def plot_image_grid(images: List[np.array], titles: List[str] = None, figure: plt.figure = None, grayscale: bool = False, transpose: bool = False) -> plt.figure: """ Plot a grid of n x m images Input ----- images: List[np.array] Images in a n x m array titles: List[str] (opt.) List of m titles for each image column figure: plt.figure (opt.) Pyplot figure (if None, will be created) grayscale: bool (opt.) If True return grayscaled images transpose: bool (opt.) If True, transpose the grid Output ------ Pyplot figure filled with the images """ num_cols, num_rows = len(images), len(images[0]) img_ratio = images[0][0].shape[1] / images[0][0].shape[0] if transpose: vert_grid_shape, hori_grid_shape = (1, num_rows), (num_cols, 1) figsize = (int(num_rows * 5 * img_ratio), num_cols * 5) wspace, hspace = 0.2, 0. else: vert_grid_shape, hori_grid_shape = (num_rows, 1), (1, num_cols) figsize = (int(num_cols * 5 * img_ratio), num_rows * 5) hspace, wspace = 0.2, 0. if figure is None: figure = plt.figure(figsize=figsize) imshow_params = {'cmap': plt.get_cmap('gray')} if grayscale else {} grid_spec = gridspec.GridSpec(*hori_grid_shape, wspace=0, hspace=0) for j in range(num_cols): grid_spec_j = gridspec.GridSpecFromSubplotSpec( *vert_grid_shape, subplot_spec=grid_spec[j], wspace=wspace, hspace=hspace) for i in range(num_rows): ax_img = figure.add_subplot(grid_spec_j[i]) # ax_img.axis('off') ax_img.set_yticks([]) ax_img.set_xticks([]) if titles is not None: if transpose: ax_img.set_ylabel(titles[j], fontsize=25) else: ax_img.set_title(titles[j], fontsize=15) ax_img.imshow(images[j][i], **imshow_params) figure.tight_layout() return figure
def Update_Axes(fig: plt.figure, Axes: np.ndarray, u_NN: Neural_Network, Points: torch.Tensor, n: int) -> None: """ This function plots the approximate solution and residual at the specified points. ---------------------------------------------------------------------------- Arguments: fig : The figure object to which the Axes belong. We need this to set up the color bars. Axes : The array of Axes object that we will plot on. Note that this function will overwrite these axes. u_NN : The neural network that gives the approximate solution to Poisson's equation. Points : The set of points we want to evaluate the approximate and true solutions, as well as the PDE Residual. This should be an (n*n)x2 tensor, whose ith row holds the x,y coordinates of the ith point we want to plot. Each element of Points should be an element of [0,1]x[0,1]. n : the number of gridpoints along each axis. Points should be an n*n x 2 tensor. ---------------------------------------------------------------------------- Returns: Nothing! """ # First, evaluate the network's approximate solution, the true solution, and # the PDE residual at the specified Points. We need to reshape these into # nxn grids, because that's what matplotlib's contour function wants. It's # annoying, but it is what it is. u_NN_at_Points = Evaluate_NN(u_NN, Points).reshape(n, n) True_Sol_at_Points = Evaluate_True_Solution(Points).reshape(n, n) Residual_at_Points = PDE_Residual(u_NN, Points).reshape(n, n) # Extract the x and y coordinates of points, as np arrays. We also need to # reshape these as nxn grids (same reason as above. x = Points[:, 0].numpy().reshape(n, n) y = Points[:, 1].numpy().reshape(n, n) # Plot the approximate solution + colorbar. ColorMap0 = Axes[0].contourf(x, y, u_NN_at_Points.reshape(n, n), levels=50, cmap=plt.cm.jet) fig.colorbar(ColorMap0, ax=Axes[0], fraction=0.046, pad=0.04, orientation='vertical') # Plot the true solution + colorbar ColorMap1 = Axes[1].contourf(x, y, True_Sol_at_Points.reshape(n, n), levels=50, cmap=plt.cm.jet) fig.colorbar(ColorMap1, ax=Axes[1], fraction=0.046, pad=0.04, orientation='vertical') # Plot the residual + colorbar ColorMap2 = Axes[2].contourf(x, y, Residual_at_Points.reshape(n, n), levels=50, cmap=plt.cm.jet) fig.colorbar(ColorMap2, ax=Axes[2], fraction=0.046, pad=0.04, orientation='vertical') # Set tight layout (to prevent overlapping... I have no idea why this isn't # a default setting. Matplotlib, you are special kind of awful). fig.tight_layout()
def Plot_Solution( fig : plt.figure, Axes : numpy.ndarray, Sol_NN : Neural_Network, PDE_NN : Neural_Network, Time_Derivative_Order : int, Spatial_Derivative_Order : int, Data : Data_Container) -> None: """ This function makes four plots. One for the approximate solution, one for the true solution, one for their difference, and one for the PDE residual. x_points and t_points specify the domain of all four plots. Note: this function only works if u is a function of 1 spatial variable. ---------------------------------------------------------------------------- Arguments: fig: The figure object to which the Axes belong. We need this to set up the color bars. Axes: The array of Axes object that we will plot on. Note that this function overwrites these axes. Sol_NN: The network that approximates the PDE solution. PDE_NN: The network that approximates the PDE. Time_Derivative_Order: The order of the time derivative on the left-hand side of the PDE. Spatial_Derivative_Order: The highest order spatial derivatives of Sol_NN we need to evaluate. Data: This is a Data_Container object. It should contain four members (all of which are numpy arrays): x_points, t_points, Data_Set, and Noisy_Data_Set. x_points, t_points contain the set of possible x and t values, respectively. Data_Set and Noisy_Data_Set should contain the true solution with and without noise at each grid point (t, x coordinate). If t_points and x_points have n_t and n_x elements, respectively, then Data_Set and Noisy_Data_Set should be an n_x by n_t array whose i,j element holds the value of the true solution at t_points[j], x_points[i]. ---------------------------------------------------------------------------- Returns: Nothing! """ # First, construct the set of possible coordinates. grid_t_coords and # grid_x_coords are 2d NumPy arrays. Each row of these arrays corresponds to # a specific position. Each column corresponds to a specific time. grid_t_coords, grid_x_coords = numpy.meshgrid(Data.t_points, Data.x_points); # Flatten t_coords, x_coords. use them to generate grid point coodinates. flattened_grid_x_coords = grid_x_coords.reshape(-1, 1); flattened_grid_t_coords = grid_t_coords.reshape(-1, 1); Grid_Point_Coords = torch.from_numpy(numpy.hstack((flattened_grid_t_coords, flattened_grid_x_coords))); # Get number of x and t values, respectively. n_x = len(Data.x_points); n_t = len(Data.t_points); # Put networks into evaluation mode. Sol_NN.eval(); PDE_NN.eval(); # Evaluate the network's approximate solution, the absolute error, and the # PDE residual at each coordinate. We need to reshape these into n_x by n_t # grids because that's what matplotlib's contour function wants. Approx_Sol_on_grid = Evaluate_Approx_Sol(Sol_NN, Grid_Point_Coords).reshape(n_x, n_t); Error_On_Grid = numpy.abs(Approx_Sol_on_grid - Data.Data_Set); Residual_on_Grid = Evaluate_Residual( Sol_NN = Sol_NN, PDE_NN = PDE_NN, Time_Derivative_Order = Time_Derivative_Order, Spatial_Derivative_Order = Spatial_Derivative_Order, Coords = Grid_Point_Coords).reshape(n_x, n_t); # Plot the true solution + color bar. data_min : float = numpy.min(Data.Noisy_Data_Set); data_max : float = numpy.max(Data.Noisy_Data_Set); ColorMap0 = Axes[0].contourf( grid_t_coords, grid_x_coords, Data.Noisy_Data_Set, levels = numpy.linspace(data_min, data_max, 500), cmap = plt.cm.jet); fig.colorbar(ColorMap0, ax = Axes[0], fraction=0.046, pad=0.04, orientation='vertical'); # Plot the learned solution + color bar sol_min : float = numpy.min(Approx_Sol_on_grid); sol_max : float = numpy.max(Approx_Sol_on_grid); ColorMap1 = Axes[1].contourf( grid_t_coords, grid_x_coords, Approx_Sol_on_grid, levels = numpy.linspace(sol_min, sol_max, 500), cmap = plt.cm.jet); fig.colorbar(ColorMap1, ax = Axes[1], fraction=0.046, pad=0.04, orientation='vertical'); # Plot the Error between the approx solution and noise-free data set. + color bar. error_min : float = numpy.min(Error_On_Grid); error_max : float = numpy.max(Error_On_Grid); ColorMap2 = Axes[2].contourf( grid_t_coords, grid_x_coords, Error_On_Grid, levels = numpy.linspace(error_min, error_max, 500), cmap = plt.cm.jet); fig.colorbar(ColorMap2, ax = Axes[2], fraction=0.046, pad=0.04, orientation='vertical'); # Plot the residual + color bar resid_min : float = numpy.min(Residual_on_Grid); resid_max : float = numpy.max(Residual_on_Grid); ColorMap3 = Axes[3].contourf( grid_t_coords, grid_x_coords, Residual_on_Grid, levels = numpy.linspace(resid_min, resid_max, 500), cmap = plt.cm.jet); fig.colorbar(ColorMap3, ax = Axes[3], fraction=0.046, pad=0.04, orientation='vertical'); # Set tight layout (to prevent overlapping... I have no idea why this isn't # a default setting. Matplotlib, you are special kind of awful). fig.tight_layout();