Пример #1
0
def draw2DView(figure, raw, seg, index, color=(1,0,0)):
    """
    Draw a 2D maximum intensity projection of the raw data and create 
    a segmentation overlay
    """
    raw2d = np.max(raw, axis = 2)
    mlab.imshow(raw2d, colormap='gray', figure=figure)
    sother = np.multiply( (seg != 0).astype(np.int32),(seg != index).astype(np.int32) )
    ##max1 = np.max(np.where(np.max(np.max((seg == index).astype(np.int32), axis = 0), axis = 0)!=0))+1
    ##min1 = np.min(np.where(np.max(np.max((seg == index).astype(np.int32), axis = 0), axis = 0)!=0))
    ##max2 = np.max(np.where(np.max(np.max((seg == index).astype(np.int32), axis = 0), axis = 1)!=0))+1
    ##min2 = np.min(np.where(np.max(np.max((seg == index).astype(np.int32), axis = 0), axis = 1)!=0))
    ##d1 = int(min(max1-min1-15,0))
    ##d2 = int(min(max2-min2-15,0))
    ##min1 += d1
    ##max1 -= d1
    ##min2 += d2
    ##max2 -= d2
    ##sother = (seg == index).astype(np.int32)
    ##seg2dother = np.max(sother, axis = 0)
    ##seg2dother[min2:max2,min1:max1]=1
    sindex = (seg == index).astype(np.int32)
    seg2dother = np.max(sother, axis = 2)
    seg2dindex = np.max(sindex, axis = 2)
    mlab.contour_surf(seg2dother, color = (0,0,1), contours = 2, warp_scale = 0, figure=figure)
    mlab.contour_surf(seg2dindex, color = color, contours = 2, warp_scale = 0, figure=figure)
    def test14(self):
        data = np.loadtxt('./Data/map.csv', delimiter=',')
        row = data.shape[0]
        column = data.shape[1]
        x, y = np.mgrid[0:row:1, 0:column:1]

        x, y = np.mgrid[0:row:1, 0:column:1]
        mlab.contour_surf(x, y, data, contours=100)
        mlab.show()
Пример #3
0
def mayavi_contour_surf():
    """
    绘制contour_surf图
    :return:
    """
    x, y = np.mgrid[-5:5:70j, -5:5:70j]
    # 绘制peaks函数的等高线
    mlab.contour_surf(x, y, peaks, contours=9)
    mlab.colorbar()
    mlab.show()
Пример #4
0
def test_contour_surf():
    """Test contour_surf on regularly spaced co-ordinates like MayaVi."""
    def f(x, y):
        sin, cos = np.sin, np.cos
        return sin(x + y) + sin(2 * x - y) + cos(3 * x + 4 * y)

    x, y = np.mgrid[-7.:7.05:0.1, -5.:5.05:0.05]
    s = mlab.contour_surf(x, y, f)
    return s
Пример #5
0
def cont3(x=None,
          y=None,
          z=None,
          contours=20,
          f=None,
          axeLab=['', '', ''],
          clf=True):
    """
    3 argument surface plot
    """
    if x == None:
        x = arange(z.shape[0])
    if y == None:
        y = arange(z.shape[1])
    if z == None:
        z = arange(x.shape[0] * y.shape[0])
    if clf:
        ml.clf(f)
    if z.ndim == 3:
        for i in range(z.shape[-1]):
            ml.contour_surf(sc(x),
                            sc(y),
                            scLike(z[..., i], z[..., 0]),
                            contours=contours,
                            extent=ex,
                            figure=f)
            axe(axeLab, rgs(x, y, z[..., 0]), f)
    else:
        ml.contour_surf(sc(x),
                        sc(y),
                        sc(z),
                        contours=contours,
                        extent=ex,
                        figure=f)
        axe(axeLab, rgs(x, y, z), f)
    out()
    return f
Пример #6
0
def plot_3d(topo, bottom_z, top_z, time_step, color=(0.88627451, 0.79215686, 0.4627451), ci = 0.1, scale=1, ve=1, dx=1, 
                                                    line_thickness=0.05, contour_switch=False, new_figure=False):
    """function for plotting a set of bedforms in 3D
    :param topo: array of stacked topographic surfaces that describe the bedform topography through time
    :param bottom_z: elevation of the bottom of the model
    :param top_z: elevation of the bottom of the model (if it is less than the maximum height of the dunes, they will be "eroded")
    :param time_step: determines how many bedding surfaces will be drawn (default = 4)
    :param color: color of the 'sand' (that is, of the model)
    :param ci: contour interval (used only if contour_switch is 'True')
    :param scale: scale of model (usually best to leave it at 1)
    :param ve: vertical exaggeration
    :param dx: horiozntal gridcell size
    :param line_thickness: thickness of lines drawn, in units of the figure; has to be a relatively small number (default = 0.05)
    :param contour_switch: determines whether contours are drawn on top of bedforms
    :param new_figure: determines whether a new mlab figure is created or not
    """

    if new_figure:
        mlab.figure(bgcolor=(1,1,1))
    else:
        mlab.clf()
        
    strat = np.minimum.accumulate(topo[:, :, ::-1], axis=2)[:, :, ::-1] # convert topography to stratigraphy
    strat2 = strat.copy()
    strat2[strat<bottom_z] = bottom_z
    strat2[strat>top_z] = top_z
    
    r,c,ts = np.shape(strat2)
    z = scale*strat2[:,:,ts-1]
    z1 = strat2[:,:,-1]

    X1 = scale*(np.linspace(0,r-1,r)*dx)
    Y1 = scale*(np.linspace(0,c-1,c)*dx)
    mlab.surf(X1,Y1,z,warp_scale=ve,color=color)

    if contour_switch:
        contours = list(np.arange(np.min(strat2[:,:,-1]),np.max(strat2[:,:,-1]),ci*scale)) # list of contour values
        mlab.contour_surf(X1,Y1,z, contours=contours, warp_scale=ve,color=(0,0,0),line_width=1.0)

    # updip side:
    vertices, triangles = create_section(z1[:,0],dx,bottom_z) 
    x = scale*(vertices[:,0])
    y = scale*(np.zeros(np.shape(vertices[:,0])))
    z = scale*ve*vertices[:,1]
    mlab.triangular_mesh(x,y,z,triangles,color=color)

    # downdip side:
    vertices, triangles = create_section(z1[:,-1],dx,bottom_z) 
    x = scale*(vertices[:,0])
    y = scale*((c-1)*dx*np.ones(np.shape(vertices[:,0])))
    z = scale*ve*vertices[:,1]
    mlab.triangular_mesh(x,y,z,triangles,color=color)

    # left edge:
    vertices, triangles = create_section(z1[0,:],dx,bottom_z) 
    x = scale*(np.zeros(np.shape(vertices[:,0])))
    y = scale*(vertices[:,0])
    z = scale*ve*vertices[:,1]
    mlab.triangular_mesh(x,y,z,triangles,color=color)

    # right edge:
    vertices, triangles = create_section(z1[-1,:],dx,bottom_z) 
    x = scale*((r-1)*dx*np.ones(np.shape(vertices[:,0])))
    y = scale*(vertices[:,0])
    z = scale*ve*vertices[:,1]
    mlab.triangular_mesh(x,y,z,triangles,color=color)

    # bottom face of block:
    vertices = dx*np.array([[0,0],[r-1,0],[r-1,c-1],[0,c-1]])
    triangles = [[0,1,3],[1,3,2]]
    x = scale*(vertices[:,0])
    y = scale*(vertices[:,1])
    z = scale*bottom_z*np.ones(np.shape(vertices[:,0]))
    mlab.triangular_mesh(x,y,ve*z,triangles,color=color)

    min_final_topo = np.min(topo[:,:,-1])
    max_final_topo = np.max(topo[:,:,-1])

    t_steps = np.hstack((np.arange(0, ts-1, time_step), ts-2))
    for layer_n in tqdm(t_steps): # main loop
        top = strat2[:,0,layer_n+1]  # updip side
        base = strat2[:,0,layer_n]
        X1 = scale*(dx*np.arange(0,r))
        Y1 = scale*(np.zeros(np.shape(base)))
        Z1 = ve*scale*base
        mlab.plot3d(X1,Y1,Z1,color=(0,0,0),tube_radius=line_thickness)
        if layer_n == ts-2:
            Z1 = ve*scale*top
            mlab.plot3d(X1,Y1,Z1,color=(0,0,0),tube_radius=line_thickness)

        top = strat2[:,-1,layer_n+1]  # downdip side
        base = strat2[:,-1,layer_n]
        X1 = scale*(dx*np.arange(0,r))
        Y1 = scale*(dx*(c-1)*np.ones(np.shape(base)))
        Z1 = ve*scale*base
        mlab.plot3d(X1,Y1,Z1,color=(0,0,0),tube_radius=line_thickness)
        if layer_n == ts-2:
            Z1 = ve*scale*top
            mlab.plot3d(X1,Y1,Z1,color=(0,0,0),tube_radius=line_thickness)

        top = strat2[0,:,layer_n+1]  # left edge
        base = strat2[0,:,layer_n]
        X1 = scale*(np.zeros(np.shape(base)))
        Y1 = scale*(dx*np.arange(0,c))
        Z1 = ve*scale*base
        mlab.plot3d(X1,Y1,Z1,color=(0,0,0),tube_radius=line_thickness)
        if layer_n == ts-2:
            Z1 = ve*scale*top
            mlab.plot3d(X1,Y1,Z1,color=(0,0,0),tube_radius=line_thickness)

        top = strat2[-1,:,layer_n+1] # right edge
        base = strat2[-1,:,layer_n]
        X1 = scale*(dx*(r-1)*np.ones(np.shape(base)))
        Y1 = scale*(dx*np.arange(0,c))
        Z1 = ve*scale*base
        mlab.plot3d(X1,Y1,Z1,color=(0,0,0),tube_radius=line_thickness)
        if layer_n == ts-2:
            Z1 = ve*scale*top
            mlab.plot3d(X1,Y1,Z1,color=(0,0,0),tube_radius=line_thickness)

        if (bottom_z > np.min(strat[:,:,layer_n])) and (bottom_z < np.max(strat[:,:,layer_n])):
            contours = measure.find_contours(strat[:,:,layer_n], bottom_z)
            for i in range(0,len(contours)):
                x1 = contours[i][:,0]
                y1 = contours[i][:,1]
                z1 = np.ones(np.shape(x1)) * bottom_z
                mlab.plot3d(x1,y1,z1,color=(0,0,0),tube_radius=line_thickness)

        if (top_z > np.min(strat[:,:,layer_n])) and (top_z < np.max(strat[:,:,layer_n])):
            contours = measure.find_contours(strat[:,:,layer_n], top_z)
            for i in range(0,len(contours)):
                x1 = contours[i][:,0]
                y1 = contours[i][:,1]
                z1 = np.ones(np.shape(x1)) * top_z
                mlab.plot3d(x1,y1,z1,color=(0,0,0),tube_radius=line_thickness)
Пример #7
0
# -*- coding: utf-8 -*-
"""
Created on Tue Jul  4 15:51:17 2017

@author: Administrator
"""

import numpy as np
from mayavi import mlab


def f(x, y):
    return np.sin(x - y) + np.cos(x + y)


x, y = np.mgrid[-7.:7.05:0.1, -5.:5.05:0.05]
con_s = mlab.contour_surf(x, y, f)
mlab.show()
Пример #8
0
from pylab import *

from mayavi import mlab

DX = 0.01

def f(x, y):
    return np.sin(x + y) + np.sin(2 * x - y) + np.cos(3 * x + 4 * y)

if __name__ == '__main__':

    fig = mlab.figure(size = (3000, 3000), bgcolor = (1, 1, 1))

    x, y = np.mgrid[-7:7.05:DX, -5:5.05:DX]

    mlab.contour_surf(x, y, f)

    mlab.savefig(sys.argv[1], size = (3000, 3000))
Пример #9
0
                out[:,j] = out[:,j] + np.maximum(f[:,j + 1] - f[:,j], 0)**2
            else:
                out[:,j] = out[:,j] + np.maximum(f[:,j - 1] - f[:,j], 0)**2
    return np.sqrt(out)

def update_phi(P, dt):
    # [Px, Py] = np.gradient(P)
    up = lsm_grad_magnitude(P, True)
    down = lsm_grad_magnitude(P, False)
    #to obtain correct results, down and up are switched
    # [U, V] = np.gradient(P)
    # Gmag = gradient_magnitude(U, V)
    return P + dt * down 

msurf = mlab.surf(P,colormap='jet')
contour2d = mlab.contour_surf(P, contours=[0])

for i in xrange(140):
    P = update_phi(P, dt)
    if i % 20 == 0:
        msurf.mlab_source.scalars = P
        contour2d.mlab_source.scalars = P
    # if i % 50 == 0:
    #     Pedt = ndimage.distance_transform_edt(np.round(P))
    #     P = np.sign(P) * Pedt
        # P = renormalize(P,1.0)


mlab.outline()  
mlab.axes()
mlab.show()
             extent=(0.375, 0.625, 0, 0.25, 0, 0.25),
             colormap='Accent'))
plt.outline(plt.mesh(xv,
                     yv,
                     hv,
                     extent=(0.75, 1, 0, 0.25, 0, 0.25),
                     colormap='prism'),
            color=(.5, .5, .5))
# endsubplot

hv = h0 / (1 + (xv**2 + yv**2) / (R**2))

# Default contour plot plotted together with surf.
plt.figure(5, fgcolor=(.0, .0, .0), bgcolor=(1.0, 1.0, 1.0))
plt.surf(xv, yv, hv, warp_scale=0.01)
plt.contour_surf(xv, yv, hv, warp_scale=0.01)

# 10 contour lines (equally spaced contour levels).
plt.figure(6, fgcolor=(.0, .0, .0), bgcolor=(1.0, 1.0, 1.0))
plt.contour_surf(xv, yv, hv, contours=10, warp_scale=0.01)

# 10 contour lines (equally spaced contour levels) together with surf.
# Black color for contour lines.
plt.figure(7, fgcolor=(.0, .0, .0), bgcolor=(1.0, 1.0, 1.0))
plt.surf(xv, yv, hv, warp_scale=0.01)
plt.contour_surf(xv, yv, hv, contours=10, color=(0., 0., 0.), \
                 warp_scale=0.01)

# Specify the contour levels explicitly as a list.
plt.figure(8, fgcolor=(.0, .0, .0), bgcolor=(1.0, 1.0, 1.0))
levels = [500., 1000., 1500., 2000.]
Пример #11
0
def test05():
    x, y = np.mgrid[-7.:7.05:0.1, -5.:5.05:0.05]
    s = mlab.contour_surf(x, y, f)
    mlab.show()
Пример #12
0
x = y = np.linspace(-10., 10., 41)
xv, yv = np.meshgrid(x, y, indexing='ij', sparse=False)
hv = h0 / (1 + (xv**2 + yv**2) / (R**2))

# Define a coarser grid for the vector field
x2 = y2 = np.linspace(-10., 10., 11)
x2v, y2v = np.meshgrid(x2, y2, indexing='ij', sparse=False)
h2v = h0 / (1 + (x2v**2 + y2v**2) / (R**2))  # Surface on coarse grid
# endcoarsergrid

dhdx, dhdy = np.gradient(h2v)

# Draw contours and gradient field of h
plt.figure(11, fgcolor=(.0, .0, .0), bgcolor=(1.0, 1.0, 1.0))
plt.contour_surf(xv, yv, hv, contours=20, warp_scale=0.01)

# mode controls the style how vectors are drawn
# color controls the colors of the vectors
# scale_mode='none' ensures that vectors are drawn with the same length
plt.quiver3d(x2v,
             y2v,
             0.01 * h2v,
             dhdx,
             dhdy,
             np.zeros_like(dhdx),
             mode='arrow',
             color=(1, 0, 0),
             scale_mode='none')
# end draw contours and gradient field of h
raw_input('Press any key to continue')
Пример #13
0
plt.outline(plt.mesh(
    xv, yv, hv,
    extent=(0.375, 0.625, 0, 0.25, 0, 0.25),
    colormap='Accent'))
plt.outline(plt.mesh(
    xv, yv, hv, extent=(0.75, 1, 0, 0.25, 0, 0.25),
    colormap='prism'), color=(.5, .5, .5))
# endsubplot


hv = h0/(1 + (xv**2+yv**2)/(R**2))

# Default contour plot plotted together with surf.
plt.figure(5, fgcolor=(.0, .0, .0), bgcolor=(1.0, 1.0, 1.0))
plt.surf(xv, yv, hv, warp_scale=0.01)
plt.contour_surf(xv, yv, hv, warp_scale=0.01)

# 10 contour lines (equally spaced contour levels).
plt.figure(6, fgcolor=(.0, .0, .0), bgcolor=(1.0, 1.0, 1.0))
plt.contour_surf(xv, yv, hv, contours=10, warp_scale=0.01)

# 10 contour lines (equally spaced contour levels) together with surf.
# Black color for contour lines.
plt.figure(7, fgcolor=(.0, .0, .0), bgcolor=(1.0, 1.0, 1.0))
plt.surf(xv, yv, hv, warp_scale=0.01)
plt.contour_surf(xv, yv, hv, contours=10, color=(0., 0., 0.), \
                 warp_scale=0.01)

# Specify the contour levels explicitly as a list.
plt.figure(8, fgcolor=(.0, .0, .0), bgcolor=(1.0, 1.0, 1.0))
levels = [500., 1000., 1500., 2000.]
Пример #14
0
def create_block_diagram(strat, dx, ve, xoffset, yoffset, scale, ci,
                         strat_switch, contour_switch, bottom, topo_min,
                         topo_max):
    """function for creating a 3D block diagram in Mayavi
    strat - input array with stratigraphic surfaces
    dx - size of gridcells in the horizontal direction in 'strat'
    ve - vertical exaggeration
    offset - offset in the y-direction relative to 0
    scale - scaling factor
    ci - contour interval
    strat_switch - 1 if you want to plot stratigraphy on the sides; 0 otherwise
    contour_switch - 1 if you want to plot contours on the top surface; 0 otherwise
    bottom - elevation value for the bottom of the block"""

    r, c, ts = np.shape(strat)
    z = scale * strat[:, :, ts - 1]
    if strat_switch == 1:
        z1 = strat[:, :, 0]
    else:
        z1 = strat[:, :, -1]

    X1 = scale * (xoffset + np.linspace(0, r - 1, r) * dx)
    Y1 = scale * (yoffset + np.linspace(0, c - 1, c) * dx)
    mlab.surf(X1,
              Y1,
              z,
              warp_scale=ve,
              colormap='gist_earth',
              vmin=scale * topo_min,
              vmax=scale *
              topo_max)  #, line_width=5.0, representation='wireframe')
    if contour_switch == 1:
        contours = list(np.arange(vmin, vmax,
                                  ci * scale))  # list of contour values
        mlab.contour_surf(X1,
                          Y1,
                          z,
                          contours=contours,
                          warp_scale=ve,
                          color=(0, 0, 0),
                          line_width=1.0)

    gray = (0.6, 0.6, 0.6)  # color for plotting sides

    # updip side:
    vertices, triangles = create_section(z1[:, 0], dx, bottom)
    x = scale * (xoffset + vertices[:, 0])
    y = scale * (yoffset + np.zeros(np.shape(vertices[:, 0])))
    z = scale * ve * vertices[:, 1]
    mlab.triangular_mesh(x, y, z, triangles, color=gray)

    # downdip side:
    vertices, triangles = create_section(z1[:, -1], dx, bottom)
    x = scale * (xoffset + vertices[:, 0])
    y = scale * (yoffset + (c - 1) * dx * np.ones(np.shape(vertices[:, 0])))
    z = scale * ve * vertices[:, 1]
    mlab.triangular_mesh(x, y, z, triangles, color=gray)

    # left edge (looking downdip):
    vertices, triangles = create_section(z1[0, :], dx, bottom)
    x = scale * (xoffset + np.zeros(np.shape(vertices[:, 0])))
    y = scale * (yoffset + vertices[:, 0])
    z = scale * ve * vertices[:, 1]
    mlab.triangular_mesh(x, y, z, triangles, color=gray)

    # right edge (looking downdip):
    vertices, triangles = create_section(z1[-1, :], dx, bottom)
    x = scale * (xoffset + (r - 1) * dx * np.ones(np.shape(vertices[:, 0])))
    y = scale * (yoffset + vertices[:, 0])
    z = scale * ve * vertices[:, 1]
    mlab.triangular_mesh(x, y, z, triangles, color=gray)

    # bottom face of block:
    vertices = dx * np.array([[0, 0], [r - 1, 0], [r - 1, c - 1], [0, c - 1]])
    triangles = [[0, 1, 3], [1, 3, 2]]
    x = scale * (xoffset + vertices[:, 0])
    y = scale * (yoffset + vertices[:, 1])
    z = scale * bottom * np.ones(np.shape(vertices[:, 0]))
    mlab.triangular_mesh(x, y, ve * z, triangles, color=gray)
Пример #15
0
import mayavi.mlab as plt
import os
from math import *
import numpy as np

h0 = 22.77
R = 4.

x = y = np.linspace(-10.,10.,41)
xv, yv = np.meshgrid(x, y, indexing='ij', sparse=False)
hv = h0/(1 + (xv**2+yv**2)/(R**2))

# Define a coarser grid for the vector field
x2 = y2 = np.linspace(-10.,10.,21)
x2v, y2v = np.meshgrid(x2, y2, indexing='ij', sparse=False)
h2v = h0/(1 + (x2v**2 + y2v**2)/(R**2)) # Surface on coarse grid
# endcoarsergrid

dhdx, dhdy = np.gradient(h2v)

# Draw contours and gradient field of h
plt.figure(9, fgcolor=(.0, .0, .0), bgcolor=(1.0, 1.0, 1.0))
plt.contour_surf(xv, yv, hv, contours=20)

# mode controls the style how vectors are drawn
# color controls the colors of the vectors
# scale_factor controls thelength of the vectors
plt.quiver3d(x2v, y2v, h2v, dhdx, dhdy, np.zeros_like(dhdx),
             mode='arrow', color=(1,0,0), scale_factor=.75)
# end draw contours and gradient field of h
raw_input('Press any key to continue')
Пример #16
0
def plot_3d(topo,
            bottom_z,
            top_z,
            time_step,
            color=(0.88627451, 0.79215686, 0.4627451),
            ci=0.1,
            scale=1,
            ve=1,
            dx=1,
            line_thickness=0.05,
            contour_switch=False,
            new_figure=False):
    """function for plotting a set of bedforms in 3D"""

    if new_figure:
        mlab.figure(bgcolor=(1, 1, 1))
    else:
        mlab.clf()

    strat = np.minimum.accumulate(
        topo[:, :, ::-1],
        axis=2)[:, :, ::-1]  # convert topography to stratigraphy
    strat2 = strat.copy()
    strat2[strat < bottom_z] = bottom_z
    strat2[strat > top_z] = top_z

    r, c, ts = np.shape(strat2)
    z = scale * strat2[:, :, ts - 1]
    z1 = strat2[:, :, -1]

    X1 = scale * (np.linspace(0, r - 1, r) * dx)
    Y1 = scale * (np.linspace(0, c - 1, c) * dx)
    mlab.surf(X1, Y1, z, warp_scale=ve, color=color)

    if contour_switch:
        contours = list(
            np.arange(np.min(strat2[:, :, -1]), np.max(strat2[:, :, -1]),
                      ci * scale))  # list of contour values
        mlab.contour_surf(X1,
                          Y1,
                          z,
                          contours=contours,
                          warp_scale=ve,
                          color=(0, 0, 0),
                          line_width=1.0)

    # updip side:
    vertices, triangles = create_section(z1[:, 0], dx, bottom_z)
    x = scale * (vertices[:, 0])
    y = scale * (np.zeros(np.shape(vertices[:, 0])))
    z = scale * ve * vertices[:, 1]
    mlab.triangular_mesh(x, y, z, triangles, color=color)

    # downdip side:
    vertices, triangles = create_section(z1[:, -1], dx, bottom_z)
    x = scale * (vertices[:, 0])
    y = scale * ((c - 1) * dx * np.ones(np.shape(vertices[:, 0])))
    z = scale * ve * vertices[:, 1]
    mlab.triangular_mesh(x, y, z, triangles, color=color)

    # left edge (looking downdip):
    vertices, triangles = create_section(z1[0, :], dx, bottom_z)
    x = scale * (np.zeros(np.shape(vertices[:, 0])))
    y = scale * (vertices[:, 0])
    z = scale * ve * vertices[:, 1]
    mlab.triangular_mesh(x, y, z, triangles, color=color)

    # right edge (looking downdip):
    vertices, triangles = create_section(z1[-1, :], dx, bottom_z)
    x = scale * ((r - 1) * dx * np.ones(np.shape(vertices[:, 0])))
    y = scale * (vertices[:, 0])
    z = scale * ve * vertices[:, 1]
    mlab.triangular_mesh(x, y, z, triangles, color=color)

    # bottom face of block:
    vertices = dx * np.array([[0, 0], [r - 1, 0], [r - 1, c - 1], [0, c - 1]])
    triangles = [[0, 1, 3], [1, 3, 2]]
    x = scale * (vertices[:, 0])
    y = scale * (vertices[:, 1])
    z = scale * bottom_z * np.ones(np.shape(vertices[:, 0]))
    mlab.triangular_mesh(x, y, ve * z, triangles, color=color)

    min_final_topo = np.min(topo[:, :, -1])
    max_final_topo = np.max(topo[:, :, -1])

    t_steps = np.hstack((np.arange(0, ts - 1, time_step), ts - 2))
    for layer_n in tqdm(t_steps):  # main loop
        top = strat2[:, 0, layer_n + 1]  # updip side
        base = strat2[:, 0, layer_n]
        X1 = scale * (dx * np.arange(0, r))
        Y1 = scale * (np.zeros(np.shape(base)))
        Z1 = ve * scale * base
        mlab.plot3d(X1, Y1, Z1, color=(0, 0, 0), tube_radius=line_thickness)
        if layer_n == ts - 2:
            Z1 = ve * scale * top
            mlab.plot3d(X1,
                        Y1,
                        Z1,
                        color=(0, 0, 0),
                        tube_radius=line_thickness)

        top = strat2[:, -1, layer_n + 1]  # downdip side
        base = strat2[:, -1, layer_n]
        X1 = scale * (dx * np.arange(0, r))
        Y1 = scale * (dx * (c - 1) * np.ones(np.shape(base)))
        Z1 = ve * scale * base
        mlab.plot3d(X1, Y1, Z1, color=(0, 0, 0), tube_radius=line_thickness)
        if layer_n == ts - 2:
            Z1 = ve * scale * top
            mlab.plot3d(X1,
                        Y1,
                        Z1,
                        color=(0, 0, 0),
                        tube_radius=line_thickness)

        top = strat2[0, :, layer_n + 1]  # left edge (looking downdip)
        base = strat2[0, :, layer_n]
        X1 = scale * (np.zeros(np.shape(base)))
        Y1 = scale * (dx * np.arange(0, c))
        Z1 = ve * scale * base
        mlab.plot3d(X1, Y1, Z1, color=(0, 0, 0), tube_radius=line_thickness)
        if layer_n == ts - 2:
            Z1 = ve * scale * top
            mlab.plot3d(X1,
                        Y1,
                        Z1,
                        color=(0, 0, 0),
                        tube_radius=line_thickness)

        top = strat2[-1, :, layer_n + 1]  # right edge (looking downdip)
        base = strat2[-1, :, layer_n]
        X1 = scale * (dx * (r - 1) * np.ones(np.shape(base)))
        Y1 = scale * (dx * np.arange(0, c))
        Z1 = ve * scale * base
        mlab.plot3d(X1, Y1, Z1, color=(0, 0, 0), tube_radius=line_thickness)
        if layer_n == ts - 2:
            Z1 = ve * scale * top
            mlab.plot3d(X1,
                        Y1,
                        Z1,
                        color=(0, 0, 0),
                        tube_radius=line_thickness)

        if (bottom_z > np.min(strat[:, :, layer_n])) and (bottom_z < np.max(
                strat[:, :, layer_n])):
            contours = measure.find_contours(strat[:, :, layer_n], bottom_z)
            for i in range(0, len(contours)):
                x1 = contours[i][:, 0]
                y1 = contours[i][:, 1]
                z1 = np.ones(np.shape(x1)) * bottom_z
                mlab.plot3d(x1,
                            y1,
                            z1,
                            color=(0, 0, 0),
                            tube_radius=line_thickness)

        if (top_z > np.min(strat[:, :, layer_n])) and (top_z < np.max(
                strat[:, :, layer_n])):
            contours = measure.find_contours(strat[:, :, layer_n], top_z)
            for i in range(0, len(contours)):
                x1 = contours[i][:, 0]
                y1 = contours[i][:, 1]
                z1 = np.ones(np.shape(x1)) * top_z
                mlab.plot3d(x1,
                            y1,
                            z1,
                            color=(0, 0, 0),
                            tube_radius=line_thickness)
Пример #17
0
import mayavi.mlab as plt
import os
from math import *
import numpy as np

h0 = 2277.
R = 4.

x = y = np.linspace(-10.,10.,41)
xv, yv = np.meshgrid(x, y, indexing='ij', sparse=False)
hv = h0/(1 + (xv**2+yv**2)/(R**2))

# Define a coarser grid for the vector field
x2 = y2 = np.linspace(-10.,10.,11)
x2v, y2v = np.meshgrid(x2, y2, indexing='ij', sparse=False)
h2v = h0/(1 + (x2v**2 + y2v**2)/(R**2)) # Surface on coarse grid
# endcoarsergrid

dhdx, dhdy = np.gradient(h2v)

# Draw contours and gradient field of h
plt.figure(11, fgcolor=(.0, .0, .0), bgcolor=(1.0, 1.0, 1.0))
plt.contour_surf(xv, yv, hv, contours=20, warp_scale=0.01)

# mode controls the style how vectors are drawn
# color controls the colors of the vectors
# scale_mode='none' ensures that vectors are drawn with the same length
plt.quiver3d(x2v, y2v, 0.01*h2v, dhdx, dhdy, np.zeros_like(dhdx),
             mode='arrow', color=(1,0,0), scale_mode='none')
# end draw contours and gradient field of h
raw_input('Press any key to continue')