def d_hill(ciphertext, key): # your code here if len(ciphertext) == 0: print('Error(d_hill): invalid ciphertext') return '' new_key = '' if len(key) > 4: new_key += key[:4] elif len(key) == 4: new_key += key else: new_key += key counter = 0 while len(new_key) < 4: new_key += key[counter] counter += 1 baseString = utilities_A4.get_lower() key_matrix = matrix.new_matrix(2, 2, 0) count = 0 for i in range(2): for j in range(2): key_matrix[i][j] = baseString.index(new_key[count].lower()) count += 1 if mod.gcd(matrix.det(key_matrix), 26) != 1: print('Error(d_hill): key is not invertible') return '' inverse_key_matrix = matrix.inverse(key_matrix, 26) plaintext = '' non_alpha = utilities_A4.get_nonalpha(ciphertext) blocks = utilities_A4.text_to_blocks( utilities_A4.remove_nonalpha(ciphertext), 2) for block in blocks: block_m = matrix.new_matrix(2, 1, 0) block_m[0][0] = baseString.index(block[0].lower()) block_m[1][0] = baseString.index(block[1].lower()) result_m = matrix.matrix_mod(matrix.mul(inverse_key_matrix, block_m), 26) plaintext += baseString[result_m[0][0]].lower() plaintext += baseString[result_m[1][0]].lower() plaintext = utilities_A4.insert_nonalpha(plaintext, non_alpha) while plaintext[-1] == 'q': plaintext = plaintext[:-1] return plaintext
def mTMRCA_C(trees, log = None, left = 0, right = math.inf, gmap = Gmap(None), sft = False): N = trees.num_samples mtmrca_C = matrix.new_matrix(N) tmp = 0 total_l = 0 pbar = tqdm.tqdm(total = trees.num_trees, bar_format = '{l_bar}{bar:30}{r_bar}{bar:-30b}', miniters = trees.num_trees // 100, file = log) trees_ = trees.trees() if sft: next(trees_) for tree in trees_: pbar.update(1) if tree.total_branch_length == 0: continue l = - gmap(max(left, tree.interval[0])) + gmap(min(right, tree.interval[1])) if l <= 0: continue height = 0 for c in tree.nodes(): descendants = list(tree.samples(c)) n = len(descendants) if(n == 0 or n == N): continue t = tree.time(tree.parent(c)) - tree.time(c) height = max(height, tree.time(tree.parent(c))) matrix.add_square(mtmrca_C, descendants, t * l) tmp += height * l total_l += l mtmrca = mat_C_to_ndarray(mtmrca_C, N) mtmrca = tmp - mtmrca mtmrca /= total_l pbar.close() return mtmrca, total_l
def d_type3(ciphertext): alpha = utilities.get_lower() dictList = utilities.load_dictionary('engmix.txt') for a in range(0, 5): for b in range(0, 5): for c in range(0, 5): for d in range(0, 5): key_matrix = matrix.new_matrix(2, 2, 0) key_matrix[0][0] = a key_matrix[0][1] = b key_matrix[1][0] = c key_matrix[1][1] = d if mod.has_mul_inv(a * d - b * c, 26): key = '' for i in range(2): for j in range(2): key += alpha[key_matrix[i][j]] first = d_hill(ciphertext, key) k, plain = cryptanalysis_shift(first) if utilities.is_plaintext(plain, dictList, 0.70): return plain, (k, key)
def test_q4(): print("-------------------------------------------") print("Testing Q4: Matrix Library") filename = 'q4_solution.txt' outFile = open(filename, 'w') print() outFile.write('1- Testing is_vector:\n') outFile.write('is_vector({}) = {}\n'.format([], matrix.is_vector([]))) outFile.write('is_vector({}) = {}\n'.format([10], matrix.is_vector([10]))) outFile.write('is_vector({}) = {}\n'.format([10, 20], matrix.is_vector([10, 20]))) outFile.write('is_vector({}) = {}\n'.format(10, matrix.is_vector(10))) outFile.write('is_vector({}) = {}\n'.format([3, 4.5], matrix.is_vector([3, 4.5]))) outFile.write('is_vector({}) = {}\n'.format([[]], matrix.is_vector([[]]))) outFile.write('is_vector({}) = {}\n'.format([[1, 2], [3, 4]], matrix.is_vector([[1, 2], [3, 4]]))) outFile.write('\n') outFile.write('2- Testing is_matrix') A = [] outFile.write('is_matrix({}) = {}\n'.format(A, matrix.is_matrix(A))) A = [5] outFile.write('is_matrix({}) = {}\n'.format(A, matrix.is_matrix(A))) A = [[1, 2], [3, 4]] outFile.write('is_matrix({}) = {}\n'.format(A, matrix.is_matrix(A))) A = [[1], [2], [3]] outFile.write('is_matrix({}) = {}\n'.format(A, matrix.is_matrix(A))) A = [[1, 2, 3], [4, 5, 6]] outFile.write('is_matrix({}) = {}\n'.format(A, matrix.is_matrix(A))) A = 5 outFile.write('is_matrix({}) = {}\n'.format(A, matrix.is_matrix(A))) A = [5.5] outFile.write('is_matrix({}) = {}\n'.format(A, matrix.is_matrix(A))) A = [[1, 2, 3], [4, 5]] outFile.write('is_matrix({}) = {}\n'.format(A, matrix.is_matrix(A))) outFile.write('\n') print('3- Testing print_matrix') A = [] print('print_matrix({})='.format(A)) matrix.print_matrix(A) A = [10, 20, 30] print('print_matrix({})='.format(A)) matrix.print_matrix(A) A = [[10], [20], [30]] print('print_matrix({})='.format(A)) matrix.print_matrix(A) A = [[10, 20, 30], [40, 50, 60], [70, 80, 10]] print('print_matrix({})='.format(A)) matrix.print_matrix(A) A = [[10, 20, 30], [40, 50, 60], [70, 80]] print('print_matrix({})='.format(A)) print(matrix.print_matrix(A)) print() outFile.write('4/5/6- Testing size functions\n') A = [] outFile.write('get_rowCount({}) = {}\n'.format(A, matrix.get_rowCount(A))) outFile.write('get_ColumnCount({}) = {}\n'.format( A, matrix.get_columnCount(A))) outFile.write('get_size({}) = {}\n'.format(A, matrix.get_size(A))) outFile.write('\n') A = [1, 2, 3] outFile.write('get_rowCount({}) = {}\n'.format(A, matrix.get_rowCount(A))) outFile.write('get_ColumnCount({}) = {}\n'.format( A, matrix.get_columnCount(A))) outFile.write('get_size({}) = {}\n'.format(A, matrix.get_size(A))) outFile.write('\n') A = [[1, 2], [3, 4], [5, 6]] outFile.write('get_rowCount({}) = {}\n'.format(A, matrix.get_rowCount(A))) outFile.write('get_ColumnCount({}) = {}\n'.format( A, matrix.get_columnCount(A))) outFile.write('get_size({}) = {}\n'.format(A, matrix.get_size(A))) outFile.write('\n') A = [[1, 2], [3]] outFile.write('get_rowCount({}) = {}\n'.format(A, matrix.get_rowCount(A))) outFile.write('get_ColumnCount({}) = {}\n'.format( A, matrix.get_columnCount(A))) outFile.write('get_size({}) = {}\n'.format(A, matrix.get_size(A))) outFile.write('\n') outFile.write('7- Testing is_square\n') A = [] outFile.write('is_square({}) = {}\n'.format(A, matrix.is_square(A))) A = [5] outFile.write('is_square({}) = {}\n'.format(A, matrix.is_square(A))) A = [5, 6] outFile.write('is_square({}) = {}\n'.format(A, matrix.is_square(A))) A = [[1, 2], [3, 4]] outFile.write('is_square({}) = {}\n'.format(A, matrix.is_square(A))) A = [5.5] outFile.write('is_square({}) = {}\n'.format(A, matrix.is_square(A))) outFile.write('\n') outFile.write('8/9/10- Testing getter functions\n') A = [[1, 2, 3], [4, 5, 6]] i = 0 j = 1 outFile.write('get_row({},{}) = {}\n'.format(A, i, matrix.get_row(A, i))) outFile.write('get_Column({},{}) = {}\n'.format(A, j, matrix.get_column(A, j))) outFile.write('get_element({},{},{}) = {}\n'.format( A, i, j, matrix.get_element(A, i, j))) outFile.write('\n') i = 2 j = 2 outFile.write('get_row({},{}) = {}\n'.format(A, i, matrix.get_row(A, i))) outFile.write('get_Column({},{}) = {}\n'.format(A, j, matrix.get_column(A, j))) outFile.write('get_element({},{},{}) = {}\n'.format( A, i, j, matrix.get_element(A, i, j))) outFile.write('\n') i = 1 j = 3 outFile.write('get_row({},{}) = {}\n'.format(A, i, matrix.get_row(A, i))) outFile.write('get_Column({},{}) = {}\n'.format(A, j, matrix.get_column(A, j))) outFile.write('get_element({},{},{}) = {}\n'.format( A, i, j, matrix.get_element(A, i, j))) outFile.write('\n') A = [[1, 2, 3], []] outFile.write('get_row({},{}) = {}\n'.format(A, i, matrix.get_row(A, i))) outFile.write('get_Column({},{}) = {}\n'.format(A, j, matrix.get_column(A, j))) outFile.write('get_element({},{},{}) = {}\n'.format( A, i, j, matrix.get_element(A, i, j))) outFile.write('\n') outFile.write('11- Testing new_matrix\n') r = 0 c = 0 pad = 0 outFile.write('new_matrix({},{},{})=\n{}\n'.format( r, c, pad, matrix.new_matrix(r, c, pad))) c = 1 outFile.write('new_matrix({},{},{})=\n{}\n'.format( r, c, pad, matrix.new_matrix(r, c, pad))) r = 1 outFile.write('new_matrix({},{},{})=\n{}\n'.format( r, c, pad, matrix.new_matrix(r, c, pad))) r = 2 c = 1 outFile.write('new_matrix({},{},{})=\n{}\n'.format( r, c, pad, matrix.new_matrix(r, c, pad))) c = 2 r = 1 outFile.write('new_matrix({},{},{})=\n{}\n'.format( r, c, pad, matrix.new_matrix(r, c, pad))) c = 3 r = 3 outFile.write('new_matrix({},{},{})=\n{}\n'.format( r, c, pad, matrix.new_matrix(r, c, pad))) r = -1 outFile.write('new_matrix({},{},{})=\n{}\n'.format( r, c, pad, matrix.new_matrix(r, c, pad))) r = 3 c = -5 outFile.write('new_matrix({},{},{})=\n{}\n'.format( r, c, pad, matrix.new_matrix(r, c, pad))) c = 5 pad = 3.5 outFile.write('new_matrix({},{},{})=\n{}\n'.format( r, c, pad, matrix.new_matrix(r, c, pad))) outFile.write('\n') outFile.write('12- Testing get_I\n') size = -1 outFile.write('get_I({}) = {}\n'.format(size, matrix.get_I(size))) size = 0 outFile.write('get_I({}) = {}\n'.format(size, matrix.get_I(size))) size = 1 outFile.write('get_I({}) = {}\n'.format(size, matrix.get_I(size))) size = 2 outFile.write('get_I({}) = {}\n'.format(size, matrix.get_I(size))) size = 3 outFile.write('get_I({}) = {}\n'.format(size, matrix.get_I(size))) outFile.write('\n') outFile.write('13- Testing is_identity\n') A = [1] outFile.write('is_identity({}) = {}\n'.format(A, matrix.is_identity(A))) A = matrix.get_I(3) outFile.write('is_identity({}) = {}\n'.format(A, matrix.is_identity(A))) A = [[1, 0], [1, 1]] outFile.write('is_identity({}) = {}\n'.format(A, matrix.is_identity(A))) A = [[1, 0], [0, 1, 0]] outFile.write('is_identity({}) = {}\n'.format(A, matrix.is_identity(A))) outFile.write('\n') outFile.write('14- Testing scalar_mul\n') A = [[1, 2], [3, 4]] c = 10 outFile.write('scalar_mul({},{}) = {}\n'.format(A, c, matrix.scalar_mul(c, A))) A = [1, 2, 3, 4] outFile.write('scalar_mul({},{}) = {}\n'.format(A, c, matrix.scalar_mul(c, A))) A = [] outFile.write('scalar_mul({},{}) = {}\n'.format(A, c, matrix.scalar_mul(c, A))) A = [1, 2, 3, [4]] outFile.write('scalar_mul({},{}) = {}\n'.format(A, c, matrix.scalar_mul(c, A))) A = [[1, 2], [3, 4]] c = [10] outFile.write('scalar_mul({},{}) = {}\n'.format(A, c, matrix.scalar_mul(c, A))) outFile.write('\n') outFile.write('15- Testing mul\n') A = [[1, 2], [3, 4]] B = [[10, 20], [30, 40]] outFile.write('mul({},{})=\n{}\n'.format(A, c, matrix.mul(A, B))) A = [[1, 2, 3], [5, 6, 7]] B = [[10, 20], [30, 40], [50, 60]] outFile.write('mul({},{})= {}\n'.format(A, c, matrix.mul(A, B))) A = [5] B = [10] outFile.write('mul({},{})= {}\n'.format(A, B, matrix.mul(A, B))) A = [0, 1, 2] B = [[0], [1], [2]] outFile.write('mul({},{})= {}\n'.format(A, B, matrix.mul(A, B))) A = [[0], 1] B = [1, 0] outFile.write('mul({},{})= {}\n'.format(A, B, matrix.mul(A, B))) A = [1, 0] B = [[0], 1] outFile.write('mul({},{})= {}\n'.format(A, B, matrix.mul(A, B))) A = [[1, 2, 3], [5, 6, 7]] B = [[10, 20], [30, 40], [50, 60]] outFile.write('mul({},{})= {}\n'.format(B, A, matrix.mul(B, A))) A = [[1, 2, 3], [5, 6, 7]] B = [[10, 20], [30, 40]] outFile.write('mul({},{})= {}\n'.format(A, B, matrix.mul(A, B))) outFile.write('\n') outFile.write('16- Testing matrix_mod\n') A = [[1, 2], [3, 4]] m = 2 outFile.write('matrix_mod({},{})= {}\n'.format(A, m, matrix.matrix_mod(A, m))) A = [1, 2, 3, 4] m = 2 outFile.write('matrix_mod({},{})= {}\n'.format(A, m, matrix.matrix_mod(A, m))) A = [[3], [5]] m = 3 outFile.write('matrix_mod({},{})= {}\n'.format(A, m, matrix.matrix_mod(A, m))) A = [[3], [5]] m = 0 outFile.write('matrix_mod({},{})= {}\n'.format(A, m, matrix.matrix_mod(A, m))) A = [3, [5]] m = 6 outFile.write('matrix_mod({},{})= {}\n'.format(A, m, matrix.matrix_mod(A, m))) outFile.write('\n') outFile.write('17- Testing det\n') A = [[1, 2], [3, 4]] outFile.write('det({})= {}\n'.format(A, matrix.det(A))) A = [10] outFile.write('det({})= {}\n'.format(A, matrix.det(A))) A = [[1, 1, 1], [2, 2, 2], [3, 3, 3]] outFile.write('det({})= {}\n'.format(A, matrix.det(A))) A = [[1, 1, 1], [2, 2]] outFile.write('det({})= {}\n'.format(A, matrix.det(A))) outFile.write('\n') outFile.write('18- Testing inverse\n') A = [[1, 4], [8, 11]] m = 26 outFile.write('inverse({},{})= {}\n'.format(A, m, matrix.inverse(A, m))) A = [[4, 3], [1, 1]] m = 5 outFile.write('inverse({},{})= {}\n'.format(A, m, matrix.inverse(A, m))) A = [[1, 4], [8, 10]] m = 26 outFile.write('inverse({},{})= {}\n'.format(A, m, matrix.inverse(A, m))) A = [1, 4, 8, 10] m = 15 outFile.write('inverse({},{})= {}\n'.format(A, m, matrix.inverse(A, m))) A = [[4, 3], [1, 1]] m = -5 outFile.write('inverse({},{})= {}\n'.format(A, m, matrix.inverse(A, m))) A = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] m = 7 outFile.write('inverse({},{})= {}\n'.format(A, m, matrix.inverse(A, m))) A = [[1, 2, 3], [4, 5]] m = 7 outFile.write('inverse({},{})= {}\n'.format(A, m, matrix.inverse(A, m))) outFile.close() print('Comparing q4_solution with q4_sample:') print(utilities_A4.compare_files('q4_solution.txt', 'q4_sample.txt')) print() print("-------------------------------------------")
def d_hill(ciphertext, key): plaintext = '' base = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' if len(ciphertext) == 0: print('Error(d_hill): invalid ciphertext') return plaintext if len(key) > 4: key = key[:4] elif len(key) < 4: x = len(key) count = 0 while len(key) != 4: if count == x: count = 0 key += key[count] count += 1 alpha = utilities_A4.get_nonalpha(ciphertext) text = utilities_A4.remove_nonalpha(ciphertext) text = text.upper() if len(text) % 2 != 0: text += 'Q' indx1 = 0 indx2 = 0 textMatrix = matrix.new_matrix(2, int(len(text) / 2), 0) for i in range(len(text)): if i % 2 == 0: textMatrix[0][indx1] = base.find(text[i]) indx1 += 1 else: textMatrix[1][indx2] = base.find(text[i]) indx2 += 1 keyMatrix = matrix.new_matrix(2, 2, 0) count = 0 for i in range(2): for j in range(2): keyMatrix[i][j] = base.find(key[count].upper()) count += 1 inverse = matrix.inverse(keyMatrix, 26) for i in range(int(len(text) / 2)): a = textMatrix[0][i] * inverse[0][0] + textMatrix[1][i] * inverse[0][1] b = textMatrix[0][i] * inverse[1][0] + textMatrix[1][i] * inverse[1][1] plaintext += base[a % 26] plaintext += base[b % 26] plaintext = utilities_A4.insert_nonalpha(plaintext, alpha) plaintext = plaintext.lower() while plaintext[len(plaintext) - 1] == 'q': plaintext = plaintext[:-1] return plaintext
def new_zbuffer(width=XRES, height=YRES): return new_matrix(width, height, float("-inf"))
def varGRM_C(trees, log = None, rlim = 0, alim = math.inf, left = 0, right = math.inf, gmap = Gmap(None), g = (lambda x: 1/(x*(1-x))), var = True, sft = False): N = trees.num_samples egrm_C = matrix.new_matrix(N) if var: egrm2_C = matrix.new_matrix(N) tmp1 = np.zeros(N) tmp2 = 0 total_mu = 0 pbar = tqdm.tqdm(total = trees.num_trees, bar_format = '{l_bar}{bar:30}{r_bar}{bar:-30b}', miniters = trees.num_trees // 100, file = log) trees_ = trees.trees() if sft: next(trees_) for tree in trees_: pbar.update(1) if tree.total_branch_length == 0: continue l = - gmap(max(left, tree.interval[0])) + gmap(min(right, tree.interval[1])) if l <= 0: continue for c in tree.nodes(): descendants = list(tree.samples(c)) n = len(descendants) if(n == 0 or n == N): continue t = max(0, min(alim, tree.time(tree.parent(c))) - max(rlim, tree.time(c))) mu = l * t * 1e-8 p = float(n/N) matrix.add_square(egrm_C, descendants, mu * g(p)) if var: matrix.add_square(egrm2_C, descendants, mu * np.power(g(p), 2) * np.power((1 - 2*p), 2)) tmp1[descendants] += mu * np.power(g(p), 2) * (np.power(p, 2) - 2 * np.power(p, 3)) tmp2 += mu * np.power(g(p), 2) * np.power(p, 4) total_mu += mu egrm = mat_C_to_ndarray(egrm_C, N) if var: egrm2 = mat_C_to_ndarray(egrm2_C, N) egrm /= total_mu if var: egrm2 /= total_mu tmp1 /= total_mu tmp2 /= total_mu egrm -= egrm.mean(axis = 0) egrm -= egrm.mean(axis = 1, keepdims=True) if var: e = np.reciprocal((lambda x:x[x!=0])(np.random.poisson(lam=total_mu, size=10000)).astype("float")).mean() vargrm = e * (egrm2 + np.tile(tmp1, (N, 1)) + np.tile(tmp1, (N, 1)).transpose() + tmp2 - np.power(egrm, 2)) else: vargrm = None pbar.close() return egrm, vargrm, total_mu