def optimize_model(args): feature_fn, margin_fn, num_features, actions = select_feature_fn(args) print 'Found model: {}'.format(args.modelfile) if args.multi_slack: mm_model = MultiSlackMaxMarginModel.read(args.modelfile, actions, feature_fn, margin_fn) else: mm_model = MaxMarginModel.read(args.modelfile, actions, feature_fn, margin_fn) mm_model.C = args.C mm_model.optimize_model() mm_model.save_weights_to_file(args.weightfile)
def build_model(args): feature_fn, margin_fn, num_features, actions = select_feature_fn(args) print 'Building model into {}.'.format(args.modelfile) if args.multi_slack: mm_model = MultiSlackMaxMarginModel(actions, args.C, num_features, feature_fn, margin_fn) else: mm_model = MaxMarginModel(actions, args.C, num_features, feature_fn, margin_fn) mm_model.load_constraints_from_file(args.constraintfile) mm_model.save_model(args.modelfile)
def build_model(args): feature_fn, margin_fn, num_features, actions = select_feature_fn(args) print 'Building model into {}.'.format(args.modelfile) if args.model == 'multi': mm_model = MultiSlackMaxMarginModel(actions, args.C, num_features, feature_fn, margin_fn) elif args.model == 'bellman': mm_model = BellmanMaxMarginModel(actions, args.C, args.D, args.F, 1, num_features, feature_fn, margin_fn) # changed else: mm_model = MaxMarginModel(actions, args.C, num_features, feature_fn, margin_fn) if not args.goal_constraints and args.model == 'bellman': demofile = h5py.File(args.demofile, 'r') ignore_keys = [k for k in demofile if demofile[k]['knot'][()]] demofile.close() else: ignore_keys = None mm_model.load_constraints_from_file(args.constraintfile, ignore_keys) mm_model.save_model(args.modelfile)
def optimize_model(args): feature_fn, margin_fn, num_features, actions = select_feature_fn(args) print 'Found model: {}'.format(args.modelfile) if args.model == 'multi': mm_model = MultiSlackMaxMarginModel.read(args.modelfile, actions, num_features, feature_fn, margin_fn) elif args.model == 'bellman': mm_model = BellmanMaxMarginModel.read(args.modelfile, actions, num_features, feature_fn, margin_fn) mm_model.D = args.D mm_model.F = args.F else: mm_model = MaxMarginModel.read(args.modelfile, actions, num_features, feature_fn, margin_fn) if args.save_memory: mm_model.model.setParam('threads', 1) # Use single thread instead of maximum # barrier method (#2) is default for QP, but uses more memory and could lead to error mm_model.model.setParam('method', 1) # Use dual simplex method to solve model #mm_model.model.setParam('method', 0) # Use primal simplex method to solve model mm_model.C = args.C mm_model.optimize_model() mm_model.save_weights_to_file(args.weightfile)
def build_constraints(args): #test_features(args, "sc") test_features(args, "rope_dist") feature_fn, margin_fn, num_features, actions = select_feature_fn(args) print 'Building constraints into {}.'.format(args.constraintfile) if args.model == 'multi': mm_model = MultiSlackMaxMarginModel(actions, args.C, num_features, feature_fn, margin_fn) elif args.model == 'bellman': mm_model = BellmanMaxMarginModel(actions, args.C, args.D, args.F, .9, num_features, feature_fn, margin_fn) else: mm_model = MaxMarginModel(actions, args.C, num_features, feature_fn, margin_fn) if args.model == 'bellman': add_bellman_constraints_from_demo(mm_model, args.demofile, args.start, args.end, outfile=args.constraintfile, verbose=True) else: add_constraints_from_demo(mm_model, args.demofile, args.start, args.end, outfile=args.constraintfile, verbose=True)