def test_rotated_labels_parameters(x_alignment, y_alignment,
                                   x_tick_label_width, y_tick_label_width,
                                   rotation):
    fig, _ = __plot()

    if x_alignment:
        plt.xticks(ha=x_alignment, rotation=rotation)
    if y_alignment:
        plt.yticks(ha=y_alignment, rotation=rotation)

    # convert to tikz file
    _, tmp_base = tempfile.mkstemp()
    tikz_file = tmp_base + '_tikz.tex'

    extra_dict = {}

    if x_tick_label_width:
        extra_dict['x tick label text width'] = x_tick_label_width
    if y_tick_label_width:
        extra_dict['y tick label text width'] = y_tick_label_width

    matplotlib2tikz.save(
        tikz_file,
        figurewidth='7.5cm',
        extra_axis_parameters=extra_dict
        )

    # close figure
    plt.close(fig)

    # delete file
    os.unlink(tikz_file)
def test_rotated_labels_parameters_no_ticks():
    fig, ax = __plot()

    ax.xaxis.set_ticks([])

    plt.tick_params(axis='x',
                    which='both',
                    bottom='off',
                    top='off')
    plt.tick_params(axis='y',
                    which='both',
                    left='off',
                    right='off')

    # convert to tikz file
    _, tmp_base = tempfile.mkstemp()
    tikz_file = tmp_base + '_tikz.tex'

    matplotlib2tikz.save(
        tikz_file,
        figurewidth='7.5cm'
        )

    # close figure
    plt.close(fig)

    # delete file
    os.unlink(tikz_file)
    return
Пример #3
0
def zero_padding():
    samples = 77
    rec_period = 4
    sampling_rate = samples/rec_period
    time = np.linspace(0, rec_period, samples)
    sin = np.sin(time*3.75*np.pi)
    win = np.hanning(len(sin))

    pad_count = 23
    padded_sin = np.pad(sin, (0,pad_count), 'constant')

    fft = np.fft.rfft(sin)
    fft_padded = np.fft.rfft(padded_sin)
    bins = (np.fft.rfftfreq(len(sin))*sampling_rate)[1:]

    plt.subplot(321)
    plt.plot(time, sin)
    plt.subplot(322)
    plt.plot(bins, (np.abs(fft))[1:]*2/samples, "o")
    plt.subplot(323)
    plt.plot(np.linspace(0, (samples+pad_count)*rec_period/float(samples), samples+pad_count), padded_sin)
    plt.subplot(324)
    plt.plot((np.fft.rfftfreq(len(padded_sin))*sampling_rate)[1:], (np.abs(fft_padded))[1:]*2/samples, "o")
    plt.subplot(325)
    padded_sin_win = np.pad(sin*win, (0, pad_count), 'constant')
    plt.plot(np.linspace(0, (samples+pad_count)*rec_period/float(samples), samples+pad_count), padded_sin_win)
    plt.subplot(326)
    plt.plot((np.fft.rfftfreq(len(padded_sin_win))*sampling_rate)[1:], np.abs(np.fft.rfft(padded_sin_win))[1:]*2/samples, "o")
    matplotlib2tikz.save( 'myfile.tikz' )
    plt.show()
Пример #4
0
def _main():
    args = _parse_input_arguments()
    # read the file
    handle = open(args.filename)
    data = yaml.load(handle)
    handle.close()

    # Plot Newton residuals.
    # Mind that the last Newton datum only contains the final ||F||.
    num_newton_steps = len(data['Newton results'])
    x = range(num_newton_steps)
    # Extract Newton residuals
    y = np.empty(num_newton_steps)
    for k in xrange(num_newton_steps):
        y[k] = data['Newton results'][k]['Fx_norm']
    # Plot it.
    pp.semilogy(x, y)

    pp.xlabel('Newton step')
    pp.ylabel('||F||')
    pp.title('Krylov: %s    Prec: %r    ix-defl: %r    extra defl: %r    ExpRes: %r    Newton iters: %d' %
             (data['krylov'],
              data['preconditioner type'],
              data['ix deflation'],
              data['extra deflation'],
              data['explicit residual'],
              num_newton_steps
              ))

    # Write the info out to files.
    if args.imgfile:
        pp.savefig(args.imgfile)
    if args.tikzfile:
        matplotlib2tikz.save(args.tikzfile)
    return
def test_rotated_labels_parameters_different_values(x_tick_label_width,
                                                    y_tick_label_width):
    fig, ax = __plot()

    plt.xticks(ha='left', rotation=90)
    plt.yticks(ha='left', rotation=90)
    ax.xaxis.get_majorticklabels()[0].set_rotation(20)
    ax.yaxis.get_majorticklabels()[0].set_horizontalalignment('right')

    # convert to tikz file
    _, tmp_base = tempfile.mkstemp()
    tikz_file = tmp_base + '_tikz.tex'

    extra_dict = {}

    if x_tick_label_width:
        extra_dict['x tick label text width'] = x_tick_label_width
    if y_tick_label_width:
        extra_dict['y tick label text width'] = y_tick_label_width

    matplotlib2tikz.save(
        tikz_file,
        figurewidth='7.5cm',
        extra_axis_parameters=extra_dict
        )

    # close figure
    plt.close(fig)

    # delete file
    os.unlink(tikz_file)
Пример #6
0
def _main():
    args = _parse_input_arguments()

    # read the file
    handle = open(args.filename)
    data = yaml.load(handle)
    handle.close()

    # Plot relresvecsi.
    #pp.subplot(121)
    # Mind that the last Newton datum only contains the final ||F||.
    num_newton_steps = len(data['Newton results']) - 1
    for k in xrange(num_newton_steps):
        pp.semilogy(
            data['Newton results'][k]['relresvec'],
            color=str(1.0 - float(k+1)/num_newton_steps)
            )
    pp.xlabel('Krylov step')
    pp.ylabel('||r||/||b||')
    pp.title('Krylov: %s    Prec: %r    ix-defl: %r    extra defl: %r    ExpRes: %r    Newton iters: %d' %
             (data['krylov'], data['preconditioner type'], data['ix deflation'],
              data['extra deflation'], data['explicit residual'], num_newton_steps)
             )
    if args.xmax:
        pp.xlim([0, args.xmax])
    pp.ylim([1e-10, 10])

    # Write the info out to files.
    if args.imgfile:
        pp.savefig(args.imgfile)
    if args.tikzfile:
        matplotlib2tikz.save(args.tikzfile)
    return
Пример #7
0
def savefig(fig, name, extn="pdf", tight=True, ax=None, **kwargs):
    _kwargs = Tools.kwarger()
    _kwargs.update(kwargs)
    if tight:
        fig.tight_layout(pad=0.1)
    if ax is not None:
        if isinstance(ax, list):
            map(format_axes, ax)
        else:
            format_axes(ax)
    fig.savefig("{0}.{1}".format(name, extn), **_kwargs)
    try:
        mpl2tkz.save("{0}.tex".format(name), fig, show_info=False)
    except:
        warnings.warn("Couldn't tkzify {0}, skipping".format(name))
    plt.close(fig)
def test_rotated_labels_parameters_no_ticks():
    fig, ax = __plot()

    ax.xaxis.set_ticks([])

    plt.tick_params(axis="x", which="both", bottom="off", top="off")
    plt.tick_params(axis="y", which="both", left="off", right="off")

    # convert to tikz file
    _, tmp_base = tempfile.mkstemp()
    tikz_file = tmp_base + "_tikz.tex"

    matplotlib2tikz.save(tikz_file, figurewidth="7.5cm")

    # close figure
    plt.close(fig)

    # delete file
    os.unlink(tikz_file)
    return
Пример #9
0
def test_rotated_labels_parameters_no_ticks():
    fig, ax = __plot()

    ax.xaxis.set_ticks([])

    plt.tick_params(axis="x", which="both", bottom="off", top="off")
    plt.tick_params(axis="y", which="both", left="off", right="off")

    # convert to tikz file
    _, tmp_base = tempfile.mkstemp()
    tikz_file = tmp_base + "_tikz.tex"

    matplotlib2tikz.save(tikz_file, figurewidth="7.5cm")

    # close figure
    plt.close(fig)

    # delete file
    os.unlink(tikz_file)
    return
Пример #10
0
def face_validation(time, u, y_model, y_exp, title):

    yaw_rate = y_model[0]
    yaw_rate_experiment = y_exp[0]

    plt.figure()
    ax1 = plt.subplot(211)
    lines = plt.plot(time[::10], u[::10], "k")
    plt.setp(lines, linewidth=2.5)
    plt.ylabel("steer angle in rad")

    plt.subplot(212, sharex=ax1)
    lines = plt.plot(time[::10], yaw_rate[::10], "r",
                     time[::10], yaw_rate_experiment[::10], ":k")
    plt.setp(lines, linewidth=2.5)
    plt.legend(["single track model", "CarMaker"], loc=3)
    plt.xlabel("time in seconds")
    plt.ylabel("yaw rate in rad per seconds")

    matplotlib2tikz.save(title + ".tex")
def test_rotated_labels_parameters_no_ticks():
    fig, ax = __plot()

    ax.xaxis.set_ticks([])

    plt.tick_params(axis='x', which='both', bottom='off', top='off')
    plt.tick_params(axis='y', which='both', left='off', right='off')

    # convert to tikz file
    _, tmp_base = tempfile.mkstemp()
    tikz_file = tmp_base + '_tikz.tex'

    matplotlib2tikz.save(tikz_file, figurewidth='7.5cm')

    # close figure
    plt.close(fig)

    # delete file
    os.unlink(tikz_file)
    return
Пример #12
0
def plot_ctrl_perf(data, dir_name=None):
    for env, res in data.items():
        algos = res.keys()
        stats_cost = res.values()

        means = np.asarray([stat[0][0] for stat in stats_cost])
        stds = np.asarray([stat[0][1] for stat in stats_cost])
        final_cost = np.asarray([stat[1][-1] for stat in stats_cost])
        # means = [m / fc for m,fc in zip(means, final_cost)]
        # stds = [100 * s / fc for s,fc in zip(stds, final_cost)]
        for i, algo in enumerate(algos):
            print("{} {} {} {} +- {}".format(env, algo, final_cost[i],
                                             means[i], stds[i]))
        means = [m / fc for m, fc in zip(means, final_cost)]
        stds = [100 * s / fc for s, fc in zip(stds, final_cost)]
        for i, algo in enumerate(algos):
            print("{} {} {} +- {}".format(env, algo, means[i], stds[i]))
        fig, ax = plt.subplots()
        x_pos = np.arange(len(algos))
        ax.bar(x_pos,
               means,
               yerr=stds,
               align='center',
               color="white",
               edgecolor='k',
               linewidth=1)
        ax.set_ylabel('Controller Cost / Predicted Cost')
        ax.set_xticks(x_pos)
        ax.set_xticklabels(algos)
        ax.set_title(env)
        ax.yaxis.grid(True)

        # Save the figure and show
        plt.tight_layout()

        if dir_name is not None:
            plt.savefig(os.path.join(dir_name, "{}_ctrl_perf.png".format(env)),
                        bbox_inches='tight',
                        format='png')
            matplotlib2tikz.save(
                os.path.join(dir_name, "{}_ctrl_perf.tex".format(env)))
Пример #13
0
def plot_throughput_pdf(T):
    fig = plt.figure(figsize=(10.24, 7.68))
    plt.rc('text', usetex=True)
    plt.rc('font', family='serif')
    matplotlib.rcParams['text.usetex'] = True
    matplotlib.rcParams['font.size'] = 40
    matplotlib.rcParams['xtick.labelsize'] = 'small'
    matplotlib.rcParams['ytick.labelsize'] = 'small'
    matplotlib.rcParams['legend.fontsize'] = 'small'
    matplotlib.rcParams['text.latex.preamble'] = [
        r'\usepackage{amsmath}', r'\usepackage{amssymb}'
    ]

    labels = []

    num_bins = 40
    for data in T:
        data_ = T[data]

        counts, bin_edges = np.histogram(data_, bins=num_bins, density=True)
        pdf = counts  #np.cumsum(counts) / counts.sum()
        ax = fig.gca()
        if data == 'mmWave only':
            style = 'r-'
            labels.append(data)
        elif data == 'Sub-6 only':
            style = 'b-'
            labels.append(data)
        else:
            continue
        ax.plot(bin_edges[1:], pdf, style, linewidth=2)

    plt.legend(labels, loc="best")
    plt.grid()
    plt.xlabel('Throughput [Mbps]')
    plt.ylabel('Throughput pdf')
    plt.tight_layout()
    plt.savefig('figures/throughputs_pdf_{}.pdf'.format(p_randomness),
                format='pdf')
    matplotlib2tikz.save(
        'figures/throughputs_pdf_{}.tikz'.format(p_randomness))
Пример #14
0
def plot_coefficient_dnn_vs_gan_error_over_training(single_log_directory):
    """Plots error over training comparing DNN to GAN."""
    logs = Log.create_all_in_directory(single_log_directory)
    if re.search(r'/GAN/', logs[0].event_file_name):
        gan_log, dnn_log = logs[0], logs[1]
    else:
        dnn_log, gan_log = logs[0], logs[1]
    figure, axes = plt.subplots()
    axes.set_xlabel('Training Step')
    axes.set_ylabel('MAE')
    dnn_log.scalars_data_frame.plot(y='1_Validation_Error/MAE',
                                    ax=axes,
                                    label='DNN',
                                    color=dnn_color)
    gan_log.scalars_data_frame.plot(y='1_Validation_Error/MAE',
                                    ax=axes,
                                    label='GAN',
                                    color=gan_color)
    matplotlib2tikz.save(os.path.join('latex', 'error-over-training.tex'))
    plt.show()
    plt.close(figure)
Пример #15
0
def plot_training(energies, parameters, symmetries):
    _, (eax, pax) = plt.subplots(ncols=2)
    eax.semilogy(np.abs(3 - np.asarray(energies[2])), label=r"$\psi_{PJ}$")
    eax.semilogy(np.abs(3 - np.asarray(energies[0])), label=r"$\psi_{DNN}$")
    eax.semilogy(np.abs(3 - np.asarray(energies[1])), label=r"$\psi_{SDNN}$")
    eax.set_xlabel(r"% of training")
    eax.set_ylabel(r"Absolute error in $\langle E_L\rangle$ [a.u]")
    eax.legend()

    pax.plot(np.asarray(parameters[0])[:, 4:50])
    pax.set_xlabel(r"% of training")

    matplotlib2tikz.save(__file__ + ".tex")

    _, sax = plt.subplots()
    sax.semilogx(symmetries, label=r"$S(\psi_{DNN})$")
    sax.set_ylabel("Symmetry")
    sax.set_xlabel(r"% of training")
    sax.legend(loc="lower right")

    matplotlib2tikz.save(__file__ + ".symmetry.tex")
Пример #16
0
def savePlot(name):
    name = showAndSave.prefix + name
    name = ''.join(ch for ch in name if ch.isalnum() or ch == '_')

    fig = plt.gcf()
    ax = plt.gca()
    gitMetadata = get_git_metadata()
    informationText = 'By Kjetil Lye@ETHZ <*****@*****.**>\nCommit: %s\nRepo: %s\nHostname: %s' % (
        gitMetadata['git_commit'], gitMetadata['git_remote_url'],
        socket.gethostname())

    ax.text(0.95,
            0.01,
            informationText,
            fontsize=3,
            color='gray',
            ha='right',
            va='bottom',
            alpha=0.5,
            transform=ax.transAxes)

    matplotlib2tikz.save(name + '.tikz',
                         figureheight='\\figureheight',
                         figurewidth='\\figurewidth',
                         show_info=False)

    savenamepng = name + '.png'
    plt.savefig(savenamepng, bbox_inches='tight')

    writeMetadata(
        savenamepng,
        {'Copyright': 'Copyright Kjetil Lye@ETHZ <*****@*****.**>'})

    add_git_information(savenamepng)
    writeMetadata(
        savenamepng, {
            'working_directory': os.getcwd(),
            'hostname': socket.gethostname(),
            'generated_on_date': str(datetime.datetime.now())
        })
Пример #17
0
def _main():
    args = _parse_input_arguments()

    # read the file
    handle = open(args.filename)
    data = yaml.load(handle)
    handle.close()

    # Plot relresvecsi.
    # pp.subplot(121)
    # Mind that the last Newton datum only contains the final ||F||.
    num_newton_steps = len(data["Newton results"]) - 1
    for k in range(num_newton_steps):
        pp.semilogy(
            data["Newton results"][k]["relresvec"],
            color=str(1.0 - float(k + 1) / num_newton_steps),
        )
    pp.xlabel("Krylov step")
    pp.ylabel("||r||/||b||")
    pp.title(
        "Krylov: %s    Prec: %r    ix-defl: %r    extra defl: %r    ExpRes: %r    Newton iters: %d"
        % (
            data["krylov"],
            data["preconditioner type"],
            data["ix deflation"],
            data["extra deflation"],
            data["explicit residual"],
            num_newton_steps,
        ))
    if args.xmax:
        pp.xlim([0, args.xmax])
    pp.ylim([1e-10, 10])

    # Write the info out to files.
    if args.imgfile:
        pp.savefig(args.imgfile)
    if args.tikzfile:
        matplotlib2tikz.save(args.tikzfile)
    return
Пример #18
0
def plot_primary(X,
                 Y,
                 title,
                 xlabel,
                 ylabel,
                 ymin=0,
                 ymax=MAX_EPISODES_DEEP,
                 filename='plot.pdf'):
    fig = plt.figure(figsize=(10.24, 7.68))
    plt.rc('text', usetex=True)
    plt.rc('font', family='serif')
    matplotlib.rcParams['text.usetex'] = True
    matplotlib.rcParams['font.size'] = 20
    matplotlib.rcParams['text.latex.preamble'] = [
        r'\usepackage{amsmath}', r'\usepackage{amssymb}'
    ]

    #plt.title(title)
    plt.xlabel(xlabel)

    ax = fig.gca()
    ax.xaxis.set_major_locator(MultipleLocator(1))
    # Format the ticklabel to be 2 raised to the power of `x`
    ax.xaxis.set_major_formatter(FuncFormatter(lambda x, pos: int(2**x)))

    ax.set_autoscaley_on(False)

    plot_, = ax.plot(X, Y, 'k^-')  #, label='ROC')

    #    ax.set_xlim(xmin=0.15, xmax=0.55)

    ax.set_ylabel(ylabel)
    ax.set_ylim(ymin, ymax)

    plt.grid(True)
    #    plt.legend([plot_], ['ROC'], loc='upper right')
    fig.tight_layout()
    plt.savefig('{}'.format(filename), format='pdf')
    matplotlib2tikz.save('figures/{}.tikz'.format(filename))
Пример #19
0
def convert_plot_to_tikz(tikz_file,tikz_dir,show=False,remove_all_files=True):
    import sys
    import matplotlib2tikz as pylab2tikz

    pylab2tikz.save(tikz_file,show_info=False)

    with open(tikz_file,'r') as f:
        tikz_string = f.read()

    # create a latex wrapper for the tikz
    wrapper = r'''\documentclass{standalone}
    \usepackage[utf8]{inputenc}
    \usepackage{pgfplots}
    \usepackage{amsmath,amssymb,amsfonts}
    \usepgfplotslibrary{groupplots}
    \pgfplotsset{compat=newest}
    \begin{document}
    %s
    \end{document}''' % (tikz_string)
    
    os.remove(tikz_file)
    compile_tikz_figure(wrapper,tikz_file,tikz_dir,show,remove_all_files)
Пример #20
0
def VisualizeFusedTSSAndAnnotations(annotations_folder,
                                    fused_tss_file_path,
                                    tikz_file_out_path=None):
    # Load the annotations
    annotations = {}
    anno_files = glob.glob(os.path.join(annotations_folder, '*.csv'))
    for anno_file in anno_files:
        df = pd.read_csv(anno_file)
        annotations[os.path.basename(anno_file)] = df

    # Load the fused TSS
    fused_tss = pd.read_csv(fused_tss_file_path)
    const_type_mask = fused_tss.iloc[:, 1] == CONST_VAL
    const_times = fused_tss.index[const_type_mask]
    change_times = fused_tss.index[~const_type_mask]

    # Plot
    fig, ax = plt.subplots()
    for anno_key in annotations.keys():
        df = annotations[anno_key]
        ax.plot(df.iloc[:, 0], df.iloc[:, 1])

    half_sample_interval = 0.5 * (fused_tss.iloc[1, 0] - fused_tss.iloc[0, 0])
    for const_time in const_times:
        ax.axvspan(const_time - half_sample_interval,
                   const_time + half_sample_interval,
                   alpha=0.2,
                   color='red')
    for change_time in change_times:
        ax.axvspan(change_time - half_sample_interval,
                   change_time + half_sample_interval,
                   alpha=0.2,
                   color='green')
    plt.xlim(135, 167)

    if tikz_file_out_path is not None:
        matplotlib2tikz.save(tikz_file_out_path)

    plt.show()
Пример #21
0
def summarize_dc_data(self):
    self.logger.info("Running custom summary function")
    df = self.dataframe.drop(columns=["school_ncesid"])
    summary = df.describe(percentiles=[]).drop("count").T

    with (self.output_dir / "summary.tex").open('w') as fer:
        summary.to_latex(buf=fer, float_format="%.2f")

    with (self.output_dir / "missing.tex").open('w') as fer:
        pd.DataFrame([df.isnull().sum()]).T.to_latex(buf=fer,
                                                     float_format="%.2f")

    for (column, color) in zip(df.columns, colors):
        try:
            df[[column]].plot.hist(facecolor=color, legend=None, bins=20)
            plt.gca().legend().remove()
            matplotlib2tikz.save(self.output_dir / (column + ".tex"),
                                 figureheight="3in",
                                 figurewidth="3in")
        except TypeError:
            pass
    return self
def plot_secondary(X,Y1, Y2, Y3, Y4, xlabel, y1label, y2label, y1max, y2max, filename='plot.pdf'):
    fig = plt.figure(figsize=(10.24,7.68))
    plt.rc('text', usetex=True)
    plt.rc('font', family='serif')
    matplotlib.rcParams['text.usetex'] = True
    matplotlib.rcParams['font.size'] = 20
    matplotlib.rcParams['text.latex.preamble'] = [
        r'\usepackage{amsmath}',
        r'\usepackage{amssymb}']
    
    #plt.title(title)
    plt.xlabel(xlabel)
    plt.grid(True, axis='both', which='both')
        
    ax = fig.gca()
#    ax.xaxis.set_major_locator(MultipleLocator(1))
    # Format the ticklabel to be 2 raised to the power of `x`
 #   ax.xaxis.set_major_formatter(FuncFormatter(lambda x, pos: int(2**x)))
    
    ax.set_autoscaley_on(False)
    ax_sec = ax.twinx()
    
    plot1_, = ax.plot(X, Y1, 'k^-')
    plot2_, = ax.plot(X, Y2, 'bo--')
    plot3_, = ax_sec.plot(X, Y3, 'r^-')
    plot4_, = ax_sec.plot(X, Y4, 'go--')

    ax.set_ylabel(y1label)
    ax_sec.set_ylabel(y2label)
    
    ax.set_ylim(0, y1max)
    ax_sec.set_ylim(0, y2max)
    
    plt.grid(True)
    plt.legend([plot1_, plot2_, plot3_, plot4_], ['TX Power JB-PCIC', 'TX Power Optimal', 'SINR JB-PCIC', 'SINR Optimal'], loc='lower right')
    fig.tight_layout()
    plt.savefig('figures/{}'.format(filename), format='pdf')
    matplotlib2tikz.save('figures/{}.tikz'.format(filename))
Пример #23
0
def plot_primary_two(X, Y1, Y2, xlabel, ylabel, filename='plot.pdf'):
    fig = plt.figure(figsize=(10.24,7.68))
    
    plt.xlabel(xlabel)
    
    ax = fig.gca()
#    ax.xaxis.set_major_locator(MultipleLocator(1))
    # Format the ticklabel to be 2 raised to the power of `x`
 #   ax.xaxis.set_major_formatter(FuncFormatter(lambda x, pos: int(2**x)))
    
    ax.set_autoscaley_on(False)
    
    plot1_, = ax.plot(X, Y1, 'k^-')
    plot2_, = ax.plot(X, Y2, 'ro--')

    ax.set_ylabel(ylabel)
    ax.set_ylim(min(min(Y1), min(Y2))*0.98, max(max(Y1), max(Y2))*1.02)
    
    plt.grid(True)
    plt.legend([plot1_, plot2_], ['JB-PCIC', 'Optimal'], loc='best')
    fig.tight_layout()
    plt.savefig('{}'.format(filename), format='pdf')
    matplotlib2tikz.save('{}.tikz'.format(filename))
Пример #24
0
def _main():
    args = _parse_input_arguments()
    # read the file
    handle = open(args.filename)
    data = yaml.load(handle)
    handle.close()

    # Plot Newton residuals.
    # Mind that the last Newton datum only contains the final ||F||.
    num_newton_steps = len(data["Newton results"])
    x = list(range(num_newton_steps))
    # Extract Newton residuals
    y = np.empty(num_newton_steps)
    for k in range(num_newton_steps):
        y[k] = data["Newton results"][k]["Fx_norm"]
    # Plot it.
    pp.semilogy(x, y)

    pp.xlabel("Newton step")
    pp.ylabel("||F||")
    pp.title(
        "Krylov: %s    Prec: %r    ix-defl: %r    extra defl: %r    ExpRes: %r    Newton iters: %d"
        % (
            data["krylov"],
            data["preconditioner type"],
            data["ix deflation"],
            data["extra deflation"],
            data["explicit residual"],
            num_newton_steps,
        ))

    # Write the info out to files.
    if args.imgfile:
        pp.savefig(args.imgfile)
    if args.tikzfile:
        matplotlib2tikz.save(args.tikzfile)
    return
Пример #25
0
def plot_ccdf(T):
    fig = plt.figure(figsize=(10.24, 7.68))
    plt.rc('text', usetex=True)
    plt.rc('font', family='serif')
    matplotlib.rcParams['text.usetex'] = True
    matplotlib.rcParams['font.size'] = 20
    matplotlib.rcParams['text.latex.preamble'] = [
        r'\usepackage{amsmath}', r'\usepackage{amssymb}'
    ]

    labels = T.columns

    num_bins = 50
    i = 0
    for data in T:
        data_ = T[data].dropna()

        counts, bin_edges = np.histogram(data_, bins=num_bins, density=True)
        ccdf = 1 - np.cumsum(counts) / counts.sum()
        lw = 1 + i
        ax = fig.gca()
        style = '-'
        ax.plot(bin_edges[1:], ccdf, style, linewidth=lw)

    labels = [
        r'$M_\text{ULA} = 4$', r'$M_\text{ULA} = 8$', r'$M_\text{ULA} = 16$',
        r'$M_\text{ULA} = 32$', r'$M_\text{ULA} = 64$'
    ]

    plt.grid(True)
    plt.tight_layout()
    ax.set_xlabel('$\gamma$')
    ax.set_ylabel('$1 - F_\Gamma(\gamma)$')
    ax.legend(labels, loc="lower left")
    plt.savefig('ccdf.pdf', format='pdf')
    matplotlib2tikz.save('figures/ccdf.tikz')
    plt.close(fig)
Пример #26
0
def plot_pdf(data1, label1, data2, label2):
    fig = plt.figure(figsize=(10.24, 7.68))
    plt.rc('text', usetex=True)
    plt.rc('font', family='serif')
    matplotlib.rcParams['text.usetex'] = True
    matplotlib.rcParams['font.size'] = 40
    matplotlib.rcParams['xtick.labelsize'] = 'small'
    matplotlib.rcParams['ytick.labelsize'] = 'small'
    matplotlib.rcParams['legend.fontsize'] = 'small'
    matplotlib.rcParams['text.latex.preamble'] = [
        r'\usepackage{amsmath}', r'\usepackage{amssymb}'
    ]

    labels = [label1, label2]

    num_bins = 50
    counts, bin_edges = np.histogram(data1, bins=num_bins, density=True)
    pdf = counts  #np.cumsum(counts) / counts.sum()

    lw = 2
    plt.xlabel('Coherence time (ms)')
    plt.grid(True, axis='both', which='both')
    ax = fig.gca()
    plot1, = ax.plot(bin_edges[1:], pdf, linewidth=lw)
    ax.set_ylabel('sub-6 Coherence time pdf')

    counts, bin_edges = np.histogram(data2, bins=num_bins, density=True)
    pdf = counts  #np.cumsum(counts) / counts.sum()
    ax_sec = ax.twinx()
    plot2, = ax_sec.plot(bin_edges[1:], pdf, color='red', linewidth=lw)

    plt.legend([plot1, plot2], labels, loc="best")
    ax_sec.set_ylabel('mmWave Coherence time pdf')
    plt.tight_layout()
    plt.savefig('figures/coherence_time_{}.pdf'.format(p_randomness),
                format='pdf')
    matplotlib2tikz.save('figures/coherence_time_{}.tikz'.format(p_randomness))
Пример #27
0
def generate_ccdf(data1, data2, data3):
    fig = plt.figure(figsize=(10.24, 7.68))

    plt.rc('text', usetex=True)
    plt.rc('font', family='serif')
    matplotlib.rcParams['text.usetex'] = True
    matplotlib.rcParams['font.size'] = 20
    matplotlib.rcParams['text.latex.preamble'] = [
        r'\usepackage{amsmath}', r'\usepackage{amssymb}'
    ]

    num_bins = 50
    for data in [data1, data2, data3]:

        data_ = data

        counts, bin_edges = np.histogram(data_, bins=num_bins, density=True)
        ccdf = 1 - np.cumsum(counts) / counts.sum()
        ccdf = np.insert(ccdf, 0, 1)
        bin_edges = np.insert(bin_edges[1:], 0,
                              bin_edges[0] - (bin_edges[2] - bin_edges[1]))
        ax = fig.gca()
        ax.plot(bin_edges, ccdf)

    labels = [
        'Tabular $Q$-learning', 'Deep $Q$-learning (proposed)',
        'Fixed Power Allocation (FPA)'
    ]
    ax.set_xlabel('$\gamma$')
    ax.set_ylabel('$1 - F_\Gamma(\gamma)$')
    ax.set_ylim([0, 1])
    ax.legend(labels, loc="best")
    plt.grid(True)
    plt.tight_layout()
    plt.savefig('figures/voice_ccdf.pdf', format="pdf")
    matplotlib2tikz.save('figures/voice_ccdf.tikz')
    plt.close(fig)
Пример #28
0
def plot_training(energies, symmetries, parameters):
    _, (eax, pax) = plt.subplots(ncols=2)
    eax.plot(energies, label=r"$\langle E_L\rangle$")
    eax.set_ylabel(r"Ground state energy (a.u.)")
    eax.set_xlabel(r"% of training")
    eax.axhline(y=3, label="Exact", linestyle="--", color="k", alpha=0.5)
    eax.legend()

    pax.plot(np.asarray(parameters))
    pax.set_xlabel(r"% of training")

    matplotlib2tikz.save(__file__ + ".tex")

    _, (sax, wax) = plt.subplots(ncols=2)
    sax.semilogx(symmetries, label=r"$S(\psi_{RBM})$")
    sax.set_ylabel("Symmetry")
    sax.set_xlabel(r"% of training")
    sax.legend(loc="lower right")

    w = np.asarray(parameters[-1])[P * D + N:].reshape(P * D, N)
    wax.matshow(w)
    wax.set_xlabel(r"$\mathbf{W}$")

    matplotlib2tikz.save(__file__ + ".symmetry.tex")
Пример #29
0
def plot_primary(X,Y, xlabel, ylabel, ymin=0, ymax=MAX_EPISODES_DEEP, filename='plot.pdf'):
    fig = plt.figure(figsize=(10.24,7.68))

    plt.xlabel(xlabel)
    
    #X = np.log2(np.array(X))
    
    ax = fig.gca()
    
    #ax.xaxis.set_major_locator(MultipleLocator(1))
    # Format the ticklabel to be 2 raised to the power of `x`
    #ax.xaxis.set_major_formatter(FuncFormatter(lambda x, pos: int(2**x)))
    
    ax.set_autoscaley_on(False)
    
    plot_, = ax.plot(X, Y, 'k^-')  
    
    ax.set_ylabel(ylabel)
    ax.set_ylim(ymin, ymax)
    plt.grid(True)

    fig.tight_layout()
    plt.savefig('{}'.format(filename), format='pdf')
    matplotlib2tikz.save('{}.tikz'.format(filename))
Пример #30
0
#     2: Voting(estimators[2][0:8]+estimators[2][21:22], voting=type),
#     3: Voting(estimators[3][0:8]+estimators[3][23:24], voting=type)
# }

print "Models have been read in!"

for target in [1, 2, 3]:
    decision = voters[target].transform(data_matrix[target-1])
    if type == "soft":
        decision = sum(decision).transpose()[0]
    elif type == "hard":
        decision = sum(decision.transpose())
    fpr, tpr, threshold = metrics.roc_curve(binarised_labels[target-1], decision, pos_label=True)
    # printMetrics(fpr, tpr, threshold, 0.99, decision[0], binarised_labels[target-1])
    # printMetrics(fpr, tpr, threshold, 1, decision[0], binarised_labels[target-1])
    prediction = printMetrics(fpr, tpr, threshold, 0.01, decision, binarised_labels[target-1])
    printMetrics(fpr, tpr, threshold, 0, decision, binarised_labels[target-1])
    plt.subplot(2, 2, 1)
    plt.plot(fpr, tpr)
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.plot((0, 1), (0, 1))
    plt.subplot(2, 2, target+1)
    axes = plt.gca()
    axes.set_ylim([-0.1, 1.1])
    plt.plot(map(lambda x: x, prediction))
    plt.plot(binarised_labels[target-1], "--")

matplotlib2tikz.save("roc.tex")
plt.show()
Пример #31
0
        )
plt.annotate(
        r"$\theta$",
        xy=fourier_coord_center + np.array([1., 0.15])
        )

plt.axis('off')
ax.set_xlim(0, 20)
ax.set_ylim(0, 10)
#plt.grid(False)
plt.tight_layout()

fig_w_inch, fig_h_inch = fig.get_size_inches()
fig_physical_width = 12.0 #cm
fig_physical_heigth = fig_physical_width * fig_h_inch / fig_w_inch

#plt.show(); import sys; sys.exit()

plt.savefig(
        os.path.join("..", "figures", "tikz", __file__.replace("py", "pdf")),
        bbox_inches='tight',
        pad_inches=0
        ); import sys; sys.exit()

import matplotlib2tikz as mpl2tikz
mpl2tikz.save(
        os.path.join("..", "figures", "tikz", __file__.replace("py", "tex")),
        figureheight='{}cm'.format(fig_physical_heigth),
        figurewidth='{}cm'.format(fig_physical_width)
        )
         'R-squared={:.3f}\n'
         'pvalue={:.4f}').format(slope, intercept, rvalue, rvalue**2, pvalue),
        horizontalalignment='right',
        verticalalignment='top',
        Transform=ax.transAxes)
    for i in df.index:  # subject numbers
        ax.text(df[x][i],
                df[y][i],
                df['subject'][i],
                color='white',
                horizontalalignment='center',
                verticalalignment='center')
    return rvalue, pvalue


# plt.close('all')
# regplot(x='mean_ct', y='mean_chi', data=df)
# regplot(x='mean_ct', y='mean_r2s', data=df)
# regplot(x='mean_r2s', y='mean_chi', data=df)

plt.close('all')
fig, axs = plt.subplots(2, 2, figsize=(12, 12))
axs[0][1].axis('off')
regplot(x='mean_ct', y='mean_r2s', data=df, ax=axs[0][0], txtloc=(1, 0.3))
regplot(x='mean_ct', y='mean_chi', data=df, ax=axs[1][0])
regplot(x='mean_r2s', y='mean_chi', data=df, ax=axs[1][1])
axs[1][1].set_xlim([45, 230])
axs[1][1].set_ylim([-1.25, 0.39])
import matplotlib2tikz
matplotlib2tikz.save('draft_regression_unwrap.tex')
Пример #33
0
def savePlot(name):
    original_name = copy.deepcopy(name)

    name = showAndSave.prefix + name
    name = ''.join(ch for ch in name if ch.isalnum() or ch == '_')
    name = name.lower()

    if not name.endswith("_notitle"):
        old_title = get_current_title()
        title = old_title
    else:
        title = "None"

    fig = plt.gcf()
    ax = plt.gca()
    gitMetadata = get_git_metadata()
    informationText = 'By Kjetil Lye@ETHZ <*****@*****.**>\nCommit: %s\nRepo: %s\nHostname: %s' % (
        gitMetadata['git_commit'], gitMetadata['git_remote_url'],
        socket.gethostname())

    ax.text(0.95,
            0.01,
            informationText,
            fontsize=3,
            color='gray',
            ha='right',
            va='bottom',
            alpha=0.5,
            transform=ax.transAxes)

    if gitMetadata['git_short_commit'] != "unkown":
        if not name.endswith("_notitle"):
            ax.text(0.2,
                    0.93,
                    "@" + gitMetadata['git_short_commit'],
                    fontsize=10,
                    ha='right',
                    va='bottom',
                    alpha=0.5,
                    transform=ax.transAxes)

    # We don't want all the output from matplotlib2tikz

    with RedirectStdStreamsToNull():
        if savePlot.saveTikz:
            matplotlib2tikz.save('img_tikz/' + name + '.xyz',
                                 figureheight='\\figureheight',
                                 figurewidth='\\figurewidth',
                                 show_info=False)

            with open('img_tikz/' + name + '.xyz', 'a') as f:
                f.write("\n\n")
                f.write("%% INCLUDE THE COMMENTS AT THE END WHEN COPYING\n")
                f.write("%%%%%%%%%%%%%TITLE%%%%%%%%%%%%%%%%%\n")
                for line in title.splitlines():
                    f.write("%% {}\n".format(line))
                f.write("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n")

                f.write("\n")
                f.write(
                    "%% ALWAYS INCLUDE THE COMMENTS WHEN COPYING THIS PLOT\n")
                f.write("%% DO NOT REMOVE THE COMMENTS BELOW!\n")
                for k in gitMetadata.keys():
                    f.write("%% GIT {} : {}\n".format(k, gitMetadata[k]))

                f.write("%% working_directory : {}\n".format(os.getcwd()))
                f.write("%% hostname : {}\n".format(socket.gethostname()))
                f.write("%% generated_on_date : {}\n".format(
                    str(datetime.datetime.now())))
                f.write("%% python_version: {}\n".format(
                    get_python_description()))

                f.write("%% python modules:\n")
                for module in get_loaded_python_modules():
                    f.write(
                        "%%     {name}: {version} ({file})\n".format(**module))

                f.write("%% stacktrace:\n")
                for line in get_stacktrace_str().splitlines():
                    f.write("%%     {}\n".format(line))

    savenamepng = 'img/' + name + '.png'
    plt.savefig(savenamepng, bbox_inches='tight')

    writeMetadata(
        savenamepng, {
            'Copyright': 'Copyright, Kjetil Lye@ETHZ <*****@*****.**>',
            'working_directory': os.getcwd(),
            'hostname': socket.gethostname(),
            'generated_on_date': str(datetime.datetime.now()),
            **gitMetadata, "modules_loaded":
            get_loaded_python_modules_formatted(),
            "python_version": get_python_description(),
            'stacktrace': get_stacktrace_str()
        })

    if savePlot.callback is not None:
        title = 'Unknown title'
        try:
            title = plt.gcf()._suptitle.get_text()
        except:
            pass
        savePlot.callback(savenamepng, name, title)

    if not name.endswith("_notitle"):
        old_title = get_current_title()
        plt.title("")
        savePlot(original_name + "_notitle")
        plt.title(old_title)
        title = old_title
    else:
        title = "None"
Пример #34
0
def acidtest():    
    tex_file_path = "./tex/acid.tex"

    # directory where all the generated files will end up
    data_dir = "./data"

    # how to get from the LaTeX file to the data
    tex_relative_path_to_data = "../data"

    figure_width = "7.5cm"

    # open file for writing
    file_handle = open( tex_file_path, "w" )

    write_document_header( file_handle, figure_width )

    test_functions = [ tf.basic_sin,
                       tf.subplots,
                       tf.image_plot,
                       tf.noise,
                       tf.patches,
                       tf.legends,
                       tf.legends2,
                       tf.logplot,
                       tf.loglogplot,
                       tf.subplot4x4,
                       tf.text_overlay,
                       tf.annotate
                       ]

    # see if the command line options tell which subset of the
    # tests are to be run
    test_list = []
    for arg in sys.argv:
        try:
            test_list.append( int(arg) )
        except ValueError:
            pass

    if len(test_list)!=0: # actually treat a sublist of test_functions
        # remove duplicates:
        test_list = list(set(test_list))
        # create the sublist
        tmp = test_functions
        test_functions = []
        for i in test_list:
            test_functions.append( tmp[i] )

    k = 0
    for fun in test_functions:
        mpl.pyplot.cla()
        mpl.pyplot.clf()
        # plot the test example
        comment = fun()

        # convert to TikZ
        tikz_path = data_dir + "/test" + repr(k) + ".tikz"
        matplotlib2tikz.save( tikz_path,
                              figurewidth=figure_width,
                              tex_relative_path_to_data = \
                                                     tex_relative_path_to_data
                            )

        # plot reference figure
        pdf_path  = data_dir + "/test" + repr(k) + ".pdf"
        mpl.pyplot.savefig(pdf_path)

        # update the LaTeX file
        write_file_comparison_entry( file_handle,
                                     path.join( tex_relative_path_to_data,
                                                path.basename(pdf_path) ),
                                     path.join( tex_relative_path_to_data,
                                                path.basename(tikz_path) ),
                                     k,
                                     comment
                                   )
        k = k+1

    write_document_closure( file_handle )
    file_handle.close()

    return
Пример #35
0
def print_or_show(fig, show, outfile, in_plotdir=True, tikz=None,
                  data=None, store_meta=None):
    """Either print or save figure, or both, depending on arguments.

    Taking a figure, show and/or save figure in the default directory,
    obtained with :func:plotdir.  Creates plot directory if needed.

    :param fig: Figure to store.  
    :type fig: matplotlib.Figure object
    :param show: Show figure or not
    :type show: boolean
    :param outfile: File to write figure to, or list of files.  If the
        string ends in a '.', write to x.png and x.pdf.
    :type outfile: string or list of strings
    :param in_plotdir: If true, write to default plot directory.  If
        false, write to currect directory or use absolute path.
    :type in_plotdir: boolean
    :param tikz: Try to write tikz code with matplotlib2tikz.  Requires
        that the latter is installed.
    :type tikz: boolean
    :param data: Store associated data in .dat file (useful for pgfplots).
        May be a list of ndarrays, which results in multiple numbered datafiles.
    :type data: ndarray or list thereof
    :param store_meta: Also store other info.  This is a string that will
        be written to a file.  If not set or set to None, it will just
        write the pyatmlab version.  The file will use the same basename
        as the outfile, but replacing the extention by "info".  However,
        this only works if outfile is a string and not a list thereof.
        To write nothing, pass an empty string.
    :type store_meta: str.
    """

    if outfile is not None:
        outfiles = [outfile] if isinstance(outfile, str) else outfile
        if isinstance(outfile, str):
            if outfile.endswith("."):
                outfiles = [outfile+ext for ext in ("png", "pdf")]
                infofile = outfile + "info"
            else:
                outfiles = [outfile]
                infofile = None

        # interpret as sequence
        for outf in outfiles:
            if in_plotdir and not '/' in outf:
                outf = os.path.join(plotdir(), outf)
            logging.info("Writing to file: {}".format(outf))
            if not os.path.exists(os.path.dirname(outf)):
                os.makedirs(os.path.dirname(outf))
            fig.canvas.print_figure(outf)
        if store_meta is None:
            pr = subprocess.run(["pip", "freeze"], stdout=subprocess.PIPE) 
            info = pr.stdout
        else:
            info = store_meta

        if infofile is not None and info:
            if in_plotdir and not "/" in infofile:
                infofile = os.path.join(plotdir(), infofile)
            with open(infofile, "w", encoding="utf-8") as fp:
                fp.write(info)
    if show:
        matplotlib.pyplot.show()

    if tikz is not None:
        import matplotlib2tikz
        print(now(), "Writing also to:", os.path.join(plotdir(), tikz))
        matplotlib2tikz.save(os.path.join(plotdir(), tikz))
    if data is not None:
        if not os.path.exists(io.plotdatadir()):
            os.makedirs(io.plotdatadir())
        if isinstance(data, numpy.ndarray):
            data = (data,)
        # now take it as a loop
        for (i, dat) in enumerate(data):
            outf = os.path.join(io.plotdatadir(),
                "{:s}{:d}.dat".format(
                    os.path.splitext(outfiles[0])[0], i))
            fmt = ("%d" if issubclass(dat.dtype.type, numpy.integer) else
                    '%.18e')
            if len(dat.shape) < 3:
                numpy.savetxt(outf, dat, fmt=fmt)
            elif len(dat.shape) == 3:
                io.savetxt_3d(outf, dat, fmt=fmt)
            else:
                raise ValueError("Cannot write {:d}-dim ndarray to textfile".format(
                    len(dat.shape)))
Пример #36
0
    X,Y = np.meshgrid(x,y)
    
    Xtest = np.c_[X.ravel(),Y.ravel()]
    ftest = np.dot(poly_kernel(Xtest,svs),aly)-b
    ftest.shape = 128,128
    
    ftest_scale = ftest.copy()
    ftest_scale[ftest>0] /= 2.0*ftest.max()
    ftest_scale[ftest<0] /= 2.0*abs(ftest.min())
    ftest_scale += .5
    
    plt.pcolormesh(X,Y,ftest_scale,shading='gouraud',cmap=custom_colormap())
    plt.contour(X,Y,ftest,[0.0],colors='k',linewidths=4)
    plt.contour(X,Y,ftest,[-1.0,1.0],colors='k',linewidths=2,linestyles='solid')
    plt.plot(Xdata[ydata<0,0],Xdata[ydata<0,1],'ok',markerfacecolor='r')
    plt.plot(Xdata[ydata>0,0],Xdata[ydata>0,1],'dk',markerfacecolor='b')
    

# data
data = '\x80\x02cnumpy.core.multiarray\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x01K\xc8K\x02\x86cnumpy\ndtype\nq\x04U\x02f4K\x00K\x01\x87Rq\x05(K\x03U\x01<NNNJ\xff\xff\xff\xffJ\xff\xff\xff\xffK\x00tb\x89T@\x06\x00\x00\x92\xbc\x0f\xbf\x8f_\xc4>\xc7\xb73\xbf\x10#\x0f?\x95\xd1\xc2\xbd\xc6\x9cr>\xc2N.?O\x1a*?\x0e\x8d@\xbf\xd5\xe27?qkr?-17?\x8fU\n\xbf6Xa\xbf\xa0\xb5\xe5=\r\xe9\xfb\xbe>\xe5]\xbe[\x8a\xf3>Xl\xd3\xbe\xca\x1b\xbd\xbe\xe9\xa3\xe4\xbe\xb1\xed\xec>\x1a\xd7\x8f\xbd\x06i\x1a\xbf\xc4\xea\xeb\xbd\xe8y\x0e\xbf@\x94\x99>\x063\x00\xbf\xb2X\xe5\xbe.\xaa\xb6=\xe6jU\xbee\x99\xc3>&?8\xbfk\x87r>U\xd5y>\x19\x01G\xbfk\xf6\xb4\xbe\xe7\xb9\xdc=\xc4\xe4\xc2\xbelSF\xbf\xdb\x99(\xbfJ\xc7C?\xac\xa3\x1a\xbfB\x10A=\xea\xb2\x84\xbfj\xd5u?\xf7\xcd\xd5\xbe \xad.?\xb4\x08T>G53\xbf\x94\x89 \xbfS\'\x80\xbfi=\x8e=m\x9a\xda\xbeS\tY\xbfE\xd9>?\xa8\xf1W?\xff._?\xae\x83M>\xe6?~\xbf\xb5f1\xbf\x9e\xe1\x96>\\\xc0\xd0\xbe\x18;\x89\xbfR\x030\xbf\x96\xdb\x8a>\x92\x81Y\xbf\xf9\xd2\x15>\x19\n\x1b\xbf\xf6\xb5b>\xb1J\xec\xbe\xe0X0?\xc6\xae\xf7\xbe\x94\x81\x06?\xf8\x04X\xbe\x05\xaf\xe8>(\xb2\xc9\xbd\xea\x1a\xfe>\xdc\x17\xa2\xbe\xc9,\x08>\x169">\xe4\x9bU\xbf\xa9\xaa\x03=s5V\xbfS\xe0-\xbfbq\x01>-\xcf\xd6\xbe\xea\xbe\x90\xbe_]3\xbe]Z#?\xac\xe2o>\xe17+\xbfh\xb3\x8e\xbe\xadNu\xbe\xe6l_\xbf\xfe\xa0\xea=\xca\xc1M?iy\x92?n4\x08\xbf\xdaz\x0f?\xf4\x9e\x14\xbf\xd9\xc9R?\x85v&\xbf\xe4\x16\xea>\xd24E\xbf\xf6\xb2\xad>\xd3\xe5\x9e\xbe\xc7\xa1\x7f>[\x9d\x9b>\t\x81\x7f\xbf\xd9\xd0G\xbd\x80\xa6&\xbf\xe9\x9c\t>\xac\x0f\x0b\xbf\xb1?\xf9\xbe\xb2`\xdc>>\x97%\xbf\xa4\x17\x11?#\xc4\xd2\xbeQG+?\x8d\xf1\x88>\x0c\xbeT\xbf@\x838\xbfT\xe2\xa5>\xac\x8d\x0e\xbf]\xff\x1a>\xa6M=\xbf\xaby\xa3<\x87\xb7\\?<7\x9b?\xc3d\xd7=|\xa2\xc7\xbep-\x8f>z@C\xbf\xc3\x9c\x18\xbfuZ\xe0>K\x9d\xcb>\x13\xb1:\xbf\xde\x02\xfa<\x0b\x9f\x13?\xb2\xac\x07?\x9f\xear\xbf\xa4.H\xbff\xb4\x0e\xbe\x0c\t\x96>\xed7\x10\xbfF\xa32\xbf\x8cE;>\xf6/ \xbf\x87\xa9\xc7>\x01/\x94> \xd4Y\xbf\x84\x93\xe9>=Pp\xbf\x06R\xde\xbe3\x87\x81;\xeeC\x17\xbf\t^\x83\xbf8i\x80>\x95W\xba\xbe\xe9\x93\x1d\xbf\x8d\x92\x03?\x1d6\x9f\xbeA\x95\xef>\xe3\xce&\xbf\xec\xeb3?\xd7\xd3\x17\xbfPH\xc8>\x0f\x18\xa5>\x97\x0e/\xbf\xca8)?\x867t?\xa4M\xdf=Q(\x14\xbf`G\x94>\xf3\x9e\xaf\xbea\xb8\xbe>\xa9\xec^\xbfK\x8f\x05\xbf\xa8I\xb5>\x9d\xab^?\xdc\x92K?9\xeaf>\x84C\xdd\xbe\x0c\xdd\xb7\xbe\x8bZ\xce>\xa2_\x11\xbf\x82\x0c\x87\xbf\xc5\xd6\x82\xbeWh\n\xbf\x7f\x89t?\x13\x11g?\xfa$v?\x15\x90t?\xa3.j>"\xa0\x07\xbf\xfa\xb2U\xbe\xe1\x96.?\xa9\xd2\xaa=\xf3=\x99=a\x10\x85\xbf\x16\x05\xc6\xbc\xc3*c\xbf\x96\x1c\xf0=s\xc7x=\x956D\xbf\xe6H\xbb\xbeK\xa3\xc5>\x95\xb9\x04\xbf\xefB\x0f?T"\xd9\xbe\xae\xceW\xbd\\1C\xbf+\x90W?\x16\x96\x84\xbf\xe5\x87^>\x95\x15\xef\xbee\xeb@?V\xe7\xcb>\x98\xd6\x84\xbf\xa3\xe3 \xbfGB#?v\x8b\xeb\xbe\xad\xea>>\x91\xb0\x19\xbe\xc9\xd1(\xbf7c\x03?3O6?\'\x0f\xce\xbe\xa2"\xf6=\x05E\xa6\xbe\x85tW?\x0eT<\xbf\x91`K?E<\xbb\xbe^=]?\xcb\x95a>@\xeeC\xbfOIY\xbfx\x88\xc2>\xf3\xa2\xee=T\xd7#\xbf\xe573?\xe3\xc1\x8e?\xce\x99\x08\xbf\xe2q\t?\xf2\xc0\xf7\xbe\x04\xcf\x80>\x0ea\xcd\xbe\xcfl2?YP\x8f\xbe\xc1\xc5f>T\xcc\x0f\xbfLv5?\xbc/\x1a?\xfc\xe8\x82\xbf\x10D\xb0\xbet\xcfq>D\xd2\x08\xbfH*_?\xdc]D\xbf\xd7\xae3\xbf!\xa1\xc4\xbe\xae\x1a\x19?\x81\xc6\x90?\xf1\x1cs?\xafw\x9d\xbd\x17\xb7}\xbf\xa3\n\xba\xbe\xed\xeaM?*\xa2o>\x7fv\xf0\xbe\x11\xbcH\xbf\xc0Yn>i\x16\x7f\xbf5\xc5T=\x9c\xfb\x8d\xbd\x07j\x1e\xbfw\xba+>G\x92H\xbf\x0e\x04\xd2>\x8b\x82\x89\xbf\xb0+\xdc\xbe\xf3\xa0U?o\x1a\xe7\xbe\xc1\x91\xc6>\x02\xde\x8a>\x8b\xcb/\xbf\xa2Xd?\xff\x0f\x87?\xb4\xb1u\xbeP\x81\xce>\xa55D\xbe\x94\x17\xa0>\x9a\xc9\xad=\xf8\xd4\xc3\xbeU\x0fG\xbf\x0b\x87\x16?\x08\x8b\x8e>\xa5Z1\xbf\xc16\xc0>\xc7\x13\x04\xbf\x16\xd9\xf0>\x87\xc2\x8b\xbf\x0f\xb0\xb8\xbe\x9e\x92\x01=\xe6\xae\xd9\xbe\xa6\x8f\xf0>\xcf\x15\x82\xbeylV?\x98\x90\x00?\r\xb8\t\xbf\x93b\xd7\xbe\xaf{\xdf>9\xd67>\x90V|\xbfmHB\xbf\xb1`U?\xf0\x8a\xaf=G4\x1b\xbf\x1c\xde\xda\xbd\x95\xb85\xbf\x1f\xa3[>\xde\xbb~\xbff\xe2\'>\xacUB\xbf\xcd\t\x18?J<i?\xaa#\x86\xbf\\\xf3b\xbeM\xe2\x0b?$q8?B?g\xbf3\x82\x10\xbe\x1e\xcd\xa3\xbe\xc8\x06\x86\xbe\x803E>\x908\xca\xbe_\xc3\xd2>6\xefj\xbf\x05S@\xbfv\x85\x95>"\xe6E?\xfd,\x8e?QX\xe2>\x04\rO\xbf\xcc\x88E\xbf\xe0\xd7_\xbf\x07\xb0{>5\x07\x19\xbff\xaf:>F\x0e\x08\xbfs\xab\x9e>\xf1\x0bQ?@\xa1p\xbf55\xec>_+\xd2\xbe\xc2\xe9\xab>\xe6\x9a\x16\xbf\xe2\x93@\xbf\x99\x18\r\xbf\xd0\xd17?\xee\xfa@\xbf\xdf\xcd\xd3>\x12\\\t\xbf\xf6\xa94?9?\x9d>m\x94\xfb\xbezz9>\xa8_O\xbfg\xfa\xac>\x11@\x8b\xbf\xf3\x10\xfb\xbe\xd4 ,>,\xea\xd0\xbe\xe3\x1b\xf7>\x98\x98\xb5=L\xa5\x15\xbf6\x01\x18\xbf%\xcc\xcb>\xf2\xf0\x1a\xbfh\xd6`>=\xf7\xb7>I\xf0C\xbfw>\x00\xbf\x16R\x97=\x11$9\xbfTvX\xbf^^;?vy\x82?\xec\x04\x03\xbc\x13\xc5.\xbe\xfd\xed$\xbfN\xa5\xd3>+\xc1\xbb>\x8d\x05x\xbf\x01\xc5\x9d\xbe\xcf\xe7K\xbf\xde\x8d@>v\x16\x9f\xbftbh\x01h\x02K\x00\x85U\x01b\x87Rq\x06(K\x01K\xc8\x85h\x04U\x02i8K\x00K\x01\x87Rq\x07(K\x03U\x01<NNNJ\xff\xff\xff\xffJ\xff\xff\xff\xffK\x00tb\x89T@\x06\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00tb\x86.'
Xdata, ydata = pickle.loads(data)

# define model
aly = np.array([-107.366745, -471.69812012, 73.48317719, 505.58166504])
b = 1.11400843
svs = Xdata[[  9,  99, 176, 195],:]

plot_modeldecision(Xdata,ydata,svs,aly,b,poly_kernel)
matplotlib2tikz.save('example.tikz')

Пример #37
0
def _run_different_meshes():
    mesh_files = [
        #'states/rectangle10.vtu',
        #'states/rectangle20.vtu',
        #'states/rectangle30.vtu',
        #'states/rectangle40.vtu',
        #'states/rectangle50.vtu',
        #'states/rectangle60.vtu',
        #'states/rectangle70.vtu',
        #'states/rectangle80.vtu',
        #'states/rectangle90.vtu',
        #'states/rectangle100.vtu',
        #'states/rectangle110.vtu',
        #'states/rectangle120.vtu',
        #'states/rectangle130.vtu',
        #'states/rectangle140.vtu',
        #'states/rectangle150.vtu',
        #'states/rectangle160.vtu',
        #'states/rectangle170.vtu',
        #'states/rectangle180.vtu',
        #'states/rectangle190.vtu',
        'states/rectangle200.vtu'
        ]

    mu = 1.0e-0

    # loop over the meshes and compute
    nums_unknowns = []

    num_iterations = {}

    for mesh_file in mesh_files:
        # read and set the mesh
        print
        print 'Reading the mesh...'
        try:
            mesh, point_data, field_data = voropy.reader.read(mesh_file)
        except AttributeError:
            print 'Could not read from file ', mesh_file, '.'
            sys.exit()
        print ' done.'

        # create model evaluator interface
        pynosh_modelval = pynosh.model_evaluator_nls(mu)

        # create preconditioners object
        precs = pynosh.preconditioners(pynosh_modelval)
        precs.set_parameter(mu)

        # recreate all the objects necessary to perform the preconditioner run
        num_unknowns = len(mesh.nodes)

        nums_unknowns.append(num_unknowns)

        # set psi at which to create the Jacobian
        # generate random numbers within the unit circle
        radius = numpy.random.rand(num_unknowns)
        arg = numpy.random.rand(num_unknowns)
        current_psi = numpy.empty(num_unknowns, dtype=complex)

        for k in range(num_unknowns):
            current_psi[k] = cmath.rect(radius[k], arg[k])
        pynosh_modelval.set_current_psi(current_psi)

        # create right hand side and initial guess
        rhs = numpy.random.rand(num_unknowns) \
            + 1j * numpy.random.rand(num_unknowns)

        # initial guess for all operations
        psi0 = numpy.zeros(num_unknowns, dtype=complex)

        test_preconditioners = _create_preconditioner_list(precs,
                                                           num_unknowns
                                                           )

        # build the kinetic energy operator
        print 'Building the KEO...'
        start_time = time.clock()
        pynosh_modelval._assemble_kinetic_energy_operator()
        end_time = time.clock()
        print 'done. (', end_time - start_time, 's).'

        # Run the preconditioners and gather the relative residuals.
        relresvecs = _run_preconditioners(pynosh_modelval._keo,
                                          rhs,
                                          psi0,
                                          test_preconditioners
                                          )

        # append the number of iterations to the data
        for prec in test_preconditioners:
            if prec['name'] not in num_iterations.keys():
                num_iterations[prec['name']] = []
            num_iterations[prec['name']].append(
                len(relresvecs[prec['name']]) - 1
                )

    print num_iterations

    # plot them all
    for prec in test_preconditioners:
        pp.semilogy(nums_unknowns,
                    num_iterations[prec['name']],
                    '-o',
                    label=prec['name']
                    )

    # plot legend
    pp.legend()

    # add title and so forth
    pp.title('CG convergence for $K$')
    pp.xlabel('Number of unknowns $n$')
    pp.ylabel('Number of iterations till $<10^{-10}$')

    matplotlib2tikz.save('meshrun-k.tikz',
                         figurewidth='\\figurewidth',
                         figureheight='\\figureheight'
                         )
    pp.show()
    return
Пример #38
0
# accuracy vs iteration
fig = plt.figure(1, figsize=(8, 6))
# fig = plt.figure()
for data, style in zip(sim_data, line_style):
    plt.plot(n_FC, data['n_iter'], style, label=data['legend'])
#                 markevery=marker_at)

plt.ylabel('Iterations needed')
plt.xlabel('Number of local FCs')
# plt.title(title_str)
#plt.ylim(ymin=1e-8)
plt.tight_layout()
plt.legend()

from matplotlib2tikz import save
save('tradeoff.tex', figureheight='4cm', figurewidth='6cm')
#%%
# accuracy vs communication
#fig = plt.figure(2, figsize=(8, 6))
#for data, style in zip(sim_data, line_style):
#    edges = data['edges']
#    comm_cost = np.arange(len(data['opt_gap'])) * edges
#    plt.semilogy(comm_cost, data['opt_gap'], style, label=data['legend'],
#                 markevery=marker_at)
#
#plt.xlabel('Communication cost')
#plt.ylabel('Accuracy')
#plt.ylim(ymin=1e-8)
#plt.legend()
#
#fig.tight_layout()
Пример #39
0
def _main():
    args = _parse_input_arguments()

    newton_data = list(yaml.load_all(open(args.newton_data_file)))
    # initialize
    TMinv = 0.0 # default: no preconditioner
    TM = 0.0

    # obtain timings
    timings = yaml.load(open(args.timings_file))
    for run in timings["tests"]:
        min_time = min(run["timings"]) / timings["number"]

        if run["target"] == "jacobian":
            TJ = min_time
        if run["target"] == newton_data[0]["preconditioner type"]: # peek at first newton run
            TMinv = min_time
        if run["target"] == "prec" and newton_data[0]["preconditioner type"]!="none":
            TM = min_time
        if run["target"] == "inner":
            Tip = min_time
        if run["target"] == "daxpy":
            Tdaxpy = min_time

    # k - number of MINRES iteratios
    # p - number of deflation vectors
    def Tp(p):
        return p*(Tip + Tdaxpy)
    TMip = TM + Tip

    def Tqr(p):
        return (p*(p+1)/2) * (Tip + Tdaxpy) + p*TM
    def Tget_proj(p):
        return p*TJ + (p*(p+1)/2 + p)*Tip + Tp(p) + p*Tdaxpy
    def TMINRES(k, p):
        return k * (2*Tip + 2*TJ + TMinv + Tp(p) + 7*Tdaxpy)
    def Tget_ritz(k, p):
        alpha = p*TMinv + (p+k)*p*Tdaxpy
        # alpha += p**2 * Tip # no computation of ritz residual norms
        return alpha
    def Toverall(k, p):
        return Tqr(p) + Tget_proj(p) + TMINRES(k, p) + Tget_ritz(k, p)

    vanilla_newton_data = list(yaml.load_all(open(args.vanilla_newton_data_file)))[0]
    assert vanilla_newton_data['ix deflation'] == False
    assert vanilla_newton_data['extra deflation'] == 0
    assert vanilla_newton_data['preconditioner type'] == newton_data[0]['preconditioner type']

    newton_steps = list(range(26))
    for step in newton_steps:
        x = [0]    # start at (0,1.0)
        y = [1.0]
        for newton_datum in newton_data:
            if step < len(newton_datum['Newton results']) - 1:
                num_vanilla_steps = len(vanilla_newton_data['Newton results'][step]['relresvec']) -1
                num_steps = len(newton_datum['Newton results'][step]['relresvec']) - 1

                num_defl_vecs = newton_datum['extra deflation']
                if newton_datum['ix deflation']:
                    num_defl_vecs += 1

                if num_defl_vecs > 0:
                    x.append(num_defl_vecs)
                    y.append(Toverall(num_steps, num_defl_vecs) / Toverall(num_vanilla_steps, 0))

        pp.plot(x, y, color=str(1.0 - float(step+1)/len(newton_steps)), label='step %d' % step)

    pp.ylim([0, 2])
    pp.title('%s, ix defl: %r, prec: %s' % (timings["filename"], newton_data[0]["ix deflation"], newton_data[0]["preconditioner type"]))

    # Write the info out to files.
    if args.imgfile:
        pp.savefig(args.imgfile)
    if args.tikzfile:
        matplotlib2tikz.save(args.tikzfile)

    return
Пример #40
0
def main():

  print ''

  print 'start - Plots'

  #==============================================================
  # Input Data
  #
  a = 'b'
  filename = "t-05-07-b-DCM-dc"
  amount = 8
  # filename = "t-05-08-b-DCM-wc"
  # amount = 2
  # filename = "t-05-09-a-DCM-tcur"
  # amount = 4
  # filename = "t-05-10-a-DCM-ee"
  # amount = 4
  # filename = "t-05-11-b-DCM-ds"
  # amount = 3
  # filename = "t-05-12-b-DCM-RH"
  # amount = 5
  # filename = "t-05-12-b-DCM-T"
  # amount = 8
  # filename = "t-05-13-a-DCM-vc-vi-10"
  # amount = 2
  # filename = "t-05-13-a-DCM-vc-vi-20"
  # amount = 2
  # filename = "t-05-14-a-DCM-vc-hc-10"
  # amount = 2
  # filename = "t-05-14-a-DCM-vc-hc-20"
  # amount = 2
  # filename = "t-05-13-a-DCM-ic-vi-10"
  # amount = 2
  # filename = "t-05-13-a-DCM-ic-vi-20"
  # amount = 2
  # filename = "t-05-14-a-DCM-ic-hc-10"
  # amount = 2
  # filename = "t-05-14-a-DCM-ic-hc-20"
  # amount = 2
  # filename = "t-06-03-a-DCM-dc"
  # amount = 8
  # filename = "t-06-03-b-DCM-ee-2-dc"
  # amount = 8

  Data = [[]]*(2+amount)

  save_filename = filename

  load_dir = 'dat/results/'
  save_dir = 'plots/'

  if a == 'a':
    load_path = load_dir+'DCM-a.txt'
  else:
    load_path = load_dir+'DCM-b.txt'

  path = os.path.expanduser(load_path)
  data = np.loadtxt(path)

  x = []
  Ps = []
  Pf = []
  Beta = []

  for i in range(len(data)):
    x.append(data[i][0])
    ps = data[i][1]
    pf = 1-ps
    beta = -Normal.inv_cdf(pf)

    Ps.append(ps)
    Pf.append(pf)
    Beta.append(beta)

  Data[0]=x
  if a == 'c':
    Data[1]=Beta
  else:
    Data[1]=Pf

  for num in range(amount):
    load_path = load_dir+filename+'-'+str(num)+'.txt'

    path = os.path.expanduser(load_path)
    data = np.loadtxt(path)

    Ps = []
    Pf = []
    Beta = []
    for i in range(len(data)):

      ps = data[i][1]
      pf = 1-ps
      beta = -Normal.inv_cdf(pf)

      Ps.append(ps)
      Pf.append(pf)
      Beta.append(beta)
    if a == 'c':
      Data[num+2]=Beta
    else:
      Data[num+2]=Pf


  # x = [15,25,35,45,55,65,75,85]
  # plt.clf()
  # age = [10,20,30,40,50]
  # for n in age:
  #   data = []
  #   for i in range(amount):
  #     data.append(Data[i+2][n])
  #   plt.plot(x,data,linewidth = 2)


  plt.clf()
  for num in range(amount+1):
    plt.plot(Data[0],Data[num+1],linewidth = 2)

  plt.legend( ( 'ne', '0', '1','2','3','4','5','6','7'),loc = 'upper left' )
  plt.title(r'Structural Reliability')
  plt.xlabel('Time in Service')
  if a == 'a':
    plt.ylabel('Corrosion')
  elif a == 'b':
    plt.ylabel('Failure')
  else:
    plt.ylabel('Reliability Index')
  plt.grid(True)


  save_path_png = save_dir+save_filename+".png"
  save_path_tex = save_dir+save_filename+".tex"
  path_png = os.path.expanduser(save_path_png)
  path_tex = os.path.expanduser(save_path_tex)
  plt.savefig(path_png, size=(4,3))
  matplotlib2tikz.save(path_tex)


  print 'end - Plots'
  run_time = time.time() - start_time
  print str(datetime.timedelta(seconds=run_time))
Пример #41
0
def _main():
    '''
    Main function.
    '''
    # parse input arguments
    opts, args = _parse_input_arguments()

    state_files = sorted( glob.glob( str(opts.foldername) + '/solution*.vtu' ) )

    print state_files[0]

    tol = 1.0e-8
    maxiter = 5000

    # Create the model evaluator.
    # Get mu and mesh for the first grid. This way, the mesh doesn't need to
    # be reset in each step; this assumes of course that the mesh doesn't
    # change throughout the computation.
    print "Reading the state \"" + state_files[0] + "\"..."
    try:
        mesh, psi, field_data = vtkio.read_mesh( state_files[0] )
    except AttributeError:
        print "Could not read from file ", state_files[0], "."
        raise
    print " done."
    ginla_modelval = ginla_model_evaluator( field_data["mu"] )
    ginla_modelval.set_mesh( mesh )

    # create precondictioner object
    precs = preconditioners( ginla_modelval )
    precs.set_mesh( mesh )

    # --------------------------------------------------------------------------
    # loop over the meshes and compute
    num_iterations = []
    for state_file in state_files:
        # ----------------------------------------------------------------------
        # read and set the mesh
        print
        print "Reading the state \"" + state_file + "\"..."
        try:
            mesh, psi, field_data = vtkio.read_mesh( state_file )
        except AttributeError:
            print "Could not read from file ", state_file, "."
            raise
        print " done."

        mu = field_data["mu"]

        ginla_modelval.set_parameter( mu )
        ginla_modelval.set_current_psi( psi )

        precs.set_parameter( mu )
        # ----------------------------------------------------------------------
        # recreate all the objects necessary to perform the precondictioner run
        num_unknowns = len( mesh.nodes )

        # create preconditioner
        prec_keolu = LinearOperator( (num_unknowns, num_unknowns),
                                    matvec = precs.keo_lu,
                                    dtype = complex
                                  )

        # create the linear operator
        ginla_jacobian = LinearOperator( (num_unknowns, num_unknowns),
                                         matvec = ginla_modelval.compute_jacobian,
                                         dtype = complex
                                       )

        # create right hand side and initial guess
        rhs = np.zeros( num_unknowns )

        # initial guess for all operations
        psi0 = np.random.rand( num_unknowns ) \
             + 1j * np.random.rand( num_unknowns )

        # ----------------------------------------------------------------------
        # build the kinetic energy operator
        print "Building the KEO..."
        start_time = time.clock()
        ginla_modelval._assemble_kinetic_energy_operator()
        end_time = time.clock()
        print "done. (", end_time - start_time, "s)."
        # ----------------------------------------------------------------------
        # Run the preconditioners and gather the relative residuals.
        print "Solving the system with KEO/LU precondictioning..."
        start_time = time.clock()
        sol, info, relresvec = nm.cg_wrap( ginla_jacobian,
                                           rhs,
                                           x0 = psi0,
                                           tol = tol,
                                           maxiter = maxiter,
                                           M = prec_keolu,
                                           inner_product = 'real'
                                         )
        end_time = time.clock()
        if info == 0:
            print "success!",
        else:
            print "no convergence.",
        print " (", end_time - start_time, "s,", len(relresvec)-1 ," iters)."
        #pp.semilogy( relresvec )
        #pp.show()
        # ----------------------------------------------------------------------
        # append the number of iterations to the data
        num_iterations.append( len( relresvec ) - 1 )
        # ----------------------------------------------------------------------
    print ( num_iterations )

    # plot the number of iterations
    pp.plot( num_iterations, 'o' )

    # add title and so forth
    pp.title( 'CG convergence for $J$' )
    pp.xlabel( 'Continuation step $k$' )
    pp.ylabel( "Number of CG iterations till $<10^{-10}$" )

    matplotlib2tikz.save( "pcg-iterations.tikz",
                          figurewidth = "\\figurewidth",
                          figureheight = "\\figureheight"
                        )
    # pp.show()
    return
Пример #42
0
def UUV_time_delay(uuv1=(0, 0, 15), uuv2=(0, 500, 40), SSP='linear_increasing', graph=0, depth=30, clock_error=0,
                   dist_calc=False, tikz_plot=False, pdf_plot=False):
    """

    :param uuv1:
    :param uuv2:
    :param SSP:
    :param graph: bool or 2 for testing
    :param depth:
    :param clock_error:
    :param dist_calc:
    :return:
    """
    # initialise Sound speed profile
    z = np.linspace(0.1, depth, 100)
    ssp_getter = lambda zi: ssp_function(zi, SSP)
    c = map(ssp_getter, z)
    # plot graph of sound speed profile vs depth
    if graph:
        if pdf_plot is not None and 'figsize' in pdf_plot:
            fig = plt.figure(figsize=pdf_plot['figsize'])
        else:
            fig = plt.figure()
        gs = gridspec.GridSpec(1,5)
        gs.update(wspace=0.05, hspace=0.05)  # set the spacing between axes.

        sspax = plt.subplot(gs[:,4])
        sspax.plot(c, z)
        sspax.set_xlabel("$V_s (ms^{-1})$")
        sspax.set_xlim(1400,1560)
        sspax.invert_yaxis()
        sspax.xaxis.set_major_locator(FixedLocator([1400,1480,1560]))
        plt.setp(sspax.xaxis.get_majorticklabels(), rotation=30)

        tofax = plt.subplot(gs[:,0:4], sharey=sspax)
        plt.setp(sspax.get_yticklabels(),visible=False)
        tofax.set_ylabel("Depth $(m)$")
        tofax.set_xlabel("Distance $(m)$")

        fard = np.linalg.norm(uuv2[0:2])-np.linalg.norm(uuv1[0:2])
        tofax.plot([0], [uuv1[2]], 'or', zorder=10)
        tofax.plot([fard], [uuv2[2]], 'or', zorder=10)
        tofax.set_xlim(-0.05*fard, fard*1.05)
        print fard

    else:
        tofax = None

    # Position of uuv 1
    Pos = namedtuple('Pos', ['x', 'y', 'z'])
    uuv_pos = Pos(*uuv1), Pos(*uuv2)
    # position of uuv 2
    # Calculate the time true delay between the UUVs
    delay, true_dist = Raytrace_model(uuv_pos, depth, SSP, graph, ax=tofax)  # nargout=2
    response = (delay, true_dist)
    if dist_calc:
        guess_dist1, guess_dist2, guess_dist3 = Distance_Estimates(SSP, c, clock_error, delay, uuv_pos)
        response += guess_dist1, guess_dist2, guess_dist3
    if graph == 1:

        response += ((gs, sspax, tofax))

    if tikz_plot and all(map(lambda v:v in tikz_plot, ['filepath',])):
        tikz_plot['figure'] = fig
        print("Dumping: {}".format(tikz_plot))
        matplotlib2tikz.save(**tikz_plot)

    if pdf_plot and all(map(lambda v:v in pdf_plot, ['filepath',])):
        fig.savefig(pdf_plot['filepath']+'.pdf', format='pdf', bbox_inches='tight')


    return response
def train_renderV2(model, train_dataloader, test_dataloader, n_epochs,
                   loss_function, date4File, cubeSetName, batch_size,
                   fileExtension, device, obj_name, noise, number_train_im):
    # monitor loss functions as the training progresses
    lr = 0.001

    loop = n_epochs
    Step_losses = []
    current_step_loss = []
    Test_losses = []
    Epoch_losses = []
    count = 0
    testcount = 0
    renderCount = 0
    regressionCount = 0
    renderbar = []
    regressionbar = []
    Im2ShowGT = []
    Im2ShowGCP = []
    numbOfImageDataset = number_train_im

    for epoch in tqdm(range(n_epochs)):

        ## Training phase
        model.train()
        print('train phase epoch {}'.format(epoch))

        for image, silhouette, parameter in train_dataloader:
            loss = 0
            Step_loss = 0
            numbOfImage = image.size()[0]
            image = image.to(device)
            parameter = parameter.to(device)
            silhouette = silhouette.to(device)

            params = model(image)  #should be size [batchsize, 6]
            # print('computed parameters are {}'.format(params))
            # print(params.size())

            for i in range(0, numbOfImage):
                #create and store silhouette
                model.t = params[i, 3:6]
                R = params[i, 0:3]
                # print(R)
                # print(model.t)
                model.R = R2Rmat(R)  # angle from resnet are in radian
                # print(model.t)
                # print(model.R)
                current_sil = model.renderer(model.vertices,
                                             model.faces,
                                             R=model.R,
                                             t=model.t,
                                             mode='silhouettes').squeeze()
                # print(current_sil)
                current_GT_sil = (silhouette[i] / 255).type(
                    torch.FloatTensor).to(device)

                # print(current_GT_sil)
                if (model.t[2] > 1 and model.t[2] < 10
                        and torch.abs(model.t[0]) < 1.5
                        and torch.abs(model.t[1]) < 1.5):
                    optimizer = torch.optim.Adam(model.parameters(), lr=lr)
                    loss += nn.BCELoss()(current_sil, current_GT_sil)
                    print('render')
                    renderCount += 1
                else:
                    optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
                    loss += nn.MSELoss()(params[i, 3:6],
                                         parameter[i, 3:6]).to(device)
                    print('regression')
                    regressionCount += 1

            loss = loss / numbOfImage  #take the mean of the step loss

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            print(loss)
            Step_losses.append(loss.detach().cpu().numpy()
                               )  # contain all step value for all epoch
            current_step_loss.append(loss.detach().cpu().numpy(
            ))  #contain only this epoch loss, will be reset after each epoch
            count = count + 1

        epochloss = np.mean(current_step_loss)
        current_step_loss = []
        Epoch_losses.append(epochloss)  #most significant value to store
        print(epochloss)
        print(renderCount, regressionCount)
        renderbar.append(renderCount)
        regressionbar.append(regressionCount)
        renderCount = 0
        regressionCount = 0

        #validation phase
        print('test phase epoch {}'.format(epoch))

        model.eval()

        for image, silhouette, parameter in test_dataloader:

            Test_Step_loss = []
            numbOfImage = image.size()[0]

            image = image.to(device)
            parameter = parameter.to(device)
            silhouette = silhouette.to(device)

            params = model(image)  # should be size [batchsize, 6]
            # print('computed parameters are {}'.format(params))
            # print(params.size())

            for i in range(0, numbOfImage):
                model.t = params[i, 3:6]
                R = params[i, 0:3]
                model.R = R2Rmat(R)  # angle from resnet are in radian
                current_sil = model.renderer(model.vertices,
                                             model.faces,
                                             R=model.R,
                                             t=model.t,
                                             mode='silhouettes').squeeze()
                current_GT_sil = (silhouette[i] / 255).type(
                    torch.FloatTensor).to(device)

                loss += nn.BCELoss()(current_sil, current_GT_sil)
                Test_Step_loss.append(loss.detach().cpu().numpy())
                if (epoch == n_epochs - 1):

                    print('saving image to show')
                    imgCP, _, _ = model.renderer(model.vertices,
                                                 model.faces,
                                                 torch.tanh(model.textures),
                                                 R=model.R,
                                                 t=model.t)

                    imgCP = imgCP.squeeze()  # float32 from 0-1
                    imgCP = imgCP.detach().cpu().numpy().transpose((1, 2, 0))
                    imgCP = (imgCP * 255).astype(
                        np.uint8)  # cast from float32 255.0 to 255 uint8
                    imgGT = image[i].detach().cpu().numpy()
                    imgGT = (imgGT * 0.5 + 0.5).transpose(1, 2,
                                                          0)  #denormalization
                    Im2ShowGT.append(imgCP)
                    Im2ShowGCP.append(imgGT)

                    a = plt.subplot(2, numbOfImage, i + 1)
                    plt.imshow(imgGT)
                    a.set_title('GT {}'.format(i))
                    plt.xticks([0, 512])
                    plt.yticks([])
                    a = plt.subplot(2, numbOfImage, i + 1 + numbOfImage)
                    plt.imshow(imgCP)
                    a.set_title('Rdr {}'.format(i))
                    plt.xticks([0, 512])
                    plt.yticks([])

            loss = loss / numbOfImage
            Test_losses.append(loss.detach().cpu().numpy())
            loss = 0  # reset current test loss
            testcount = testcount + 1

#-----------plot and save section ------------------------------------------------------------------------------------

    fig, (p1, p2, p3, p4) = plt.subplots(4, figsize=(15, 10))  #largeur hauteur

    #subplot 1
    rollingAv = pd.DataFrame(Step_losses)
    rollingAv.rolling(2, win_type='triang').sum()
    p1.plot(np.arange(count), rollingAv, label="step Loss rolling average")
    p1.set(ylabel='BCE Step Loss')
    p1.set_ylim([0, 4])
    # Place a legend to the right of this smaller subplot.
    p1.legend()

    #subplot 2
    p2.plot(np.arange(n_epochs), Epoch_losses, label="epoch Loss")
    p2.set(ylabel=' Mean of BCE training step loss')
    p2.set_ylim([0, 4])
    # Place a legend to the right of this smaller subplot.
    p2.legend()

    #subplot 3
    ind = np.arange(n_epochs)  #index
    width = 0.35
    p3.bar(ind, renderbar, width, color='#d62728', label="render")
    height_cumulative = renderbar
    p3.bar(ind,
           regressionbar,
           width,
           bottom=height_cumulative,
           label="regression")
    p3.set(ylabel='render/regression call')
    p3.set(xlabel='epoch')
    p3.set_ylim([0, numbOfImageDataset])
    p3.set_xticks(ind)
    p3.legend()

    p4.plot(np.arange(testcount), Test_losses, label="Test Loss")
    p4.set(ylabel='Mean of BCE test step loss')
    p4.set_ylim([0, 5])
    # Place a legend to the right of this smaller subplot.
    p4.legend()

    plt.show()

    fig.savefig('results/render_{}batch_{}.pdf'.format(batch_size, n_epochs))
    import matplotlib2tikz

    matplotlib2tikz.save("results/render_{}batch_{}.tex".format(
        batch_size, n_epochs))
Пример #44
0
import matplotlib2tikz as tikz
import matplotlib.pyplot as plt
import numpy as np

t = np.arange(0.0, 2.0, 0.01)
s = np.sin(2*np.pi*t)
plt.plot(t, s)

plt.xlabel('time (s)')
plt.ylabel('voltage (mV)')
plt.title('About as simple as it gets, folks')
plt.grid(True)

tikz.save('mytikz.tex')
Пример #45
0
    def __init__(self, fig, save_kwargs=None):
        if save_kwargs is None:
            save_kwargs = dict()
        # convert to tikz file
        _, tmp_base = tempfile.mkstemp()
        tikz_file = tmp_base + "_tikz.tex"
        matplotlib2tikz.save(tikz_file, figurewidth="7.5cm", **save_kwargs)

        # test other height specs
        matplotlib2tikz.save(tikz_file + ".height",
                             figureheight="7.5cm",
                             show_info=True,
                             strict=True,
                             **save_kwargs)

        # save reference figure
        mpl_reference = tmp_base + "_reference.pdf"
        plt.savefig(mpl_reference)

        # close figure
        plt.close(fig)

        # create a latex wrapper for the tikz
        wrapper = """\\documentclass{standalone}
    \\usepackage[utf8]{inputenc}
    \\usepackage{pgfplots}
    \\usepgfplotslibrary{groupplots}
    \\usetikzlibrary{shapes.arrows}
    \\pgfplotsset{compat=newest}
    \\begin{document}
    \\input{%s}
    \\end{document}""" % tikz_file.replace("\\", "/")
        tex_file = tmp_base + ".tex"
        with open(tex_file, "w") as f:
            f.write(wrapper)

        # change into the directory of the TeX file
        os.chdir(os.path.dirname(tex_file))

        # compile the output to pdf
        try:
            tex_out = subprocess.check_output(
                # use pdflatex for now until travis features a more modern
                # lualatex
                ["pdflatex", "--interaction=nonstopmode", tex_file],
                stderr=subprocess.STDOUT,
            )
        except subprocess.CalledProcessError as e:
            print("Command output:")
            print("=" * 70)
            print(e.output)
            print("=" * 70)
            raise

        pdf_file = tmp_base + ".pdf"

        # PIL can only read images with up to 89478485 pixels (to prevent
        # decompression bomb DOS attacks). Make sure the resulting image will
        # be smaller.
        pdfinfo_out = subprocess.check_output(
            ["pdfinfo", pdf_file], stderr=subprocess.STDOUT).decode("utf-8")
        # Extract page size
        # Page size:      195.106 x 156.239 pts
        m = re.search("Page size: *([0-9]+\\.[0-9]+) x ([0-9]+\\.[0-9]+) pts",
                      pdfinfo_out)
        # get dims in inches
        dims = [float(m.group(1)) / 72, float(m.group(2)) / 72]
        assert dims is not None
        max_num_pixels = 89e6
        max_dpi = math.sqrt(max_num_pixels / dims[0] / dims[1])
        dpi = min(2400, max_dpi)

        # Convert PDF to PNG.
        # Use a high resolution here to cover small changes.
        ptp_out = subprocess.check_output(
            ["pdftoppm", "-r",
             str(dpi), "-png", pdf_file, tmp_base],
            stderr=subprocess.STDOUT,
        )
        png_file = tmp_base + "-1.png"

        self.phash = imagehash.phash(Image.open(png_file)).__str__()
        self.png_file = png_file
        self.pdf_file = pdf_file
        self.tex_out = tex_out
        self.ptp_out = ptp_out
        self.mpl_reference = mpl_reference
        self.tikz_file = tikz_file
        return
Пример #46
0
def _main():

    # get command line arguments
    test_list = _parse_options()

    tex_file_path = "./tex/acid.tex"

    # directory where all the generated files will end up
    data_dir = "./data"

    # how to get from the LaTeX file to the data
    tex_relative_path_to_data = "../data"

    figure_width = "7.5cm"

    # open file for writing
    file_handle = open( tex_file_path, "w" )

    write_document_header(file_handle, figure_width)

    # Get all function names from the testfunctions module.
    function_strings = dir(testfunctions)
    # Remove all functions that start with "_" and that are not
    # in a certain exclude list (uuuugly).
    exclude_list = {'mpl', 'np', 'pp'}
    tmp = []
    for s in function_strings:
        if s[0] != '_' and s not in exclude_list:
            tmp.append(s)
    function_strings = tmp

    if not test_list is None: # actually treat a sublist of test_functions
        # remove duplicates and sort
        test_list = sorted(set(test_list))
    else:
        # all indices
        test_list = xrange(0, len(function_strings))

    for k in test_list:
        print 'Test function %d (%s)...' % (k, function_strings[k]),
        pp.cla()
        pp.clf()
        # plot the test example
        comment = getattr(testfunctions, function_strings[k])()

        # convert to TikZ
        tikz_path = data_dir + "/test%r.tex" % k
        matplotlib2tikz.save(tikz_path,
                             figurewidth = figure_width,
                             tex_relative_path_to_data = \
                                                    tex_relative_path_to_data
                             )

        # plot reference figure
        pdf_path = data_dir + "/test" + repr(k) + ".pdf"
        pp.savefig(pdf_path)

        # update the LaTeX file
        write_file_comparison_entry(file_handle,
                                    path.join(tex_relative_path_to_data,
                                              path.basename(pdf_path)),
                                    path.join(tex_relative_path_to_data,
                                              path.basename(tikz_path)),
                                    k,
                                    comment
                                    )
        print 'done.'

    write_document_closure(file_handle)
    file_handle.close()

    return
Пример #47
0
import matplotlib2tikz as tikz
import matplotlib.pyplot as plt
import numpy as np

t = np.arange(0.0, 2.0, 0.01)
s = np.sin(2 * np.pi * t)
plt.plot(t, s)

plt.xlabel('time (s)')
plt.ylabel('voltage (mV)')
plt.title('About as simple as it gets, folks')
plt.grid(True)

tikz.save('mytikz.tex')
Пример #48
0
def check_hash(test, name):
    # import the test
    test.plot()
    # convert to tikz file
    _, tmp_base = tempfile.mkstemp(prefix=name)
    tikz_file = tmp_base + '_tikz.tex'
    matplotlib2tikz.save(
        tikz_file,
        figurewidth='7.5cm',
        show_info=False
        )

    # save reference figure
    mpl_reference = tmp_base + '_reference.pdf'
    pp.savefig(mpl_reference)

    # create a latex wrapper for the tikz
    wrapper = '''\\documentclass{standalone}
\\usepackage[utf8]{inputenc}
\\usepackage{pgfplots}
\\usepgfplotslibrary{groupplots}
\\pgfplotsset{compat=newest}
\\begin{document}
\\input{%s}
\\end{document}''' % tikz_file
    tex_file = tmp_base + '.tex'
    with open(tex_file, 'w') as f:
        f.write(wrapper)

    # change into the directory of the TeX file
    os.chdir(os.path.dirname(tex_file))

    # compile the output to pdf
    tex_out = subprocess.check_output(
        # use pdflatex for now until travis features a more modern lualatex
        ['pdflatex', '--interaction=nonstopmode', tex_file],
        stderr=subprocess.STDOUT
        )
    pdf_file = tmp_base + '.pdf'

    # Convert PDF to PNG.
    ptp_out = subprocess.check_output(
        ['pdftoppm', '-rx', '600', '-ry', '600', '-png', pdf_file, tmp_base],
        stderr=subprocess.STDOUT
        )
    png_file = tmp_base + '-1.png'

    # compute the phash of the PNG
    phash = imagehash.phash(Image.open(png_file)).__str__()

    if test.phash != phash:
        # Compute the Hamming distance between the two 64-bit numbers
        hamming_dist = bin(int(phash, 16) ^ int(test.phash, 16)).count('1')
        print('Output file: %s' % png_file)
        print('computed pHash:  %s' % phash)
        print('reference pHash: %s' % test.phash)
        print(
            'Hamming distance: %s (out of %s)' %
            (hamming_dist, 4 * len(phash))
            )
        print('pdflatex output:')
        print(tex_out.decode('utf-8'))

        print('pdftoppm output:')
        print(ptp_out.decode('utf-8'))

        if 'DISPLAY' not in os.environ:
            # upload to chunk.io if we're on a headless client
            out = subprocess.check_output(
                ['curl', '-sT', mpl_reference, 'chunk.io'],
                stderr=subprocess.STDOUT
                )
            print('Uploaded reference matplotlib PDF file to %s' % out)

            out = subprocess.check_output(
                ['curl', '-sT', tikz_file, 'chunk.io'],
                stderr=subprocess.STDOUT
                )
            print('Uploaded TikZ file to %s' % out.decode('utf-8'))

            out = subprocess.check_output(
                ['curl', '-sT', pdf_file, 'chunk.io'],
                stderr=subprocess.STDOUT
                )
            print('Uploaded output PDF file to %s' % out.decode('utf-8'))

            out = subprocess.check_output(
                ['curl', '-sT', png_file, 'chunk.io'],
                stderr=subprocess.STDOUT
                )
            print('Uploaded output PNG file to %s' % out.decode('utf-8'))

    assert test.phash == phash
Пример #49
0
def print_or_show(fig, show, outfile, in_plotdir=True, tikz=None,
                  data=None, store_meta="", close=True,
                  dump_pickle=True):
    """Either print or save figure, or both, depending on arguments.

    Taking a figure, show and/or save figure in the default directory,
    obtained with :func:plotdir.  Creates plot directory if needed.

    :param fig: Figure to store.  
    :type fig: matplotlib.Figure object
    :param show: Show figure or not
    :type show: boolean
    :param outfile: File to write figure to, or list of files.  If the
        string ends in a '.', write to x.png and x.pdf.
    :type outfile: string or list of strings
    :param in_plotdir: If true, write to default plot directory.  If
        false, write to currect directory or use absolute path.
    :type in_plotdir: boolean
    :param tikz: Try to write tikz code with matplotlib2tikz.  Requires
        that the latter is installed.
    :type tikz: boolean
    :param data: Store associated data in .dat file (useful for pgfplots).
        May be a list of ndarrays, which results in multiple numbered datafiles.
    :type data: ndarray or list thereof
    :param store_meta: Also store other info.  This is a string that will
        be written to a file.  If not set or set to None, it will just
        write the pyatmlab version.  The file will use the same basename
        as the outfile, but replacing the extention by "info".  However,
        this only works if outfile is a string and not a list thereof.
        To write nothing, pass an empty string.
    :type store_meta: str.
    :param close: If true, close figure.  Defaults to true.
    :type close: bool.
    """

    if outfile is not None:
        outfiles = [outfile] if isinstance(outfile, str) else outfile
        
        bs = pathlib.Path(plotdir())
        if isinstance(outfile, str):
            if outfile.endswith("."):
                outfiles = [bs / pathlib.Path(outfile+ext) for ext in ("png", "pdf")]
                infofile = bs / pathlib.Path(outfile + "info")
                figfile = bs / pathlib.Path(outfile + "pkl.xz")
            else:
                outfiles = [bs / pathlib.Path(outfile)]
                infofile = None
                figfile = None

        if infofile is not None:
            infofile.parent.mkdir(parents=True, exist_ok=True)

            logging.debug("Obtaining verbose stack info")
            pr = subprocess.run(["pip", "freeze"], stdout=subprocess.PIPE) 
            info = " ".join(sys.argv) + "\n" + pr.stdout.decode("utf-8") + "\n"
            info += tools.get_verbose_stack_description()

#        if infofile is not None and info:
            logging.info("Writing info to {!s}".format(infofile))
            with infofile.open("w", encoding="utf-8") as fp:
                fp.write(info)
        if dump_pickle and figfile is not None:
            logging.info("Writing figure object to {!s}".format(figfile))
            with lzma.open(str(figfile), "wb", preset=lzma.PRESET_DEFAULT) as fp:
                pickle.dump(fig, fp, protocol=4)
        # interpret as sequence
        for outf in outfiles:
            logging.info("Writing to file: {!s}".format(outf))
            outf.parent.mkdir(parents=True, exist_ok=True)
            i = 0
            while True:
                i += 1
                try:
                    fig.canvas.print_figure(str(outf))
                except matplotlib.cbook.Locked.TimeoutError:
                    logging.warning("Failed attempt no. {:d}".format(i))
                    if i > 100:
                        raise
                else:
                    break
    if show:
        matplotlib.pyplot.show()

    if close:
        matplotlib.pyplot.close(fig)

    if tikz is not None:
        import matplotlib2tikz
        print(now(), "Writing also to:", os.path.join(plotdir(), tikz))
        matplotlib2tikz.save(os.path.join(plotdir(), tikz))
    if data is not None:
        if not os.path.exists(io.plotdatadir()):
            os.makedirs(io.plotdatadir())
        if isinstance(data, numpy.ndarray):
            data = (data,)
        # now take it as a loop
        for (i, dat) in enumerate(data):
            outf = os.path.join(io.plotdatadir(),
                "{:s}{:d}.dat".format(
                    os.path.splitext(outfiles[0])[0], i))
            fmt = ("%d" if issubclass(dat.dtype.type, numpy.integer) else
                    '%.18e')
            if len(dat.shape) < 3:
                numpy.savetxt(outf, dat, fmt=fmt)
            elif len(dat.shape) == 3:
                io.savetxt_3d(outf, dat, fmt=fmt)
            else:
                raise ValueError("Cannot write {:d}-dim ndarray to textfile".format(
                    len(dat.shape)))
Пример #50
0
b = np.random.rand(dim, 1)
def matvec(x):
    return A.dot(x)
# print(np.linalg.solve(A, b))
ans, hist = cg(matvec, b, np.zeros(b.shape), disp=False, tol=1e-10, maxiter=100)
plot_performance(hist['norm_r'], 0, 'b', "50 кластеров")

s = np.array(list(range(1, 11)) * 10, dtype=float)
s += np.random.normal(0, 0.001, s.shape)
A = (Q.dot(np.diag(s))).dot(Q.T)
np.random.seed(1)
b = np.random.rand(dim, 1)
def matvec(x):
    return A.dot(x)

# print(np.linalg.solve(A, b))
ans, hist = cg(matvec, b, np.zeros(b.shape), disp=False, tol=1e-10, maxiter=100)
plot_performance(hist['norm_r'], 0, 'r', "10 кластеров")

plt.ylabel(r'$\log||Ax_k - b||$')
plt.xlabel("Номер итерации")

title = "Метод Сопряженных Градиентов"
# title += ", D = " + str(dim + 1) + ", N = " + str(data_size) + "."
plt.title(title)
plt.legend()
file_name = "Plots/cg_"
file_name += str(dim) + "_" + str(num_clusters)
file_name += ".tikz"
tikz.save(file_name)
plt.show()
    # psi.parameters = org_params
    psi = SimpleGaussian(0.8)
    sampler = ImportanceSampler(system, psi, 0.1)
    sampler.thermalize(10000)
    E_training = EnergyCallback(samples=1000000, verbose=True)
    train(
        psi,
        H,
        sampler,
        iters=150,
        samples=1000,
        gamma=0.0,
        optimizer=opt,
        call_backs=[E_training],
        call_back_resolution=50,
    )
    E.append(np.asarray(E_training))

if master_rank():
    fig, ax = plt.subplots()
    ax.set_xlabel(r"% of training")
    ax.set_ylabel(r"Energy error [a.u.]")
    for e, label in zip(E, labels):
        ax.semilogy(np.abs(e / N - D / 2), label=label)
    ax.legend()
    matplotlib2tikz.save(
        __file__ + ".tex",
        extra_axis_parameters=["compat=newest", "legend pos=outer north east"],
    )
    plt.show()
Пример #52
0
    def __init__(self, fig, save_kwargs=None):
        if save_kwargs is None:
            save_kwargs = dict()
        # convert to tikz file
        _, tmp_base = tempfile.mkstemp()
        tikz_file = tmp_base + "_tikz.tex"
        matplotlib2tikz.save(tikz_file, figurewidth="7.5cm", **save_kwargs)

        # test other height specs
        matplotlib2tikz.save(
            tikz_file + ".height",
            figureheight="7.5cm",
            show_info=True,
            strict=True,
            **save_kwargs
        )

        # save reference figure
        mpl_reference = tmp_base + "_reference.pdf"
        plt.savefig(mpl_reference)

        # close figure
        plt.close(fig)

        # create a latex wrapper for the tikz
        wrapper = """\\documentclass{standalone}
    \\usepackage[utf8]{inputenc}
    \\usepackage{pgfplots}
    \\usepgfplotslibrary{groupplots}
    \\usetikzlibrary{shapes.arrows}
    \\pgfplotsset{compat=newest}
    \\begin{document}
    \\input{%s}
    \\end{document}""" % tikz_file.replace(
            "\\", "/"
        )
        tex_file = tmp_base + ".tex"
        with open(tex_file, "w") as f:
            f.write(wrapper)

        # change into the directory of the TeX file
        os.chdir(os.path.dirname(tex_file))

        # compile the output to pdf
        try:
            tex_out = subprocess.check_output(
                # use pdflatex for now until travis features a more modern
                # lualatex
                ["pdflatex", "--interaction=nonstopmode", tex_file],
                stderr=subprocess.STDOUT,
            )
        except subprocess.CalledProcessError as e:
            print("Command output:")
            print("=" * 70)
            print(e.output)
            print("=" * 70)
            raise

        pdf_file = tmp_base + ".pdf"

        # PIL can only read images with up to 89478485 pixels (to prevent
        # decompression bomb DOS attacks). Make sure the resulting image will
        # be smaller.
        pdfinfo_out = subprocess.check_output(
            ["pdfinfo", pdf_file], stderr=subprocess.STDOUT
        ).decode("utf-8")
        # Extract page size
        # Page size:      195.106 x 156.239 pts
        m = re.search(
            "Page size: *([0-9]+\\.[0-9]+) x ([0-9]+\\.[0-9]+) pts", pdfinfo_out
        )
        # get dims in inches
        dims = [float(m.group(1)) / 72, float(m.group(2)) / 72]
        assert dims is not None
        max_num_pixels = 89e6
        max_dpi = math.sqrt(max_num_pixels / dims[0] / dims[1])
        dpi = min(2400, max_dpi)

        # Convert PDF to PNG.
        # Use a high resolution here to cover small changes.
        ptp_out = subprocess.check_output(
            ["pdftoppm", "-r", str(dpi), "-png", pdf_file, tmp_base],
            stderr=subprocess.STDOUT,
        )
        png_file = tmp_base + "-1.png"

        self.phash = imagehash.phash(Image.open(png_file)).__str__()
        self.png_file = png_file
        self.pdf_file = pdf_file
        self.tex_out = tex_out
        self.ptp_out = ptp_out
        self.mpl_reference = mpl_reference
        self.tikz_file = tikz_file
        return
Пример #53
0
def _main():
    # get command line arguments
    test_list = _parse_options()

    tex_file_path = './tex/acid.tex'

    # directory where all the generated files will end up
    data_dir = './data'

    # how to get from the LaTeX file to the data
    tex_relative_path_to_data = '../data'

    figure_width = '7.5cm'

    # open file for writing
    file_handle = open(tex_file_path, 'w')

    write_document_header(file_handle, figure_width)

    # Get all function names from the testfunctions module.
    function_strings = dir(testfunctions)
    # Remove all functions that start with '_' and that are not
    # in a certain exclude list (uuuugly).
    exclude_list = {'mpl', 'np', 'pp'}
    tmp = []
    for s in function_strings:
        if s[0] != '_' and s not in exclude_list:
            tmp.append(s)
    function_strings = tmp

    if not test_list is None:  # actually treat a sublist of test_functions
        # remove duplicates and sort
        test_list = sorted(set(test_list))
    else:
        # all indices
        test_list = xrange(0, len(function_strings))

    for k in test_list:
        print 'Test function %d (%s)...' % (k, function_strings[k]),
        pp.cla()
        pp.clf()
        # plot the test example
        comment = getattr(testfunctions, function_strings[k])()

        # plot reference figure
        pdf_path = data_dir + '/test' + repr(k) + '.pdf'
        pp.savefig(pdf_path)

        pdf_path = path.join(tex_relative_path_to_data,
                             path.basename(pdf_path)
                             )
        # Open figure, insert PDF
        file_handle.write('% test plot ' + str(k) + '\n'
                          '\\begin{figure}%\n'
                          '\\centering%\n'
                          '\\begin{tabular}{cc}\n'
                          '\includegraphics[width=\\figwidth]'
                          '{' + str(pdf_path) + '}%\n'
                          '&\n'
                          )
        # convert to TikZ
        tikz_path = data_dir + '/test%r.tex' % k
        tikz_tex_path = path.join(tex_relative_path_to_data,
                                  path.basename(tikz_path)
                                  )
        try:
            matplotlib2tikz.save(
                tikz_path,
                figurewidth=figure_width,
                tex_relative_path_to_data=tex_relative_path_to_data,
                show_info=False
                )
            file_handle.write('\\input{%s}\n' % tikz_tex_path)
        except:
            file_handle.write('% fail\n')

        # Close the figure
        file_handle.write('\\end{tabular}\n'
                          '\\caption{' + str(comment) + ' (test ID '
                          + str(k) + ').}%\n'
                          '\\end{figure}\\clearpage\n\n'
                          )
        print 'done.'
    write_document_closure(file_handle)
    file_handle.close()
    return
Пример #54
0
def main(figname, name, subname, collect = [], styles = [], tikz = False, pdf = True):
    figures_module = import_module("analyses.figures")
    plot_fn = getattr(figures_module, "plot_" + figname)
    collect.sort()
    styles.sort()
    collect_fns = [getattr(figures_module, 'collect_' + collect_name) for collect_name in collect]
    style_fns = [getattr(figures_module, 'style_' + style_name) for style_name in styles]

    names = [name]
    if len(subname) > 0:
        names.append(subname)
    pattern = string.join(names, '-') + '[0-9]*\.pkl'
    multiple_stats = []
    designs = None
    max_iter = -1
    for experiment in [Experiment.load(splitext(basename(f))[0]) for f in os.listdir(Experiment.SAVE_DIR) if re.match(pattern, f)]:
        print "Loaded %s, ended at iteration = %d" % (experiment.name, experiment.itr)
        if experiment.itr >= max_iter:
            max_iter = experiment.itr
            multiple_stats.append((experiment.stats, experiment.As, experiment.Xs))
            designs = experiment.designs
        else:
            print "Skipping data, since it's less than %d" % max_iter
    
    if designs is None:
        raise Exception("No designs matched " + pattern)
    
    # Convert the data structure to be indexed by design
    data = [{'design': design,
             'stats': [stats[i] for stats, _, _ in multiple_stats],
             'As':    [As[i]    for _, As, _    in multiple_stats],
             'Xs':    [Xs[i]    for _, _, Xs    in multiple_stats]
             } for i, design in enumerate(designs)]

    # Only collect data for certain designs
    data = [d for d in data if reduce(operator.and_, [f(d['design']) for f in collect_fns], True)]

    # Clean design names
    design_names = [d['design'].name() for d in data]
    common_part = reduce(lambda l, s: _mstr(l,s), design_names, design_names[-1])
    for d in data:
        d['name'] = string.join([s for s in d['design'].name().split(common_part) if len(s)>0],'-')

    plot_fn(data, style_fns)
    plt.draw()
    
    file_name = string.join([FIGURES_DIR + name, figname] + collect + styles, '-')
    
    if pdf:
        pdf_filename = file_name + '.pdf'
        pp = PdfPages(pdf_filename)
        pp.savefig(plt.gcf())
        pp.close()
        print "Saved to %s" % pdf_filename

    if tikz:
        tikz_filename = file_name + '.tikz'
        save(tikz_filename,
                  figureheight = '\\figureheight',
                  figurewidth = '\\figurewidth',
                  extra = Set([
                        'y tick label style={/pgf/number format/.cd, precision=3, fixed, 1000 sep={}}','scaled y ticks=false',
                        'x tick label style={/pgf/number format/.cd, precision=3, fixed, 1000 sep={}}','scaled x ticks=false',
                        ]))
        print "Saved to %s" % tikz_filename

    sys.stdout.write("\n\nDone, close the figures to exit\n");
    sys.stdout.flush()
    plt.waitforbuttonpress()
def main():

    random = 123

    tracker_global_train = torch.load('tracker_notmnist_random_' +
                                      str(random) + '_train.pt')

    # [K, J, M]
    print(tracker_global_train['weight'].data.shape)

    # [K, M]
    print(tracker_global_train['bias'].data.shape)

    # [N, K, M]
    print(tracker_global_train['alpha_p'].data.shape)

    # [N, K, M]
    print(tracker_global_train['alpha_p_sparsemax'].data.shape)

    # [N, J, M]
    print(tracker_global_train['features'].data.shape)

    # [N, J, M]
    print(tracker_global_train['z'].data.shape)

    K = 10

    m_Z = []

    M = tracker_global_train['weight'].shape[2]

    probs_0 = tracker_global_train['alpha_p'].data.cpu().numpy()[
        range(0, 1), :, -1]
    probs_1 = tracker_global_train['alpha_p'].data.cpu().numpy()[
        range(1, 2), :, -1]

    probs_0_sparsemax = tracker_global_train['alpha_p_sparsemax'].data.cpu(
    ).numpy()[range(0, 1), :, -1]
    probs_1_sparsemax = tracker_global_train['alpha_p_sparsemax'].data.cpu(
    ).numpy()[range(1, 2), :, -1]

    features_0 = tracker_global_train['features'].data.cpu().numpy()[
        range(0, 1), :, -1]
    features_1 = tracker_global_train['features'].data.cpu().numpy()[
        range(1, 2), :, -1]

    for num in range(2):
        indices = range(num, num + 1)

        iter = -1

        # [J, K]
        weights = tracker_global_train['weight'].data.cpu().numpy()[:, :,
                                                                    iter].T
        # [K, 1]
        bias = np.expand_dims(
            tracker_global_train['bias'].data.cpu().numpy()[:, iter], axis=-1)
        # [N, J]
        features = tracker_global_train['features'].data.cpu().numpy()[
            indices, :, iter]
        # [N, J]
        print(tracker_global_train['x'].data.cpu().numpy().shape)
        # [N, J]
        x = np.reshape(
            tracker_global_train['x'].data.cpu().numpy()[indices, :, :, :,
                                                         iter], (28, 28))
        # [N, 1]
        c = tracker_global_train['c'].data.cpu().numpy()[indices, :, iter]
        # [N, K]
        alpha_p = tracker_global_train['alpha_p'].data.cpu().numpy()[
            indices, :, iter]
        # [N, K]
        alpha_p_sparsemax = tracker_global_train['alpha_p_sparsemax'].data.cpu(
        ).numpy()[indices, :, iter]
        # [N, K]
        z_one_hot = tracker_global_train['z'].data.cpu().numpy()[indices, :,
                                                                 iter]
        z = np.argmax(z_one_hot, axis=1)

        mean = features.flatten()

        print("checking DST shapes", weights.shape, bias.shape, features.shape,
              mean.shape)

        dst_obj = DST()
        dst_obj.weights_from_linear_layer(weights, bias, features, mean)
        dst_obj.get_output_mass(num_classes=K)

        m_Z.append(dst_obj.output_mass[tuple(range(K))])

        print('sum of singletons',
              sum(dst_obj.output_mass_singletons.flatten()))

        norm_singletons = deepcopy(alpha_p)
        norm_singletons[dst_obj.output_mass_singletons == 0.] = 0.
        norm_singletons = norm_singletons / np.sum(norm_singletons)

        if num == 1:

            plt.figure()
            width = 0.5
            p1 = plt.bar(np.arange(K),
                         alpha_p.flatten(),
                         width,
                         color='blue',
                         alpha=0.5)
            p2 = plt.bar(np.arange(K),
                         norm_singletons.flatten(),
                         width,
                         color='green',
                         alpha=0.5)
            p3 = plt.bar(np.arange(K),
                         alpha_p_sparsemax.flatten(),
                         width,
                         color='orange',
                         alpha=0.5)

            plt.xlabel('Z')
            plt.ylabel('Values')
            plt.ylim(0, 1.0)
            plt.title('Values for 1')
            plt.legend([
                'Softmax Probabilities', 'Normalized Filtered Probabilities',
                'Sparsemax'
            ])
            plt.savefig('no_middle_bar' + '_random_' + str(random) + '.png',
                        dpi=600)
            matplotlib2tikz.save('no_middle_bar' + '_random_' + str(random) +
                                 '_random_' + str(random) + '.tex')
            plt.close()

        if num == 0:

            plt.figure()
            width = 0.5
            p1 = plt.bar(np.arange(K),
                         alpha_p.flatten(),
                         width,
                         color='blue',
                         alpha=0.5)
            p2 = plt.bar(np.arange(K),
                         norm_singletons.flatten(),
                         width,
                         color='green',
                         alpha=0.5)
            p3 = plt.bar(np.arange(K),
                         alpha_p_sparsemax.flatten(),
                         width,
                         color='orange',
                         alpha=0.5)

            plt.xlabel('Z')
            plt.ylabel('Values')
            plt.ylim(0, 1.0)
            plt.title('Values for 0')
            plt.legend([
                'Softmax Probabilities', 'Normalized Filtered Probabilities',
                'Sparsemax'
            ])
            plt.savefig('middle_bar' + '_random_' + str(random) + '.png',
                        dpi=600)
            matplotlib2tikz.save('middle_bar' + '_random_' + str(random) +
                                 '.tex')
            plt.close()

        print("labels", c)
        print("singletons", dst_obj.output_mass_singletons)
        print("filtered probabilities", norm_singletons)
        print("probabilities", alpha_p)
        print("sparsemax", alpha_p_sparsemax)
Пример #56
0
def _main():

    # get command line arguments
    test_list = _parse_options()

    tex_file_path = "./tex/acid.tex"

    # directory where all the generated files will end up
    data_dir = "./data"

    # how to get from the LaTeX file to the data
    tex_relative_path_to_data = "../data"

    figure_width = "7.5cm"

    # open file for writing
    file_handle = open( tex_file_path, "w" )

    write_document_header( file_handle, figure_width )

    test_functions = [ tf.basic_sin,
                       tf.subplots,
                       tf.image_plot,
                       tf.noise,
                       tf.circle_patch,
                       tf.patches,
                       tf.legends,
                       tf.legends2,
                       tf.logplot,
                       tf.loglogplot,
                       tf.subplot4x4,
                       tf.text_overlay,
                       tf.annotate,
                       tf.histogram,
                       tf.contourf_with_logscale
                     ]

    if not test_list is None: # actually treat a sublist of test_functions
        # remove duplicates and sort
        test_list = sorted( set(test_list) )
    else:
        # all indices
        test_list = xrange( 0, len(test_functions) )

    for k in test_list:
        print 'Test function %d...' % k,
        pp.cla()
        pp.clf()
        # plot the test example
        comment = test_functions[k]()

        # convert to TikZ
        tikz_path = data_dir + "/test" + repr(k) + ".tex"
        matplotlib2tikz.save( tikz_path,
                              figurewidth = figure_width,
                              tex_relative_path_to_data = \
                                                     tex_relative_path_to_data
                            )

        # plot reference figure
        pdf_path  = data_dir + "/test" + repr(k) + ".pdf"
        pp.savefig(pdf_path)

        # update the LaTeX file
        write_file_comparison_entry( file_handle,
                                     path.join( tex_relative_path_to_data,
                                                path.basename(pdf_path) ),
                                     path.join( tex_relative_path_to_data,
                                                path.basename(tikz_path) ),
                                     k,
                                     comment
                                   )
        print 'done.'

    write_document_closure( file_handle )
    file_handle.close()

    return