Пример #1
0
def new_lpcnet_model(rnn_units1=384, rnn_units2=16, nb_used_features = 38, training=False, use_gpu=True, adaptation=False):
    pcm = Input(shape=(None, 3))
    feat = Input(shape=(None, nb_used_features))
    pitch = Input(shape=(None, 1))
    dec_feat = Input(shape=(None, 128))
    dec_state1 = Input(shape=(rnn_units1,))
    dec_state2 = Input(shape=(rnn_units2,))

    padding = 'valid' if training else 'same'
    fconv1 = Conv1D(128, 3, padding=padding, activation='tanh', name='feature_conv1')
    fconv2 = Conv1D(128, 3, padding=padding, activation='tanh', name='feature_conv2')

    embed = Embedding(256, embed_size, embeddings_initializer=PCMInit(), name='embed_sig')
    cpcm = Reshape((-1, embed_size*3))(embed(pcm))

    pembed = Embedding(256, 64, name='embed_pitch')
    cat_feat = Concatenate()([feat, Reshape((-1, 64))(pembed(pitch))])
    
    cfeat = fconv2(fconv1(cat_feat))

    fdense1 = Dense(128, activation='tanh', name='feature_dense1')
    fdense2 = Dense(128, activation='tanh', name='feature_dense2')

    cfeat = fdense2(fdense1(cfeat))
    
    rep = Lambda(lambda x: K.repeat_elements(x, frame_size, 1))

    rnn = GRU(rnn_units1, return_sequences=True, return_state=True, recurrent_activation="sigmoid", reset_after='true', name='gru_a')
    rnn2 = GRU(rnn_units2, return_sequences=True, return_state=True, recurrent_activation="sigmoid", reset_after='true', name='gru_b')

    rnn_in = Concatenate()([cpcm, rep(cfeat)])
    md = MDense(pcm_levels, activation='softmax', name='dual_fc')
    gru_out1, _ = rnn(rnn_in)
    gru_out2, _ = rnn2(Concatenate()([gru_out1, rep(cfeat)]))
    ulaw_prob = md(gru_out2)
    
    if adaptation:
        rnn.trainable=False
        rnn2.trainable=False
        md.trainable=False
        embed.Trainable=False
    
    model = Model([pcm, feat, pitch], ulaw_prob)
    model.rnn_units1 = rnn_units1
    model.rnn_units2 = rnn_units2
    model.nb_used_features = nb_used_features
    model.frame_size = frame_size

    encoder = Model([feat, pitch], cfeat)
    
    dec_rnn_in = Concatenate()([cpcm, dec_feat])
    dec_gru_out1, state1 = rnn(dec_rnn_in, initial_state=dec_state1)
    dec_gru_out2, state2 = rnn2(Concatenate()([dec_gru_out1, dec_feat]), initial_state=dec_state2)
    dec_ulaw_prob = md(dec_gru_out2)

    decoder = Model([pcm, dec_feat, dec_state1, dec_state2], [dec_ulaw_prob, state1, state2])
    return model, encoder, decoder
Пример #2
0
def new_lpcnet_model(rnn_units1=384, rnn_units2=16, nb_used_features = 38, use_gpu=True):
    pcm = Input(shape=(None, 2))
    exc = Input(shape=(None, 1))
    feat = Input(shape=(None, nb_used_features))
    pitch = Input(shape=(None, 1))
    dec_feat = Input(shape=(None, 128))
    dec_state1 = Input(shape=(rnn_units1,))
    dec_state2 = Input(shape=(rnn_units2,))

    fconv1 = Conv1D(128, 3, padding='same', activation='tanh', name='feature_conv1')
    fconv2 = Conv1D(102, 3, padding='same', activation='tanh', name='feature_conv2')

    embed = Embedding(256, embed_size, embeddings_initializer=PCMInit(), name='embed_sig')
    cpcm = Reshape((-1, embed_size*2))(embed(pcm))
    embed2 = Embedding(256, embed_size, embeddings_initializer=PCMInit(), name='embed_exc')
    cexc = Reshape((-1, embed_size))(embed2(exc))

    pembed = Embedding(256, 64, name='embed_pitch')
    cat_feat = Concatenate()([feat, Reshape((-1, 64))(pembed(pitch))])
    
    cfeat = fconv2(fconv1(cat_feat))

    fdense1 = Dense(128, activation='tanh', name='feature_dense1')
    fdense2 = Dense(128, activation='tanh', name='feature_dense2')

    cfeat = Add()([cfeat, cat_feat])
    cfeat = fdense2(fdense1(cfeat))
    
    rep = Lambda(lambda x: K.repeat_elements(x, 160, 1))

    if use_gpu:
        rnn = CuDNNGRU(rnn_units1, return_sequences=True, return_state=True, name='gru_a')
        rnn2 = CuDNNGRU(rnn_units2, return_sequences=True, return_state=True, name='gru_b')
    else:
        rnn = GRU(rnn_units1, return_sequences=True, return_state=True, recurrent_activation="sigmoid", reset_after='true', name='gru_a')
        rnn2 = GRU(rnn_units2, return_sequences=True, return_state=True, recurrent_activation="sigmoid", reset_after='true', name='gru_b')

    rnn_in = Concatenate()([cpcm, cexc, rep(cfeat)])
    md = MDense(pcm_levels, activation='softmax', name='dual_fc')
    gru_out1, _ = rnn(rnn_in)
    gru_out2, _ = rnn2(Concatenate()([gru_out1, rep(cfeat)]))
    ulaw_prob = md(gru_out2)
    
    model = Model([pcm, exc, feat, pitch], ulaw_prob)
    model.rnn_units1 = rnn_units1
    model.rnn_units2 = rnn_units2
    model.nb_used_features = nb_used_features

    encoder = Model([feat, pitch], cfeat)
    
    dec_rnn_in = Concatenate()([cpcm, cexc, dec_feat])
    dec_gru_out1, state1 = rnn(dec_rnn_in, initial_state=dec_state1)
    dec_gru_out2, state2 = rnn2(Concatenate()([dec_gru_out1, dec_feat]), initial_state=dec_state2)
    dec_ulaw_prob = md(dec_gru_out2)

    decoder = Model([pcm, exc, dec_feat, dec_state1, dec_state2], [dec_ulaw_prob, state1, state2])
    return model, encoder, decoder