Пример #1
0
    def _sort_eigensystem(parameters_dict):
        """Sort the eigensystem of the Tensor parameterized by eigen values and vectors.

        Args:
            parameters_dict (dict): the results from optimization. This expects each value to be a (n, ...) array with
                for each voxel either a scalar or a vector.

        Returns:
            tuple: the sorted eigenvalues,
        """
        eigenvectors = np.stack(tensor_spherical_to_cartesian(np.squeeze(parameters_dict['theta']),
                                                              np.squeeze(parameters_dict['phi']),
                                                              np.squeeze(parameters_dict['psi'])), axis=0)

        eigenvalues = np.atleast_2d(np.squeeze(np.dstack([parameters_dict['d'],
                                                          parameters_dict['dperp0'],
                                                          parameters_dict['dperp1']])))

        ranking = np.atleast_2d(np.squeeze(np.argsort(eigenvalues, axis=1, kind='mergesort')[:, ::-1]))
        voxels_range = np.arange(ranking.shape[0])
        sorted_eigenvalues = np.concatenate([eigenvalues[voxels_range, ranking[:, ind], None]
                                             for ind in range(ranking.shape[1])], axis=1)
        sorted_eigenvectors = np.stack([eigenvectors[ranking[:, ind], voxels_range, :]
                                        for ind in range(ranking.shape[1])])

        return sorted_eigenvalues, sorted_eigenvectors, ranking
Пример #2
0
    def extra_optimization_maps(results, input_data=None):
        """Return some interesting measures like FA, MD, RD and AD.

        This function is meant to be used as a post processing routine in Tensor-like compartment models.

        Args:
            results (dict): Dictionary containing at least theta, phi, psi, d, dperp0 and dperp1
                We will use this to generate some standard measures from the diffusion Tensor.
            input_data (mdt.utils.MRIInputData): optionally, the input data used during the model fitting.

        Returns:
            dict: as keys typical elements like 'FA and 'MD' as interesting output and as per values the maps.
                These maps are per voxel, and optionally per instance per voxel
        """
        output = {
            'FA':
            DTIMeasures.fractional_anisotropy(results['d'], results['dperp0'],
                                              results['dperp1']),
            'MD': (results['d'] + results['dperp0'] + results['dperp1']) / 3.,
            'AD':
            results['d'],
            'RD': (results['dperp0'] + results['dperp1']) / 2.0,
        }

        if all('{}.std'.format(el) in results
               for el in ['d', 'dperp0', 'dperp1']):
            output.update({
                'FA.std':
                DTIMeasures.fractional_anisotropy_std(results['d'],
                                                      results['dperp0'],
                                                      results['dperp1'],
                                                      results['d.std'],
                                                      results['dperp0.std'],
                                                      results['dperp1.std'],
                                                      covariances=results.get(
                                                          'covariances',
                                                          None)),
                'MD.std':
                np.sqrt(results['d.std'] + results['dperp0.std'] +
                        results['dperp1.std']) / 3.,
                'AD.std':
                results['d.std'],
                'RD.std':
                (results['dperp0.std'] + results['dperp1.std']) / 2.0,
            })

        if all(el in results for el in ['theta', 'phi', 'psi']):
            eigenvectors = tensor_spherical_to_cartesian(
                np.squeeze(results['theta']), np.squeeze(results['phi']),
                np.squeeze(results['psi']))
            for ind in range(3):
                output.update({'vec{}'.format(ind): eigenvectors[ind]})

        return output
Пример #3
0
    def sort_eigensystem(parameters_dict):
        eigenvectors = np.stack(tensor_spherical_to_cartesian(np.squeeze(parameters_dict['theta']),
                                                              np.squeeze(parameters_dict['phi']),
                                                              np.squeeze(parameters_dict['psi'])), axis=0)

        eigenvalues = np.atleast_2d(np.squeeze(np.dstack([parameters_dict['d'],
                                                          parameters_dict['dperp0'],
                                                          parameters_dict['dperp1']])))

        ranking = np.atleast_2d(np.squeeze(np.argsort(eigenvalues, axis=1, kind='mergesort')[:, ::-1]))
        voxels_range = np.arange(ranking.shape[0])
        sorted_eigenvalues = np.concatenate([eigenvalues[voxels_range, ranking[:, ind], None]
                                             for ind in range(ranking.shape[1])], axis=1)
        sorted_eigenvectors = np.stack([eigenvectors[ranking[:, ind], voxels_range, :]
                                        for ind in range(ranking.shape[1])])

        return sorted_eigenvalues, sorted_eigenvectors, ranking
Пример #4
0
    def extra_optimization_maps(results):
        """Return some interesting measures like FA, MD, RD and AD.

        Args:
            results (dict): Dictionary containing at least theta, phi, psi, d, dperp0 and dperp1
                We will use this to generate some standard measures from the diffusion Tensor.

        Returns:
            dict: as keys typical elements like 'FA and 'MD' as interesting output and as per values the maps.
                These maps are per voxel, and optionally per instance per voxel
        """
        output = {
            'FA': DTIMeasures.fractional_anisotropy(results['d'], results['dperp0'], results['dperp1']),
            'MD': (results['d'] + results['dperp0'] + results['dperp1']) / 3.,
            'AD': results['d'],
            'RD': (results['dperp0'] + results['dperp1']) / 2.0,
        }

        if all('{}.std'.format(el) in results for el in ['d', 'dperp0', 'dperp1']):
            output.update({
                'FA.std': DTIMeasures.fractional_anisotropy_std(
                    results['d'], results['dperp0'], results['dperp1'],
                    results['d.std'], results['dperp0.std'], results['dperp1.std']),
                'MD.std': np.sqrt(results['d.std'] + results['dperp0.std'] + results['dperp1.std']) / 3.,
                'AD.std': results['d.std'],
                'RD.std': (results['dperp0.std'] + results['dperp1.std']) / 2.0,
            })

        if all(el in results for el in ['theta', 'phi', 'psi']):
            eigenvectors = tensor_spherical_to_cartesian(np.squeeze(results['theta']),
                                                         np.squeeze(results['phi']),
                                                         np.squeeze(results['psi']))
            for ind in range(3):
                output.update({'vec{}'.format(ind): eigenvectors[ind]})

        return output