Пример #1
0
import mcts, uuid, os
import json

__all__ = ['store', 'load']

SIZE = mcts.board_size()
KOMI = 7.5

# Format for games:
# games = [game]
# game = (moves, <score>)
# moves = ['B'|'W', <move>, search_count]
# search_count = [int]


def store(filename, games):
    tmp_fname = '{}.{}'.format(filename, str(uuid.uuid4()))
    f = open(tmp_fname, 'w')
    for moves, score in games:
        f.write('Game: {} {} {} {}\n'.format(SIZE, KOMI, len(moves), score))
        for m in moves:
            f.write('{} {} |'.format(m[0], m[1]))
            assert len(m[2]) == SIZE * SIZE + 1, '{} != {}'.format(
                m[2], SIZE * SIZE + 1)
            for count in m[2]:
                f.write(' {}'.format(count))
            f.write('\n')
    f.close()
    os.rename(tmp_fname, filename)

Пример #2
0
#!/usr/bin/env python3
import random, sys, glob
import numpy as np
import mcts
import tensorflow as tf

__all__ = ['Network']

size = mcts.board_size()


def keras_residual_block(input_layer):
    v = tf.keras.layers.ZeroPadding2D(
        padding=1, data_format='channels_first')(input_layer)
    v = tf.keras.layers.Conv2D(
        128,
        3,
        data_format='channels_first',
        kernel_regularizer=tf.keras.regularizers.l2(1.e-4))(v)
    v = tf.keras.layers.LeakyReLU(0.01)(v)
    v = tf.keras.layers.ZeroPadding2D(padding=1,
                                      data_format='channels_first')(v)
    v = tf.keras.layers.Conv2D(
        128,
        3,
        data_format='channels_first',
        kernel_regularizer=tf.keras.regularizers.l2(1.e-4))(v)
    merged = tf.keras.layers.Add()([input_layer, v])
    return tf.keras.layers.LeakyReLU(0.01)(merged)