks on the input vector field
    """

    for nk, arr in enumerate([u, v]):
        varname = varnames[nk]
        try:
            sha = arr.shape
        except:
            raise TypeError('Input `' + varname +
                            '` must be a NumPy array, not ' +
                            type(arr).__name__ + '!')
        if len(sha) != 2:
            raise ValueError('Input `' + varname +
                             '` must be a `M`-by-`N` NumPy array')
        if (min(sha) == 1) or (sha[0] != sha[1]):
            raise ValueError('Input `' + varname +
                             '` must be a `M`-by-`N` NumPy array!')
        if not plt.is_numlike(arr) or not np.isreal(arr).all():
            raise TypeError('Input `' + varname +
                            '` must be a real-valued `M`-by-`N` NumPy array!')
        if np.isfinite(arr).min() == False:
            raise ValueError(
                'Input `' + varname +
                '` must be a real valued NumPy array without Infs or NaNs!')
    if u.shape[0] != v.shape[0] or u.shape[1] != v.shape[1]:
        raise ValueError("Inputs `" + varnames[0] + "` and `" + varnames[1] +
                         "` must have the same dimension!")

    return
Пример #3
0
def checkinput(N, ns):
    """
    Perform sanity checks on the inputs `N` and `ns`
    """

    # Sanity checks for `N` and `ns`
    names = ["N", "ns"]
    for nk, val in enumerate(N, ns):
        if not np.isscalar(val) or not plt.is_numlike(val) or not np.isreal(
                val).all():
            raise TypeError("Input `" + names[nk] + "` must be a real scalar!")
        if not np.isfinite(val):
            raise TypeError("Input `" + names[nk] + "` must be finite!")

    # N
    if round(N) != N:
        raise TypeError("`N` has to be a positive integer!")
    if N <= 1:
        raise ValueError("`N` has to be greater than 1!")

    # ns
    if ns < 0 or ns > 1:
        raise ValueError("`ns` has to be in [0,1]!")

    return
Пример #4
0
def noise_frames_from_etc(N, height_px, width_px, 
	gain=1,
	band=None,
	t_exp=None,
	etc_input=None):
	""" 
	Generate a series of N noise frames with dimensions (height_px, width_px) based on the output of exposure_time_calc() (in etc.py). 

	A previous ETC output returned by exposure_time_calc() can be supplied, or can be generated if band and t_exp are specified. 

	The output is returned in the form of a dictionary allowing the sky, dark current, cryostat and read noise contributions to be accessed separately. The frame generated by summing each of these components is also generated. 

	Important note: we do NOT create master frames here to aviod confusion. The purpose of this routine is to return individual noise frames that can be added to images. However the master frames must not be created from the same frames that are added to images as this is not realistic. 

	"""
	print ("Generating noise frames...")

	# The output is stored in a dictionary with each entry containing the noise frames.
	noise_frames_dict = {
		'sky' : np.zeros((N, height_px, width_px), dtype=int),	# Note: the sky includes the emission from the telescope.
		'dark' : np.zeros((N, height_px, width_px), dtype=int),
		'cryo' : np.zeros((N, height_px, width_px), dtype=int),
		'RN' : np.zeros((N, height_px, width_px), dtype=int),
		'total' : np.zeros((N, height_px, width_px), dtype=int),
		'gain-multiplied' : np.zeros((N, height_px, width_px), dtype=int),
		'unity gain' : np.zeros((N, height_px, width_px), dtype=int),
		'post-gain' : np.zeros((N, height_px, width_px), dtype=int)
	}

	# Getting noise parameters from the ETC.
	if not etc_input:
		if not optical_system:
			print("ERROR: if no ETC input is specified, then you must pass an instance of an opticalSystem!")
			raise UserWarning
		else:
			# If no ETC input is given then we generate a new one.
			if plt.is_numlike(t_exp) and band:
				etc_output = etc.exposure_time_calc(optical_system = optical_system, band = band, t_exp = t_exp)
			else:
				print("ERROR: if no ETC input is specified, then to calculate the noise levels you must also specify t_exp and the imaging band!")
				raise UserWarning

	else:
		# Otherwise, we just return whatever was entered.
		etc_output = etc_input

	# Adding noise to each image and multiplying by the detector gain where appropriate.
	noise_frames_dict['sky'] = noise_frames(height_px, width_px, etc_output['unity gain']['N_sky'], N_frames = N) * gain
	noise_frames_dict['dark'] = noise_frames(height_px, width_px, etc_output['unity gain']['N_dark'], N_frames = N) * gain
	noise_frames_dict['cryo'] = noise_frames(height_px, width_px, etc_output['unity gain']['N_cryo'], N_frames = N) * gain
	noise_frames_dict['RN'] = noise_frames(height_px, width_px, etc_output['unity gain']['N_RN'], N_frames = N)
	
	noise_frames_dict['total'] = noise_frames_dict['sky'] + noise_frames_dict['cryo'] + noise_frames_dict['RN'] + noise_frames_dict['dark']
	noise_frames_dict['gain-multiplied'] = noise_frames_dict['sky'] + noise_frames_dict['cryo'] + noise_frames_dict['dark']
	noise_frames_dict['unity gain'] = noise_frames_dict['gain-multiplied'] / gain
	noise_frames_dict['post-gain'] = noise_frames_dict['RN']

	return noise_frames_dict, etc_output
Пример #5
0
def percentage_removed(data, percentage = None, threshold = None, embedding_technique = None):
    if (embedding_technique == "node_centrality"):
        fst_val = 1
        snd_val = 0.
    else:
        fst_val = data
        snd_val = 0.
    if (plt.is_numlike(percentage) and (plt.is_numlike(threshold))):
        print("You can use only the percentage or the threshold not both at the same time")
        return -1
    elif (plt.is_numlike(percentage)):
        triu = np.triu(data, k = 1) # choose symetric upper triangular matrix without its diagonal
        triu = np.sort(np.reshape(triu, [1, len(triu)**2])) # reshape it to 1-D vector
        triu = np.trim_zeros(np.squeeze(triu)) # remove any leading or trailing zeros
        percentage *= 100
        th = ((len(triu) - 1) * percentage) // 100
        data = np.where(data > triu[th], fst_val, snd_val) # binary adjacency matrix
    elif (plt.is_numlike(threshold)):
        data = np.where(data > threshold, fst_val, snd_val) # binary adjacency matrix

    return percentage, th, data, triu
Пример #6
0
def add_tt(image, sigma_tt_px=None, tt_idxs=None):

    if not plt.is_numlike(sigma_tt_px) and not plt.is_numlike(tt_idxs):
        print("ERROR: either sigma_tt_px OR tt_idxs must be specified!")
        raise UserWarning

    # Adding a randomised tip/tilt to the image
    if plt.is_numlike(sigma_tt_px):
        # If no vector of tip/tilt values is specified, then we use random numbers.
        shift_height = np.random.randn() * sigma_tt_px
        shift_width = np.random.randn() * sigma_tt_px
        tt_idxs = [shift_height, shift_width]
    else:
        # Otherwise we take them from the input vector.
        shift_height = tt_idxs[0]
        shift_width = tt_idxs[1]

    image_tt = scipy.ndimage.interpolation.shift(image,
                                                 (shift_height, shift_width))

    return image_tt, tt_idxs
Пример #7
0
def add_tt(image, 
	sigma_tt_px=None, 
	tt_idxs=None):

	if not plt.is_numlike(sigma_tt_px) and not plt.is_numlike(tt_idxs):
		print("ERROR: either sigma_tt_px OR tt_idxs must be specified!")
		raise UserWarning
	
	# Adding a randomised tip/tilt to the image
	if plt.is_numlike(sigma_tt_px):
		# If no vector of tip/tilt values is specified, then we use random numbers.
		shift_height = np.random.randn() * sigma_tt_px
		shift_width = np.random.randn() * sigma_tt_px
		tt_idxs = [shift_height, shift_width]
	else:
		# Otherwise we take them from the input vector.
		shift_height = tt_idxs[0]
		shift_width = tt_idxs[1]
	
	image_tt = scipy.ndimage.interpolation.shift(image, (shift_height, shift_width))

	return image_tt, tt_idxs
Пример #8
0
def graph_plot(graph_object, counter, graph_loc, _from = None, _to = None, nFigures = None,\
              subplot = False):
    if (isnull(nFigures)):
        nx.draw(graph_object, nx.spring_layout(graph_object))
    elif (not isnull(nFigures) and plt.is_numlike(nFigures) and subplot == False):
        if (counter < nFigures):
            plt.figure()
            nx.draw(graph_object, nx.spring_layout(graph_object))
    elif (not isnull(_from) and plt.is_numlike(_from) and not isnull(_to) \
          and plt.is_numlike(_to) and subplot == True):
#        plt.figure()
#        if (counter == 0):  j = counter
#        else: j = counter * 48
#        inner_counter = 0
        if (_from <= counter and counter < _to):
#            graph_position = np.arange(0, 192, 48)
            plt.subplot2grid((192, 3), (graph_loc, 3), \
            rowspan = 48, colspan = 4)
            nx.draw(graph_object, nx.spring_layout(graph_object))
            plt.hold(True)
#            inner_counter += 1
    plt.axis('tight')
    plt.show()
Пример #9
0
def graph_plot(graph_object, counter, graph_loc, _from = None, _to = None, nFigures = None,\
              subplot = False):
    if (isnull(nFigures)):
        nx.draw(graph_object, nx.spring_layout(graph_object))
    elif (not isnull(nFigures) and plt.is_numlike(nFigures)
          and subplot == False):
        if (counter < nFigures):
            plt.figure()
            nx.draw(graph_object, nx.spring_layout(graph_object))
    elif (not isnull(_from) and plt.is_numlike(_from) and not isnull(_to) \
          and plt.is_numlike(_to) and subplot == True):
        #        plt.figure()
        #        if (counter == 0):  j = counter
        #        else: j = counter * 48
        #        inner_counter = 0
        if (_from <= counter and counter < _to):
            #            graph_position = np.arange(0, 192, 48)
            plt.subplot2grid((192, 3), (graph_loc, 3), \
            rowspan = 48, colspan = 4)
            nx.draw(graph_object, nx.spring_layout(graph_object))
            plt.hold(True)
#            inner_counter += 1
    plt.axis('tight')
    plt.show()
Пример #10
0
def scalarcheck(val, varname, kind=None, bounds=None):
    """
    Local helper function performing sanity checks on scalars
    """

    if not np.isscalar(val) or not plt.is_numlike(val):
        raise TypeError("Input `" + varname + "` must be a scalar!")
    if not np.isfinite(val) or not np.isreal(val):
        raise ValueError("Input `" + varname + "` must be real and finite!")

    if kind == 'int':
        if (round(val) != val):
            raise ValueError("Input `" + varname + "` must be an integer!")

    if bounds is not None:
        if val < bounds[0] or val > bounds[1]:
            raise ValueError("Input scalar `" + varname +
                             "` must be between " + str(bounds[0]) + " and " +
                             str(bounds[1]) + "!")
Пример #11
0
    def plot(self, color='gray', normed=True, barPlot=True):
        """Uses matplotlib to generate a minimalist histogram.

        Parameters
        ----------
        color : any valid matplotlib color (e.g. 'red', 'LightBrown' or (0.5,0.1,0.9) )

        normed : bool
            A normed histogram has fractional frequencies as heights.
        barPlot : bool
            True (default) produces a bar plot as opposed to a line with markers.

        Returns
        -------
        axh : matplotlib axes handle
        """
        if all([is_numlike(k) for k in list(self.keys())]):
            """If keys are numbers then use the x-axis scale"""
            if all([round(k)==k for k in list(self.keys())]):
                xvec = [int(k) for k in sorted(self.keys())]
            else:
                xvec = sorted(self.keys())
            xlab = xvec
        else:
            xlab = sorted(self.keys())
            xvec = np.arange(len(xlab))
        
        if normed:
            yDict = self.freq()
        else:
            yDict = self

        if barPlot:
            for x, k in zip(xvec, xlab):
                bar(x, yDict[k], align = 'center', color=color)
        else:
            plot(xvec, [yDict[k] for k in xlab], 's-', color=color)
        xticks(xvec, xlab)
Пример #12
0
def perm_test(X,Y,paired=None,useR=False,nperms=10000,tail='two',correction="maxT",get_dist=False,mth="t",\
              verbose=True,fname=None,vars=None,g1str=None,g2str=None):
    """
    Perform permutation tests for paired/unpaired uni-/multi-variate two-sample problems

    Parameters
    ----------
    X : NumPy 2darray
        An #samples-by-#variables array holding the data of the first group
    X : NumPy 2darray
        An #samples-by-#variables array holding the data of the second group
    paired : bool
        Switch to indicate whether the two data-sets `X` and `Y` represent paired 
        (`paired = True`) or unpaired data. 
    useR : bool
        Switch that determines whether the `R` library `flip` is used for testing. 
        Note: unpaired data can only be tested in `R`!
    nperms : int
        Number of permutations for shuffling the input data
    tail : str
        The alternative hypothesis the data is tested against. If `tail = 'less'`, then 
        the null is tested against the alternative that the mean of the first group is 
        less than the mean of the second group ('lower tailed'). Alternatively, 
        `tail = 'greater'` indicates the alternative that the mean of the first group is 
        greater than the mean of the second group ('upper tailed'). For `tail = 'two'` 
        the alternative hypothesis is that the means of the data are different ('two tailed'), 
    correction : str
        Multiplicity correction method. If the `R` package `flip` is not used for testing (`useR = False`)
        this option is ignored, since `MNE`'s permutation t-test only supports `p`-value correction using 
        the maximal test statistic `Tmax` [2]_. 
        Otherwise (either if `paired = False` or `useR = True`) the `R` library `flip` is used which 
        supports the options
        "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none", "Fisher", "Liptak", 
        "Tippett", "MahalanobisT", "MahalanobisP", "minP", "maxT", "maxTstd", "sumT", "Direct", 
        "sumTstd", "sumT2" (see [1]_ for a detailed explanation). By default "maxT" 
        is used. 
    get_dist : bool
        Switch that determines whether the sampling distribution used for testing is 
        returned (by default it is not returned). 
    mth : str
        Only relevant if testing is done in `R` (`useR = True` or `paired = False`). If `mth` is 
        not specified a permutation t-test will be performed. Available (but completely untested!)
        options are: "t", "F", "ANOVA","Kruskal-Wallis", "kruskal", "Mann-Whitney", "sum", 
        "Wilcoxon", "rank", "Sign" (see [1]_ for details). Note that by design this wrapper only 
        supports two-sample problems (`X` and `Y`). To analyze `k`-sample data using, e.g., an ANOVA,
        please refer to the `flip` package directly. 
    verbose : bool
        If `verbose = True` then intermediate results, progression messages and a table 
        holding the final statistical evaluation are printed to the prompt. 
    fname : str
        If provided, testing results are saved to the csv file `fname`. The file-name 
        can be provided with or without the extension '.csv' 
        (WARNING: existing files will be overwritten!). By default, the output is not saved. 
    vars : list or NumPy 1darray
        Names of the variables that are being tested. Only relevant 
        if `verbose = True` and/or `fname` is not `None`. If `vars` is `None` and output
        is shown and/or saved, a generic list `['Variable 1','Variable 2',...]` will be used 
        in the table summarizing the final results. 
    g1str : str
        Name of the first sample. Only relevant if `verbose = True` and/or `fname` is not `None`. 
        If `g1str = None` and output is shown/saved a generic group name ('Group 1') will be used 
        in the table showing the final results. 
    g2str : str
        Name of the second sample. Only relevant if `verbose = True` and/or `fname` is not `None`. 
        If `g2str = None` and output is shown/saved a generic group name ('Group 2') will be used 
        in the table showing the final results. 

    Returns
    -------
    stats_dict : dictionary
        Test-results are saved in a Python dictionary. By default `stats_dict` has 
        the keys 'pvals' (the adjusted `p`-values) and 'statvals' (values of the test statistic
        observed for all variables). If `get_dist = True` then an additional entry 'dist' 
        is created for the employed sampling distribution. 

    Notes
    -----
    This routine is merely a wrapper and does not do any heavy computational lifting.  
    In case of paired data and `useR = False` the function `permutation_t_test` of 
    the `MNE` package [2]_ is called. 
    If the samples are independent (`paired = False`) or `useR = True` the `R` 
    library `flip` [1]_ is loaded. Thus, this routine has a 
    number of dependencies: for paired data at least the Python package `mne` is required, 
    unpaired samples can only be tested if `pandas` as well as `rpy2` (for `R`/Python conversion)
    and, of course, `R` and the `R`-library `flip` are installed (and in the search path). 
    To show/save results the routine `printstats` (part of this module) is called.

    See also
    --------
    printstats : routine to pretty-print results computed by a hypothesis test
    flip : a `R` library for uni-variate and multivariate permutation (and rotation) tests,
           currently available `here <https://cran.r-project.org/web/packages/flip/index.html>`_
    mne : a software package for processing magnetoencephalography (MEG) and electroencephalography (EEG) data,
          currently available at the Python Package Index `here <https://pypi.python.org/pypi/mne/0.7.1>`_

    Examples
    --------
    Assume we want to analyze medical data of 200 healthy adult subjects collected before and after 
    physical exercise. For each subject, we have measurements of heart-rate (HR), blood pressure (BP) and
    body temperature (BT) before and after exercise. Thus our data sets contain 200 observations of 
    3 variables. We want to test the data for a statistically significant difference in any of the 
    three observed quantities (HR, BP, BT) after physical exercise compared to the measurements 
    acquired before exercise. 

    Assume all samples are given as Python lists: `HR_before`, `BP_before`, `BT_before`, 
    `HR_after`, `BP_after`, `BT_after`. To be able to use `perm_test`, we collect the 
    data in NumPy arrays:

    >>> import numpy as np
    >>> X = np.zeros((200,3))
    >>> X[:,0] = HR_before
    >>> X[:,1] = BP_before
    >>> X[:,2] = BT_before
    >>> Y = np.zeros((200,3))
    >>> Y[:,0] = HR_after
    >>> Y[:,1] = BP_after
    >>> Y[:,2] = BT_after

    Our null-hypothesis is that physical exercise did not induce a significant change in 
    any of the observed variables. As an alternative hypothesis, we assume that 
    exercise induced an increase in heart rate, blood pressure and body temperature. 
    To test our hypotheses we use the following command

    >>> perm_test(X,Y,paired=True,nperms=20000,tail='less',fname='stats.csv',
    >>>           vars=['Heart Rate','Blood Pressure','Body Temperature'],
    >>>           g1str='Before Exercise',g2str='After Exercise')

    which performs a lower-tailed paired permutation t-test with 20000 permutations, 
    prints the results to the prompt and also saves them in the file `stats.csv`. 

    References
    ----------
    .. [1] F. Pesarin. Multivariate Permutation Tests with Applications in Biostatistics.
       Wiley, New York, 2001. 
    .. [2] A. Gramfort, M. Luessi, E. Larson, D. Engemann, D. Strohmeier, C. Brodbeck, L. Parkkonen, 
       M. Haemaelaeinen. MNE software for processing MEG and EEG data. NeuroImage 86, 446-460, 2014
    """

    # Check mandatory inputs and make sure `X` and `Y` are tested for the same no. of variables
    try:
        [nsamples_x,n_testsx] = X.shape
    except:
        raise TypeError('First input `X` has to be a NumPy 2darray!')
    try:
        [nsamples_y,n_testsy] = Y.shape
    except:
        raise TypeError('First input `Y` has to be a NumPy 2darray!')

    if n_testsx != n_testsy:
        raise ValueError('Number of variables different in `X` and `Y`!')
    n_tests = n_testsx

    for arr in [X,Y]:
        if not np.issubdtype(arr.dtype, np.number) or not np.isreal(arr).all():
            raise ValueError('Inputs `X` and `Y` must be real-valued NumPy 2darrays')
        if np.isfinite(arr).min() == False:
            raise ValueError('Inputs `X` and `Y` must be real-valued NumPy 2darrays without Infs or NaNs!')

    if np.min([nsamples_x,nsamples_y]) < n_tests:
        print "WARNING: Number of variables > number of samples!"

    # Check `paired` and make sure that input arrays make sense in case we have paired data
    if not isinstance(paired,bool):
        raise TypeError("The switch `paired` has to be Boolean!")
    if nsamples_x != nsamples_y and paired == True:
        raise ValueError('Cannot perform paired test with different number of samples!')
    pairlst = ["unpaired","paired"]

    # Check `useR`
    if not isinstance(useR,bool):
        raise TypeError("The switch `useR` has to be Boolean!")
    if not paired:
        useR = True

    # Check `get_dist`
    if not isinstance(get_dist,bool):
        raise TypeError("The switch `get_dist` has to be Boolean!")

    # Check `nperms`
    if not np.isscalar(nperms) or not plt.is_numlike(nperms) or not np.isreal(nperms).all():
        raise TypeError("The number of permutations has to be provided as scalar!")
    if not np.isfinite(nperms):
        raise TypeError("The number of permutations must be finite!")
    if (round(nperms) != nperms):
        raise ValueError("The number of permutations must be an integer!")

    # Check `mth` 
    if not isinstance(mth,(str,unicode)):
        raise TypeError("The test-statistic has to be specified using a string, not "+type(mth).__name__+"!")
    if useR:
        msg = ''
        if paired:
            supported = ["t", "Wilcoxon", "rank", "Sign","sum"]
            if mth not in supported:
                msg = 'Unsupported method '+str(mth)+\
                      '. Available options for PAIRED data are: '+sp_str
        else:
            supported = ["t", "F", "ANOVA","Kruskal-Wallis", "kruskal", "Mann-Whitney", "sum"]
            if mth not in supported:
                msg = 'Unsupported method '+str(mth)+\
                      '. Available options for UNPAIRED data are: '+sp_str
        if len(msg) > 0:
            sp_str = str(supported)
            sp_str = sp_str.replace('[','')
            sp_str = sp_str.replace(']','')
            raise ValueError(msg)
    else:
        if mth != "t":
            print "WARNING: The optional argument `mth` will be ignored since R will not be used!"

    # Check `tail` if provided
    if not isinstance(tail,(str,unicode)):
        raise TypeError("The alternative hypothesis has to be specified using a string, not "+\
                        type(tail).__name__+"!")
    supported = {'greater':1,'less':-1,'two':0}
    spl       = supported.keys()
    if tail not in spl:
        sp_str = str(spl)
        sp_str = sp_str.replace('[','')
        sp_str = sp_str.replace(']','')
        msg = "The alternative hypothesis given by tail = '"+str(tail)+ "' is invalid. "+\
              "Available options are: "+sp_str
        raise ValueError(msg)

    # Save tail selection for output before we convert it to an integer 
    tail_dt1 = {"less":"less than","two":"different from","greater":"greater than"}
    tail_dt2 = {"less":"lower","two":"two","greater":"upper"}
    tail_st1 = tail_dt1[tail]
    tail_st2 = tail_dt2[tail]

    # Now convert string-tail to numeric value (lower, two, upper) -> (-1, 0, +1)
    tail = supported[tail]
    
    # Check the setting for the p-value correction
    if not isinstance(correction,(str,unicode)):
        raise TypeError("The multiplicity correction scheme has to be specified using a string, not "+\
                        type(correction).__name__+"!")
    if useR:
        supported = ["holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none", "Fisher",\
                     "Liptak", "Tippett", "MahalanobisT", "MahalanobisP", "minP", "maxT", "maxTstd",\
                     "sumT", "Direct", "sumTstd", "sumT2"]
        if correction not in supported:
            sp_str = str(supported)
            sp_str = sp_str.replace('[','')
            sp_str = sp_str.replace(']','')
            msg = "The multiplicity correction method given by correction = '"+str(correction)+\
                  "' is invalid. Available options are: "+sp_str
            raise ValueError(msg)
    else:
        if correction != "maxT":
            print "WARNING: The stats toolbox in MNE only supports standard Tmax correction of p-values!"
                            
    # Check if the user wants to see what's going on
    if not isinstance(verbose,bool):
        raise TypeError("The switch `verbose` has to be Boolean!")
    
    # If a file-name was provided make sure it's a string and check if the path exists
    if fname != None:
        if not isinstance(fname,(str,unicode)):
            raise TypeError("Filename has to be provided as string, not "+type(fname).__name__+"!")
        fname = str(fname)
        if fname.find("~") == 0:
            fname = os.path.expanduser('~') + fname[1:]
        slash = fname.rfind(os.sep)
        if slash >= 0 and not os.path.isdir(fname[:fname.rfind(os.sep)]):
            raise ValueError('Invalid path for output file: '+fname+'!')

    # Warn if output was turned off but labels were provided and assign default values to labels if necessary
    # (Do error checking here to avoid a breakdown at the very end of the code...)
    if verbose == False and fname is None:
        for chk in [vars,g1str,g2str]:
            if chk != None:
                print "WARNING: Output labels were provided but `verbose == False` and `fname == None`. "+\
                      "The labels will be ignored and no output will be shown/saved!"
                break
    else:
        if vars is None:
            vars = ['Variable '+str(v) for v in range(1,n_tests+1)]
        else:
            if not isinstance(vars,(list,np.ndarray)):
                raise TypeError('Variable names have to be provided as Python list/NumPy 1darray, not '+\
                                type(vars).__name__+'!')
            m = len(vars)
            if m != n_tests:
                raise ValueError('Number of variable labels for output and number of tests do not match up!')
            for var in vars:
                if not isinstance(var,(str,unicode)):
                    raise TypeError('All variables in the optional input `vars` must be strings!')
        
        if g1str is None:
            g1str = 'Group 1'
        else:
            if not isinstance(g1str,(str,unicode)):
                raise TypeError('The optional column label `g1str` has to be a string!')
        if g2str is None:
            g2str = 'Group 2'
        else:
            if not isinstance(g2str,(str,unicode)):
                raise TypeError('The optional column label `g2str` has to be a string!')

    # Initialize the output dictionary
    stats_dict = {}
            
    # Here we go: in case of paired samples and hatred for R, use Python's mne 
    if paired == True and useR == False:

        # Try to import/load everything we need below
        try:
            import mne
        except:
            raise ImportError("The Python module `mne` is not installed!")

        # Just to double check with user, say what's about to happen
        print "\nTesting statistical mean-difference of paired samples using the permutation t-test from `mne`"

        # Perform the actual testing
        statvals, pvals, dist = mne.stats.permutation_t_test(X-Y,n_permutations=nperms,\
                                                             tail=tail,n_jobs=1,verbose=False)

        # Store result in output dictionary
        stats_dict['pvals']    = pvals
        stats_dict['statvals'] = statvals
        if get_dist:
            stats_dict['dist'] = dist

    # Otherwise fire up R and use `flip`
    else:

        # Try to import/load everything we need below
        try:
            import pandas as pd
            import rpy2.robjects.numpy2ri
            rpy2.robjects.numpy2ri.activate()
            from rpy2.robjects import pandas2ri
            pandas2ri.activate()
            from rpy2.robjects.packages import importr
            from rpy2.robjects import Formula

            # Set up our R name-spaces and see if `flip` is available
            R    = rpy2.robjects.r
            flip = importr('flip')

        except:
            msg = "Either the Python modules `pandas` and/or `rpy2` or "+\
                  "the R package `flip` is/are not installed!"
            raise ImportError(msg)
 
        # Just to double check with user, say what's about to happen
        print "\nPerforming a permutation "+mth+"-test of "+pairlst[paired]+" samples using the `R` package `flip`"

        # Construct a list of strings of the form 
        # ['a','b','c',...,'z','aa','ab','ac',...,'az','ba','bb','bc',...]
        abclist = (list(string.lowercase) + \
                  [''.join(x) for x in itertools.product(string.lowercase, repeat=2)])[:n_tests] + ['group']
        
        # Use that list to build a string of the form 'a + b + c +...+ aa + ab + ... ~ group' 
        frm_str = abclist[0]
        for ltr in abclist[1:-1]:
            frm_str += ' + ' + ltr
        frm_str += ' ~ group'
        
        # Construct an array that will be our factor in the R dataframe below: 
        # all rows of `X` are assigned the factor-level 1, the rest is 2
        group = 2*np.ones((nsamples_x + nsamples_y,1))
        group[:nsamples_x] = 1

        # Stack `X` and `Y` on top of each other, with columns labeled by `abclist`
        # in case of paired data, also append a stratification vector
        dfmat = np.hstack([np.vstack([X,Y]),group])
        stratarg = rpy2.rinterface.R_NilValue
        if paired:
            abclist += ['pairing']
            dfmat = np.hstack([dfmat,np.tile(np.arange(1,nsamples_x+1),(1,2)).T])
            stratarg = Formula("~pairing")
            
        # Create a pandas dataframe with columns labeled by abclist, that we immediately convert to an R-dataframe
        r_dframe = pandas2ri.py2ri(pd.DataFrame(dfmat,columns=abclist))

        # Convert the string to an R formula
        r_frm = Formula(frm_str)

        # Do the actual testing in R
        result = R.flip(r_frm, data=r_dframe, tail=tail, perms=nperms, statTest=mth,\
                        Strata=stratarg, testType="permutation")
        result = flip.flip_adjust(result,method=correction)
            
        # Extract values from this R nightmare
        stats_dict['statvals'] = pandas2ri.ri2py(result.slots['res'][1])
        stats_dict['pvals']    = pandas2ri.ri2py(result.slots['res'][4])
        if get_dist:
            stats_dict['dist'] = pandas2ri.ri2py(result.slots['permT'])

        print "Done"

    # If wanted print/save the results
    if verbose or fname != None:

        # Construct string to be used as footer for the output file/last line of command line output
        permstr = "using "+str(nperms)+" permutations under the alternative hypothesis that "+\
                  g1str+" is "+tail_st1+" "+g2str+" ("+tail_st2+"-tailed) "
        if not useR:
            ft = "Statistical significance of group differences between paired samples was assessed using the "+\
                 "permutation t-test from the Python package MNE"+\
                 " (see http://martinos.org/mne/stable/mne-python.html)\n"+\
                 permstr+"\n"+\
                 "adjusted for multiple comparisons using the maximal test statistic Tmax. "
        else:
            ft = "Statistical significance of group-differences between "+pairlst[paired]+\
                 " samples was assessed using a "+mth+"-test"\
                 " from the R library flip (https://cran.r-project.org/web/packages/flip/index.html)\n"+\
                 permstr+"\n"+\
                 "adjusted for multiple comparisons based on a "+correction+" approach. \n"

        # Append an auto-gen message and add current date/time to the soon-to-be footer
        ft += "Results were computed by stats_tools.py on "+str(datetime.now())

        # Call printstats to do the heavy lifting
        printstats(vars,stats_dict['pvals'],X,Y,g1str,g2str,foot=ft,verbose=verbose,fname=fname)

    # Return the stocked dictionary
    return stats_dict
Пример #13
0
def ps(dosave=True, fname='figures/domains.png', lont=None, latt=None, ht=None, dd=None):
    '''
    Plot Bathymetry of Puget Sound, Admiralty Inlet, and Admiralty Head

    Inputs:
     dosave     Save figure
     fname      File name for figure
     lont, latt transect points to plot if they are input
     ht         Depth along transect, if input
     dd         Distance in meters along transect
    '''

    # download bathymetry, which can be found at: http://figshare.com/preview/_preview/1165560 (27.3MB)

    # Read in bathymetry
    mat = scipy.io.loadmat('cascadia_gridded.mat')

    # x and y limits for these plots
    lonlimsPS = np.array([-124., -122.15]) #-123.21, -122.15])
    latlimsPS = np.array([47.02, 48.82])
    lonlimsAI = np.array([-122.85, -122.535])
    latlimsAI = np.array([47.9665, 48.228])
    lonlimsAH = np.array([-122.72, -122.64])
    latlimsAH = np.array([48.12, 48.18])

    # Functionality copied from https://github.com/clawpack/geoclaw/blob/master/src/python/geoclaw/topotools.py#L873
    land_cmap = plt.get_cmap('Greens_r')
    sea_cmap = plt.get_cmap('Blues_r')
    cmapPS = colormaps.add_colormaps((land_cmap, sea_cmap), data_limits=[-375,2500], data_break=0.0)
    cmapAI = 'Blues_r'
    cmapAH = 'Blues_r'

    # levels to plot
    levsPS = np.concatenate((np.arange(-375, 0, 25), np.arange(0,3000,500)))
    levsAI = np.arange(-200, 20, 20)
    levsAH = np.arange(-120, 15, 15)

    # use basemap
    basemapPS = Basemap(llcrnrlon=lonlimsPS[0], llcrnrlat=latlimsPS[0], 
                    urcrnrlon=lonlimsPS[1], urcrnrlat=latlimsPS[1], 
                    lat_0=latlimsPS.mean(), lon_0=lonlimsPS.mean(),
                    projection='lcc', resolution='f',
                    area_thresh=0.)
    xPS, yPS = basemapPS(mat['lon_topo'], mat['lat_topo'])
    xlimsAI, ylimsAI = basemapPS(lonlimsAI, latlimsAI)
    xlimsAH, ylimsAH = basemapPS(lonlimsAH, latlimsAH)

    # Make Puget Sound plot
    fig = plt.figure(figsize=(16,16))
    axPS = fig.add_subplot(111)
    basemapPS.drawcoastlines(ax=axPS)
    mappablePS = axPS.contourf(xPS, yPS, mat['z_topo'], cmap=cmapPS, levels=levsPS, zorder=2)
    locator = MaxNLocator(6) # if you want no more than 10 contours
    locator.create_dummy_axis()
    locator.set_bounds(lonlimsPS[0], lonlimsPS[1])
    pars = locator()
    locator = MaxNLocator(6) # if you want no more than 10 contours
    locator.create_dummy_axis()
    locator.set_bounds(latlimsPS[0], latlimsPS[1])
    mers = locator()
    basemapPS.drawparallels(mers, dashes=(1, 1), linewidth=0.15, labels=[1,0,0,0], ax=axPS)#, zorder=3)
    basemapPS.drawmeridians(pars, dashes=(1, 1), linewidth=0.15, labels=[0,0,0,1], ax=axPS)#, zorder=3)
    cbPS = fig.colorbar(mappablePS, pad=0.015, aspect=35)
    cbPS.set_label('Height/depth [m]')
    # Label
    axPS.text(0.8, 0.025, 'Puget Sound', transform=axPS.transAxes, color='0.15')

    # Inset magnified plot of Admiralty Inlet
    axAI = zoomed_inset_axes(axPS, 2, loc=1)
    basemapPS.drawcoastlines(ax=axAI)
    basemapPS.fillcontinents('darkgreen', ax=axAI)
    mappableAI = axAI.contourf(xPS, yPS, mat['z_topo'], cmap=cmapAI, levels=levsAI)
    axAI.set_xlim(xlimsAI)
    axAI.set_ylim(ylimsAI)
    # Inlaid colorbar
    caxAI = fig.add_axes([0.581, 0.665, 0.011, 0.1])
    cbAI = plt.colorbar(mappableAI, cax=caxAI, orientation='vertical')
    cbAI.ax.tick_params(labelsize=12)
    # draw a bbox of the region of the inset axes in the parent axes and
    # connecting lines between the bbox and the inset axes area
    mark_inset(axPS, axAI, loc1=2, loc2=4, fc="none", ec="0.3", lw=1.5, zorder=5)
    # Label
    axAI.text(0.41, 0.83, 'Admiralty\n      Inlet', transform=axAI.transAxes, color='0.15', fontsize=16)

    # Inset magnified plot of Admiralty Head
    axAH = zoomed_inset_axes(axPS, 9, loc=3)
    basemapPS.drawcoastlines(ax=axAH)
    basemapPS.fillcontinents('darkgreen', ax=axAH)
    mappableAH = axAH.contourf(xPS, yPS, mat['z_topo'], cmap=cmapAH, levels=levsAH)
    axAH.set_xlim(xlimsAH)
    axAH.set_ylim(ylimsAH)

    if plt.is_numlike(lont):
            # add points if you have some
            xt, yt = basemapPS(lont, latt)
            axAH.plot(xt, yt, 'k', lw=3)

        # Inlaid colorbar
    caxAH = fig.add_axes([0.398, 0.116, 0.012, 0.15])
    cbAH = plt.colorbar(mappableAH, cax=caxAH, orientation='vertical')
    cbAH.ax.tick_params(labelsize=12)
    # draw a bbox of the region of the inset axes in the parent axes and
    # connecting lines between the bbox and the inset axes area
    mark_inset(axPS, axAH, loc1=2, loc2=4, fc="none", ec="0.3", lw=1.5, zorder=5)
    # Label
    axAH.text(0.47, 0.92, 'Admiralty Head', transform=axAH.transAxes, color='0.15', fontsize=16)

    # pdb.set_trace()

    if plt.is_numlike(lont):
        # Add axes to plot transect depths
        axdepths = fig.add_axes([0.28, 0.39, 0.14, 0.075], zorder=11)
        axdepths.plot((np.arange(lont.size)*dd)/1000., -ht, '0.2', lw=2, zorder=12)
        axdepths.tick_params(axis='both', colors='0.1', top='off', right='off', width=2, length=4, labelsize=12, labelcolor='0.1')
        axdepths.spines['bottom'].set_color('none')
        axdepths.spines['top'].set_color('none')
        axdepths.spines['left'].set_color('none')
        axdepths.spines['right'].set_color('none')
        axdepths.set_xlabel('Distance along transect [km]', fontsize=14, color='0.1')
        axdepths.set_ylabel('Transect depth [m]', fontsize=14, color='0.1')
        axdepths.patch.set_alpha(0.0) # make bg transparent
        fig.show()


    # Save figure
    if dosave:
        fig.savefig(fname, bbox_inches='tight')
    fig.show()
Пример #14
0
              fontsize=16)

    # Inset magnified plot of Admiralty Head
    if doAH:
        axAH = zoomed_inset_axes(axPS, 9, loc=1)
        basemapPS.drawcoastlines(ax=axAH)
        basemapPS.fillcontinents(cland, ax=axAH)
        mappableAH = axAH.contourf(xPS,
                                   yPS,
                                   mat['z_topo'],
                                   cmap=cmapAH,
                                   levels=levsAH)
        axAH.set_xlim(xlimsAH)
        axAH.set_ylim(ylimsAH)

        if plt.is_numlike(lont):
            # add points if you have some
            xt, yt = basemapPS(lont, latt)
            axAH.plot(xt, yt, 'k', lw=3)

        # Inlaid colorbar
        caxAH = fig.add_axes([0.398, 0.116, 0.012, 0.15])
        cbAH = plt.colorbar(mappableAH, cax=caxAH, orientation='vertical')
        cbAH.ax.tick_params(labelsize=12)
        # draw a bbox of the region of the inset axes in the parent axes and
        # connecting lines between the bbox and the inset axes area
        mark_inset(axPS,
                   axAH,
                   loc1=2,
                   loc2=4,
                   fc="none",
Пример #15
0
def noise_frames_from_etc(N,
                          height_px,
                          width_px,
                          gain=1,
                          band=None,
                          t_exp=None,
                          etc_input=None):
    """ 
	Generate a series of N noise frames with dimensions (height_px, width_px) based on the output of exposure_time_calc() (in etc.py). 

	A previous ETC output returned by exposure_time_calc() can be supplied, or can be generated if band and t_exp are specified. 

	The output is returned in the form of a dictionary allowing the sky, dark current, cryostat and read noise contributions to be accessed separately. The frame generated by summing each of these components is also generated. 

	Important note: we do NOT create master frames here to aviod confusion. The purpose of this routine is to return individual noise frames that can be added to images. However the master frames must not be created from the same frames that are added to images as this is not realistic. 

	"""
    print("Generating noise frames...")

    # The output is stored in a dictionary with each entry containing the noise frames.
    noise_frames_dict = {
        'sky':
        np.zeros((N, height_px, width_px), dtype=int
                 ),  # Note: the sky includes the emission from the telescope.
        'dark': np.zeros((N, height_px, width_px), dtype=int),
        'cryo': np.zeros((N, height_px, width_px), dtype=int),
        'RN': np.zeros((N, height_px, width_px), dtype=int),
        'total': np.zeros((N, height_px, width_px), dtype=int),
        'gain-multiplied': np.zeros((N, height_px, width_px), dtype=int),
        'unity gain': np.zeros((N, height_px, width_px), dtype=int),
        'post-gain': np.zeros((N, height_px, width_px), dtype=int)
    }

    # Getting noise parameters from the ETC.
    if not etc_input:
        if not optical_system:
            print(
                "ERROR: if no ETC input is specified, then you must pass an instance of an opticalSystem!"
            )
            raise UserWarning
        else:
            # If no ETC input is given then we generate a new one.
            if plt.is_numlike(t_exp) and band:
                etc_output = etc.exposure_time_calc(
                    optical_system=optical_system, band=band, t_exp=t_exp)
            else:
                print(
                    "ERROR: if no ETC input is specified, then to calculate the noise levels you must also specify t_exp and the imaging band!"
                )
                raise UserWarning

    else:
        # Otherwise, we just return whatever was entered.
        etc_output = etc_input

    # Adding noise to each image and multiplying by the detector gain where appropriate.
    noise_frames_dict['sky'] = noise_frames(
        height_px, width_px, etc_output['unity gain']['N_sky'],
        N_frames=N) * gain
    noise_frames_dict['dark'] = noise_frames(
        height_px, width_px, etc_output['unity gain']['N_dark'],
        N_frames=N) * gain
    noise_frames_dict['cryo'] = noise_frames(
        height_px, width_px, etc_output['unity gain']['N_cryo'],
        N_frames=N) * gain
    noise_frames_dict['RN'] = noise_frames(height_px,
                                           width_px,
                                           etc_output['unity gain']['N_RN'],
                                           N_frames=N)

    noise_frames_dict['total'] = noise_frames_dict['sky'] + noise_frames_dict[
        'cryo'] + noise_frames_dict['RN'] + noise_frames_dict['dark']
    noise_frames_dict['gain-multiplied'] = noise_frames_dict[
        'sky'] + noise_frames_dict['cryo'] + noise_frames_dict['dark']
    noise_frames_dict[
        'unity gain'] = noise_frames_dict['gain-multiplied'] / gain
    noise_frames_dict['post-gain'] = noise_frames_dict['RN']

    return noise_frames_dict, etc_output
Пример #16
0
def find_shot_times(shot=None,
                    diag='W7X_UTDU_LP10_I',
                    threshold=0.2,
                    margin=[.3, .7],
                    debug=0,
                    duty_factor=0.12,
                    max_iters=40,
                    secs_rel_t1=False,
                    exceptions=(LookupError),
                    nsamples=2000):
    """ Return the actual interesting times in utc (absolute) for a given
    shot, based on the given diag.  
    secs_rel_t1: [False] - if True, return in seconds relative to trigger 1
    We use raw data to allow for both 1 and 10 ohm resistors (see above common mode sig)
    Tricky shots are [20171025,51] # no sweep), 1025,54 - no sweep or plasma
    See the test routine in __main__ when this is 'run' 
         
    Returns None if there is a typical expected exception (e.g. LookupError)
    Occasional problem using a probe signal if startup is delayed - try ECRH
    Would be good to make sure the start was before t1, but this code
    does not access t1 at the moment.

    debug=1 or more plots the result.
    """
    dev_name = "W7X"
    #  diag = W7X_UTDU_LP10_I  # has less pickup than other big channels
    dev = pyfusion.getDevice(dev_name)
    nsold = pyfusion.NSAMPLES
    pyfusion.RAW = 1  # allow for both 10 and 1 ohm sensing resistors
    # This should include a test for interactive use, so big save jobs
    # don't stall here
    if margin[0] < 0:
        wait_for_confirmation(
            'You will not save t1? with margin={m}\n {h}(n/q/y)'.format(
                m=str(margin), h=__doc__))
    try:
        pyfusion.NSAMPLES = nsamples
        dev.acq.repair = -1
        save_db = pyfusion.DEBUG
        if plt.is_numlike(pyfusion.DEBUG):
            pyfusion.DEBUG -= 2  # lower debug level to allow us past here
        data = dev.acq.getdata(shot, diag, exceptions=())
    except exceptions as reason:  # return None if typical expected exception
        print('Exception suppressed: ', str(reason), ' on channel', diag)
        return None
    except Exception as reason:
        print('Exception NOT suppressed: ', str(reason), ' on channel', diag)
        raise

    finally:
        # this is executed always, even if the except code returns
        pyfusion.DEBUG = save_db
        pyfusion.NSAMPLES = nsold
        pyfusion.RAW = 0
        print('params restored')
        debug_(pyfusion.DEBUG, 3, key='find_shot_times')

    # if the timebase is not an int , probably a nan, so use the raw dim in params if there
    if not isinstance(data.timebase[1], int) and hasattr(
            data, 'params') and 'diff_dimraw' in data.params:
        data.timebase = data.params['diff_dimraw'].cumsum()
    if len(np.unique(np.diff(data.timebase))) > 1:  # test for minmax reduction
        # requires a high DF than a fully sampled signal
        duty_factor = min(duty_factor * 4, 0.9)

    tb = data.timebase
    sig = data.signal
    if shot[0] > 1e9:  # a ns timebase and shot start and end
        wvalid_times = np.where((tb >= shot[0]) & (tb <= shot[1]))[0]
    else:  # guess suitable bounds for shot
        wvalid_times = np.where((np.diff(tb) < 1e8) & (np.diff(tb) > 0))[0]

    #  We take care to get a good estimate of the sampled length
    # The previous simple version got into a loop because of inaccurate calcs.
    tsamplen = tb[wvalid_times[-1]] - tb[wvalid_times[0]]
    print(shot[0], len(wvalid_times), 'valid time values',
          len(tb) - len(wvalid_times), 'invalid')

    sig = sig[wvalid_times]
    tb = tb[wvalid_times]
    for trial in range(max_iters):
        wbig = np.where(np.abs(sig) > np.abs(threshold))[0]
        if len(wbig) < 5:
            threshold *= 0.8
            continue
        times = np.array([tb[wbig.min()], tb[wbig.max()]], dtype=np.int64)
        if debug > 1:
            print([tmm / 1e9 for tmm in times],
                  np.diff(times) / 1e9, wbig.min(), wbig.max(),
                  'tsamplen (s) = ', tsamplen / 1e9)
        # fract_samples > 0.2 fract time avoids influence of spikes
        fract_time = (times[1] - times[0]) / float(tsamplen)
        fract_samples = len(wbig) / float(len(tb))
        if debug > 0:
            print(
                'trial {t}, lentb {lentb}, thresh {thresh:.3f}, fract_time {fract_time:.3f}, fract_samples {fract_samples:.3f}, DF {DF:.3f}'
                .format(t=trial,
                        lentb=len(tb),
                        thresh=threshold,
                        fract_time=fract_time,
                        fract_samples=fract_samples,
                        DF=duty_factor))
        if fract_time > 0.95 and fract_samples / fract_time > duty_factor:
            threshold *= 1.2
            continue
        shortest = 0.2 * 1e9 / tsamplen  # want to keep pulses of 0.2 sec even if on 20 sec stream
        if fract_time < min(
                0.05, shortest) or fract_samples / fract_time < duty_factor:
            threshold *= 0.9
            continue
        break
    else:  # went through the whole loop (i.e. without success)
        pyfusion.utils.warn(
            'Too few/many points above threshold on shot {shot}'.format(
                shot=str(shot)))
        if debug > 1:
            plt.figure()
            data.plot_signals()
            plt.show()
        return None
    timesplus = np.array(
        [times[0] - margin[0] * 1e9, times[1] + margin[1] * 1e9],
        dtype=np.int64)
    print('{sh}: shot length={dt}, {timesplus}'.format(
        sh=shot, dt=np.diff(times) / 1e9, timesplus=(timesplus - tb[0]) / 1e9))
    if debug > 0:
        plt.figure()  # need a new fig whilever we plt in absolute times
        data.plot_signals()
        plt.plot(timesplus, [threshold, threshold], 'o--r')
        plt.plot(timesplus, [-threshold, -threshold], 'o--r')
        plt.xlim(2 * timesplus - times)  # double margin for plot
        plt.show()

    fact = 1
    if secs_rel_t1:
        utc_0 = data.params.get('utc_0', 0)
        if utc_0 == 0:
            raise LookupError("no t1 value, so can't select secs_rel_t1")
        else:
            fact = 1e-9
    else:
        utc_0 = 0
    print(fact, utc_0)
    return ((timesplus - utc_0) * fact)