def Percentage_Change_Plot( params , base_name ): """ This function creates a vertical bar graph of the percentage change of values passed in with x_data and given labels in labels. params contain optional plotting options. """ wc.Sep() logging.info( "Percentage_Change_Plot" ) fig = plt.figure() axes1 = fig.add_subplot( 111 ) bar_list = [] legend_list = [] names_list = [] bar_number = 0 for key in params[ "components" ]: if "width" in params[ "components" ][ key ]: width = float( params[ "components"][ key ][ "width" ] ) else: width = 0.35 if "color" in params[ "components" ][ key ]: color = params[ "components" ][ key ][ "color" ] else: color = 'b' bar_list.append( axes1.bar( bar_number , \ params[ "components" ][ key ][ "p_change" ] , \ width , c = color ) ) legend_list.append( bar_list[ bar_number ][ 0 ] ) if "label" in params: names_list.append( params[ "components" ][ key ][ "label" ] ) else: names_list.append( str( key ) ) # This simply creates a legend for our plot ax.legend( legend_list , names_list ) if "title" in params: axes1.set_title( params[ "title" ] ) else: axes1.set_title( "Percentage Diff Plot " ) if "y_label" in params: axes1.set_ylabel( params[ "y_label" ] ) else: axes1.set_ylabel( "y axis" ) if "x_label" in params: axes1.set_xlabel( params[ "x_label" ] ) else: axes1.set_xlabel( "x axis" ) if "legend_loc" in params: plt.legend( loc = params[ "legend_loc" ] ) else: plt.legen( loc = "upper right" ) if "title" in params: plt.savefig( base_name + "_" + params[ 'title' ] + ".eps" , \ format = 'eps' , dpi = 1000 ) else: plt.savefig( base_name + "_bar_" + str( np.random.randint( 100 , \ size = 1 ) ) + ".eps" , format = 'eps' , dpi = 1000 ) plt.cla() return
hist=model.fit(x_train, y_train, epochs=1000, callbacks=[checkpoint, earlystopping],validation_split=(0.3)) loss_and_metrics = model.evaluate(x_test, y_test, batch_size=14) #------------------------------------------------------------------------------------------------------------------# plt.figure(figsize=(10,6)) plt.subplot(2,1,1,) plt.plot(hist.history['loss'], marker='.', c='red', label='loss') #plt.plot(x,y,hist.history['loss'])- x, y 별도추가 추가하지 않으면 epochs 순으로 기록 plt.plot(hist.history['val_loss'], marker='.', c='blue', label='val_loss') # plt.plot(hist.history['acc']) # plt.plot(hist.history['val_acc']) plt.grid() plt.title('loss') plt.ylabel('loss') plt.xlabel('epoch') # plt.legend(['loss', 'val_loss']) plt.legen(loc='upper right') plt.show() plt.subplot(2,1,2,) plt.plot(hist.history['loss']) plt.plot(hist.history['val_loss']) # plt.plot(hist.history['acc']) # plt.plot(hist.history['val_acc']) plt.grid() plt.title('accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['loss', 'val_acc']) plt.show() #------------------------------------------------------------------------------------------------------------------# print('')
plt.legend() plt.show() # Visualising the Test set results from matplotlib.colors import ListedColormap X_set, y_set = X_test, y_test X1, X2 = np.meshgrid( np.arange(start=X_set[:, 0].min() - 1, stop=X_set[:, 0].max() + 1, step=0.01), np.arange(start=X_set[:, 1].min() - 1, stop=X_set[:, 1].max() + 1, step=0.01)) plt.contourf(X1, X2, Classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), alpha=0.75, cmap=ListedColormap(('red', 'green', 'blue'))) plt.xlim(X1.min(), X1.max()) plt.ylim(X2.min(), X2.max()) for i, j in enumerate(np.unique(y_set)): plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c=ListedColormap(('red', 'green', 'blue'))(i), label=j) plt.title('Logistic Regression (Test set)') plt.xlabel('LD1') plt.ylabel('LD2') plt.legen() plt.show()
from matplotlib import pyplot as plt plt.style.use("fivethirtyeight") minutes = [1, 2, 3, 4, 5, 6, 7, 8, 9] player1 = [1, 2, 3, 3, 4, 4, 4, 4, 5] player2 = [1, 1, 1, 1, 2, 2, 2, 3, 4] player3 = [1, 1, 1, 2, 2, 2, 3, 3, 3] labels = ['player1', 'player2', 'player3'] colors = ['008fd5', 'fc4f30', '6d904f'] plt.stackplot(minutes, player1, player2, player3, labels=labels, colors=colors) plt.legen(loc='upper left') plt.title("My Awesome Stack Plot") plt.tight_layout() plt.show() # Colors: # Blue = #008fd5 # Red = #fc4f30 # Yellow = #e5ae37 # Green = #6d904f
grades = [83, 95, 91, 87, 70, 0, 85, 82, 100, 67, 73, 77, 0] histogram = Counter(min(grade // 10 * 10, 90) for grade in grades) plt.bar( [x + 5 for x in histogram.keys()], ## shift bars to right by 5 histogram.values(), ### give bars its respective correct height 10, ##barwidth of 10 edgecolor=(0, 0, 0)) ## black edges for bar plt.axis([-5, 105, 0, 5]) plt.xticks([10 * i for i in range[11]]) plt.xlabel("Decile") plt.ylabel("# of Students") plt.title("Distribution of Exam 1 Grades") plt.show ###line charts variance = [1, 2, 4, 8, 16, 32, 64, 128, 256] bias_squared = [256, 128, 64, 32, 16, 8, 4, 2, 1] total_error = [x + y for x, y in zip(variance, bias_squared)] xs = [i for i, _ in enumerate(variance)] plt.plot(xs, variance, 'g-', label='variance') ##green solid plt.plot(xs, bias_squared, 'r-.', label='bias^2') ## red dashed plt.plot(xs, total_error, 'b:', label='total errror') ##blue dotted plt.legen(loc=9) plt.xlabel("model complexity") plt.xticks([]) plt.title("Bias Variance Tradeoff") plt.show()