def load():
    entities = [
        'Drug', 'Form', 'Route', 'ADE', 'Reason', 'Frequency', 'Duration',
        'Dosage', 'Strength'
    ]
    pipeline = N2C2Pipeline(entities=entities)
    model = Model(pipeline)
    model_directory = resource_filename('medacy_model_clinical_notes', 'model')
    model.load(os.path.join(model_directory, 'n2c2_2020_jan_22.pkl'))
    return model
def load():
    entities = ['Drug', 'Form', 'Route', 'ADE', 'Reason', 'Frequency', 'Duration', 'Dosage', 'Strength']
    pipeline = BertPipeline(
        entities=entities, using_crf=True,
        pretrained_model='emilyalsentzer/Bio_ClinicalBERT',
        **PIPELINE_ARGS)
    model = Model(pipeline)
    model_directory = resource_filename('medacy_bert_model_clinical_notes', 'model')
    model_directory = os.path.join(model_directory, 'torch')
    model.load(model_directory)
    return model
Пример #3
0
def _activate_model(model_path, pipeline_class, args, kwargs):
    """
    Creates a Model with the given pipeline configuration and sets its weights to the pickled model path
    :param model_path: path to the model pickle file
    :param pipeline_class: the pipeline class for the pickled model
    :param args, kwargs: arguments to pass to the pipeline constructor
    :return: a usable Model instance
    """
    pipeline_instance = pipeline_class(*args, **kwargs)
    model = Model(pipeline_instance)
    model.load(model_path)
    return model
Пример #4
0
    def test_fit_predict_dump_load(self):
        """Fits a model, tests that it predicts correctly, dumps and loads it, then tests that it still predicts"""

        model = Model(self.pipeline)

        # Test attempting to predict before fitting
        with self.assertRaises(RuntimeError):
            model.predict('Lorem ipsum dolor sit amet.')

        model.fit(self.dataset,
                  groundtruth_directory=self.groundtruth_2_directory)
        # Test X and y data are set
        self.assertTrue(model.X_data)
        self.assertTrue(model.y_data)

        # Test that there is at least one prediction
        resulting_ann = model.predict(
            'To exclude the possibility that alterations in PSSD might be a consequence of changes in the volume of reference, we used a subset of the vibratome sections'
        )
        self.assertIsInstance(resulting_ann, Annotations)
        self.assertTrue(resulting_ann)

        # Test prediction over directory
        resulting_dataset = model.predict(
            self.dataset.data_directory,
            prediction_directory=self.prediction_directory)
        self.assertIsInstance(resulting_dataset, Dataset)
        self.assertEqual(len(self.dataset), len(resulting_dataset))

        # Test that groundtruth is written
        groundtruth_dataset = Dataset(self.groundtruth_2_directory)
        expected = [d.file_name for d in self.dataset]
        actual = [d.file_name for d in groundtruth_dataset]
        self.assertListEqual(expected, actual)

        # Test that the groundtruth ann files have content
        for ann in groundtruth_dataset.generate_annotations():
            self.assertTrue(ann)

        # Test pickling a model
        pickle_path = os.path.join(self.prediction_directory, 'test.pkl')
        model.dump(pickle_path)
        new_model = Model(self.pipeline)
        new_model.load(pickle_path)

        # Test that there is at least one prediction
        resulting_ann = new_model.predict(
            'To exclude the possibility that alterations in PSSD might be a consequence of changes in the volume of reference, we used a subset of the vibratome sections'
        )
        self.assertIsInstance(resulting_ann, Annotations)
        self.assertTrue(resulting_ann)
Пример #5
0
    def test_predict(self):
        """
        predict() has different functionality depending on what is passed to it; therefore this test
        ensures that each type of input is handled correctly
        """

        # Init the Model
        pipe = TestingPipeline(entities=self.entities)
        sample_model_path = os.path.join(test_dir, 'sample_models',
                                         'sample_test_pipe.pkl')
        model = Model(pipe)
        model.load(sample_model_path)

        # Test passing a Dataset
        dataset_output = model.predict(self.dataset)
        self.assertIsInstance(dataset_output, Dataset)
        self.assertEqual(len(dataset_output), len(self.dataset))

        # Test passing a directory
        directory_output = model.predict(self.dataset.data_directory)
        self.assertIsInstance(directory_output, Dataset)
        self.assertEqual(len(directory_output), len(self.dataset))

        # Test passing a string
        string_output = model.predict('This is a sample string.')
        self.assertIsInstance(string_output, Annotations)

        # Test that the predictions are written to the expected location when no path is provided
        expected_dir = os.path.join(self.dataset.data_directory, 'predictions')
        self.assertTrue(os.path.isdir(expected_dir))

        # Delete that directory
        shutil.rmtree(expected_dir)

        # Test predicting to a specific directory
        model.predict(self.dataset.data_directory,
                      prediction_directory=self.prediction_directory_2)
        expected_files = os.listdir(self.prediction_directory_2)
        self.assertEqual(6, len(expected_files))