Пример #1
0
def test_mean_basic():
  obs = mean([100,150,200])
  exp = 150
  assert_equal(obs, exp)

  obs = mean([0,2,0,2,0,2])
  exp = 1
  assert_equal(obs, exp)
Пример #2
0
def test_mean_basic():
    obs = mean([100, 150, 200])
    exp = 150
    assert_equal(obs, exp)

    obs = mean([0, 2, 0, 2, 0, 2])
    exp = 1
    assert_equal(obs, exp)
def test_mean1():
    obs = mean([0, 200])
    exp = 100
    assert_equal(obs, exp)

    obs = mean([0, -200])
    exp = -100
    assert_equal(obs, exp)

    obs = mean([0]) 
    exp = 0
    assert_equal(obs, exp)
def test_mean1():
    obs = mean([0, 200])
    exp = 100
    assert_equal(obs, exp)

    obs = mean([0, -200])
    exp = -100
    assert_equal(obs, exp)

    obs = mean([0])
    exp = 0
    assert_equal(obs, exp)
Пример #5
0
def test_complex():
    # Given that complex numbers are an unordered field,
    # the arithmetic mean of complex numbers is meaningless.
    num_list = [2 + 3j, 3 + 4j, -32 - 2j]
    obs = mean(num_list)
    exp = NotImplemented
    assert obs == exp
Пример #6
0
def test_complex():
    # given that complex numbers are an unordered field
    # the arithmetic mean of complex numbers is meaningless
    num_list = [2 + 3j, 3 + 4j, -32 - 2j]
    obs = mean(num_list)
    exp = -9 + 1.6666666666666667j
    assert obs == exp
Пример #7
0
def variance(numbers):
    mean = m.mean(numbers)
    xminus_mean = []
    for i in numbers:
        x = (i - mean)**2
        xminus_mean.append(x)
    return sum(xminus_mean) / (len(xminus_mean) - 1)
Пример #8
0
def variance(x):
	m = mean(x)
	if m:
		ret = 0.0
		for i in x:
			ret += (i - m)**2
		return ret / len(x)
Пример #9
0
def test_complex():
     # given that complex numbers are an unordered field
     # the arithmetic mean of complex numbers is meaningless
     num_list = [2 + 3j, 3 + 4j, -32 - 2j]
     obs = mean(num_list)
     exp = NotImplemented
     assert obs == exp 	
Пример #10
0
def variance(x):
    m = len(x)
    res = 0.0
    res_mean = mean(x)
    for i in x:
        res = res + (i - res_mean)**2
    return (res / m)
Пример #11
0
def test_result():
    """
    TEsts mean result.
    """

    number_list = [1, 2, 3]
    expected_mean = 2
    assert mean(number_list) == expected_mean
Пример #12
0
def variance(data):
    #step 1:Find the mean for the data
    m = mean(data)
    sm = get_subtracted_mean(data, m)
    sq = square(sm)
    #step 4: Find the sum of the squares.
    sum_sq = sum(sq)
    #Step 5 : Divide the sum by N to get the variance.
    div = float(sum_sq / float(len(data)))
    return div
Пример #13
0
def variance(x):
    result = 0.0
    m = 0.0
    if x.size == 0:
        print("error")
        sys.exit()
    for value in x:
        result += (value - mean(x))**2
        m += 1
    return result / m
Пример #14
0
def remove_outliers(image):
	mean_value = mean.mean(image)
	min_max = image.getMinMax()
	stdev = standard_deviation.standard_deviation(image)
	min_value = mean_value - stdev
	max_value = mean_value + stdev
	if(min_value < min_max[0]):
		min_value = min_max[0]
	if( max_value > min_max[1]):
		max_value = min_max[1]
	return normalize_values.normalize_values(image, min_value, max_value )
Пример #15
0
def mse(y, y_hat):
    if y.size == 0 or isinstance(y, (np.ndarray, np.generic)) == False:
        return None
    if y_hat.size == 0 or isinstance(y_hat, (np.ndarray, np.generic)) == False:
        return None
    if y.shape != y_hat.shape:
        return None

    res = 0
    res_n = np.zeros(y.shape)
    for i in range(y.size):
        res_n[i] += (y_hat[i] - y[i])**2
    return mean(res_n)
Пример #16
0
def main(dat):
    global alpha,nu,data,objects,people,results
    objects,people,data,training_data,indices=refine_data(dat)
    results=mean.mean(dat)
    
    for i in training_data:
        results[i]=1.0

    results={i:[1-results[i],results[i]] for i in results.keys()}
    nu0,alpha0=init_hyper()
    nu,alpha=nu0,alpha0
    
    
    '''main loop'''
    iteration=0
    while True:
        #plot_pis(indices,iteration)
        iteration+=1
        print '\nIteration %d' %iteration
        presults=deepcopy(results)
        
        '''update hyperparameters'''
        print 'updating hyperparameters'
        N_current=[sum([results[i][j] for i in results.keys()]) for j in range(settings.nlabels)]
        for i in range(len(nu)):
            nu[i]=nu0[i]+N_current[i]
        N=Ns()
        for k in people:            
            for j in range(settings.nlabels):
                for l in range(settings.nscores):
                    alpha[k][j][l]=alpha0[k][j][l]+N[k][j][l]
        print '\nUpdating results'
        count=0
        for i in objects:
            if count%1000==0:
                overprint('Updating results for object %s of %s' %(add_comma(count),add_comma(len(objects))))
            count+=1
                
            rhoi=[rho(i,j) for j in range(settings.nlabels)]
            if sum(rhoi)==0:
                results[i]=[0.0 for j in range(settings.nlabels)]
            else:
                for j in range(settings.nlabels):
                    results[i][j]=rhoi[j]/sum(rhoi)
        print '\n'
        if check_convergence(presults,results):            
            f=open(fname,'w')
            pickle.dump(alpha,f)
            f.close()
            return {i:results[i][1] for i in objects}
Пример #17
0
def variance(x):
    m = mean(x)
    f = lambda x: pow(x - m, 2)
    res = 0
    np.seterr(all='raise')
    try:
        if (len(x) == 0):
            return None
        for elem in x:
            res += f(elem)
    except:
        return None
    return (res / len(x))


#X = np.array([0, 15, -9, 7, 12, 3, -21])
#print(variance(X))

#print(np.var(X))

#print(variance(X/2))

#print(np.var(X/2))
Пример #18
0
def test_ints():
    num_list = [1, 2, 3, 4, 5]
    obs = mean(num_list)

    assert obs == 3
Пример #19
0
def test_empty():
    assert mean([]) == 0
Пример #20
0
def test_not_numbers():
    values = [2, "lolcats"]
    with pytest.raises(TypeError):
        out = mean(values)
Пример #21
0
def test_floating_mean1():
    obs = mean([1, 2])
    exp = 1.5
    assert_equal(obs, exp)
Пример #22
0
 def test_empty(self):
     self.assertEqual(mean.mean([]), 0)
Пример #23
0
def test_double():
     # This one will fail in Python 2
     num_list=[1,2,3,4]
     obs = mean(num_list)
     exp = 2.5
     assert obs == exp
Пример #24
0
def mse(y, y_hat):
    return mean((y_hat - y)**2)
Пример #25
0
def testComplex():
   num_List = [3 +2j, 4, 0]
   obs = mean(num_list)
   exp = NotImplemented
   assert obs == exp
Пример #26
0
def testZero():
    num_List = [0,0,0,4]
    exp = 1
    obs = mean(num_List)
    assert obs == exp
Пример #27
0
def testNeg():
    num_List = [-1,-2,3,]
    exp = 0
    obs = mean(num_List)
    assert obs == exp
def test_single_int():
    with pytest.raises(TypeError):
        mean(1)
Пример #29
0
def test_zero():
     num_list=[0,2,4,6]
     obs = mean(num_list)
     exp = 3
     assert obs == exp
Пример #30
0
def test_mean_float():
  obs = mean([0,1,2,3,4,5])
  exp = 2.5
  assert_equal(obs, exp)
Пример #31
0
def test_long():
     big = 100000000
     obs = mean(range(1,big))
     exp = big/2.0
     assert obs == exp
Пример #32
0
def test_mean_neg():
    obs = mean([-1, 1])
    exp = 0
    assert_equal(obs, exp)
Пример #33
0
def test_mean_float():
    obs = mean([0, 1, 2, 3, 4, 5])
    exp = 2.5
    assert_equal(obs, exp)
Пример #34
0
def testDouble():
    num_List = [np.pi, np.pi, np.pi]
    exp = np.pi
    obs = mean(num_List)
    assert obs == exp
Пример #35
0
def test_long():
    big = 100_000_000  # Python 3.6-ism
    obs = mean(range(1, big))
    exp = big / 2.0
    assert obs == exp
Пример #36
0
def testInts():
    num_List = [1,2,3,4,5]
    exp = 3
    obs = mean(num_List)
    assert obs == exp
def test_mean_ten_tenths():
    assert_almost_equal(mean([0.1]*10),0.1)
Пример #38
0
def test_mean_neg():
  obs = mean([-1,1])
  exp = 0
  assert_equal(obs, exp)
Пример #39
0
def test_floating_mean1():
    obs = mean([1, 2])
    exp = 1.5
    assert_equal(obs, exp)
Пример #40
0
def test_int():
    num_list = [1, 2, 3, 4, 5]
    assert mean(num_list) == 3
Пример #41
0
import numpy as np
from mean import mean

X = np.array([0, 15, -9, 7, 12, 3, -21])
res = mean(X)
print(res)

X = np.array([0, 15, -9, 7, 12, 3, -21])
res = mean(X**2)
print(res)
def test_zero():
    num_list = [0, 2, 4, 6]
    assert mean(num_list) == 3
Пример #43
0
def test_zero():
    num_list = [0, 2, 4, 6]
    assert mean(num_list) == 3
def main(data):
    global alpha,nu,results,objects,people,scores,labels
    objects,people,scores,labels=data
    results=mean.mean(data)
    training_planets=get_training()
    
    for i in training_planets:
        results[i]=1.0

    results={i:[1-results[i],results[i]] for i in results.keys()}
    nu0,alpha0=init_hyper(alphadict)
    nu,alpha=nu0,alpha0
    
    
    '''main loop'''
    iteration=0
    while True:
        iteration+=1
        print '\nIteration %d' %iteration
        presults=deepcopy(results)
        
        '''update hyperparameters'''
        print 'updating hyperparameters'
        N_current=[sum([results[i][j] for i in results.keys()]) for j in range(settings.nlabels)]
        for i in range(len(nu)):
            nu[i]=nu0[i]+N_current[i]
        
        alpha=deepcopy(alpha0)
        for a in xrange(len(objects)):
            if a%1000==0:
                overprint('processing line %s of %s' %(add_comma(a),add_comma(len(objects))))
            i=objects[a]
            k=people[a]
            l=scores[a]
            for j in range(settings.nlabels):
                alpha[k][j][l]+=results[i][j]
        print '\nUpdating results'
        results={i:[kappa(j) for j in range(settings.nscores)] for i in results.keys()}#could change it to a defaultdict but this is probably clearer
        for a in xrange(len(objects)):
            if a%1000==0:
                overprint('processing line %s of %s' %(add_comma(a),add_comma(len(objects))))
            i=objects[a]
            k=people[a]
            l=scores[a]
            for j in range(settings.nlabels):
                results[i][j]*=pi(k,j,l)
        #normalise
        for i in results.keys():
            N=sum(results[i])
            if N!=0.0:
                for j in range(settings.nlabels):
                    results[i][j]/=N
        print '\n'     
          
        if check_convergence(presults,results):
            print 'algorithm converged'
            '''print 'calculating confusion matrices'
            final_pi={k:[[pi(k,j,l) for l in range(settings.nscores)] for j in range(settings.nlabels)] for k in people}
            f=open('pi_results.dat','w')
            pickle.dump(final_pi,f)
            f.close()'''
            
            f=open(settings.dir_name+fname,'w')
            pickle.dump(alpha,f)
            f.close()
            return {i:results[i][1] for i in set(results.keys())-training_planets}
Пример #45
0
def test_single_int():
    with pytest.raises(TypeError):
        mean(1)
Пример #46
0
 def test3(self):
     inpu = [1,2,3,4,5]
     expMean = 3
     assert mean.mean(inpu) == expMean #Test 3 Fails
Пример #47
0
def test_mean_tol():
    big = 10000000000000000000000000000000.
    obs = mean([big, 1])
    exp = big / 2
    tol = 0.00000000000000000000000001
    assert_almost_equal(obs, exp, tol)
Пример #48
0
def test_mean_tol():
  big = 10000000000000000000000000000000.
  obs = mean([big,1])
  exp = big/2
  tol = 0.00000000000000000000000001
  assert_almost_equal(obs, exp, tol)
def test_empty():
    assert mean([]) == 0
Пример #50
0
    out_labels.add(new_labels)

f = open(dir_name + "/source_transits_lc_details.dat", "w")
pickle.dump([source_labels, all_transits, light_curve_details], f)
f.close()

del sources  # free up some memory
print "\n"
print "total transits found: %s" % add_comma(len(out_objects))
f = open(dir_name + "/" + out, "w")
for i in range(len(out_objects)):
    f.write("%s,%s,%d,%s\n" % (out_objects[i], out_people[i], out_scores[i], out_labels[i]))
f.close()

print "running mean algorithm on transits to find most promising ones"
results = mean.mean([out_objects, out_people, out_scores, out_labels])

f = open(dir_name + "/transit_results.dat", "w")
pickle.dump(results, f)
f.close()

sources = {}
for tran in results.keys():
    if results[tran] > 0:  # this line may need to be edited
        source_id, light_curve_id, tran_id = tran.split("_")
        x, width = all_transits[light_curve_id + "_" + tran_id]
        url, release_id = light_curve_details[light_curve_id]
        if source_id not in set(sources.keys()):
            sources[source_id] = source(source_id, source_labels[source_id])
        lc = sources[source_id].get_light_curve(light_curve_id, url, release_id)
        lc.add_box(
Пример #51
0
def test_mean_zero():
    obs = mean([0, 0, 0, 0, 0, 0, 0, 0])
    exp = 0
    assert_equal(obs, exp)
def test_all_zeroes():
    obs = mean([0, 0, 0, 0])
    exp = 0
    assert_equal(obs, exp)
Пример #53
0
def test_double():
    num_list = [1, 2, 3, 4]
    obs = mean(num_list)
    exp = 2.5
    assert obs == exp
def test_ints():
    num_list = [1, 2, 3, 4, 5]
    obs = mean(num_list)

    assert obs == 3
Пример #55
0
def test_mean_1234():
    num_list  = [1,2,3,4,5]
    calc_mean = mean(num_list)
    expected_mean = 3
    assert expected_mean == calc_mean
Пример #56
0
def test_mean_zero():
  obs = mean([0,0,0,0,0,0,0,0])
  exp = 0
  assert_equal(obs, exp)
Пример #57
0
def test_zero():
    num_list = [0, 2, 4, 6]
    obs = mean(num_list)
    exp = 3
    assert obs == exp
def test_not_numbers():
    values = [2, "lolcats"]
    with pytest.raises(TypeError):
        out = mean(values)