Пример #1
0
def from_medleydb(_session, limit=None):
    """Import data from medleydb

    Parameters
    ----------
    session : SQLAlchemy session
        The session

    """
    import itertools

    with open(medleydb.INST_TAXONOMY) as f_handle:
        data = yaml.load(f_handle)
        walk_taxonomy(data, _session)
        _session.commit()

    if limit is None:
        entries = medleydb.load_all_multitracks()
    else:
        entries = itertools.islice(medleydb.load_all_multitracks(), limit)

    for mt in entries:
        data = model.Track.from_medleydb(mt, _session)
        _session.add(data)

    _session.commit()
Пример #2
0
    def get_tracks(self, min_sources=10, instruments=None, rm_silence=False, trim=None, count=None, **kwargs):
        if instruments:
            valid_instruments = instruments
        else:
            valid_instruments = self.get_valid_instruments(min_sources)
        logging.info('Valid instruments: ' + str(valid_instruments) + '\n')

        counts = defaultdict(lambda: 0)

        multitrack_list = mdb.load_all_multitracks()

        for track in multitrack_list:
            if not track.has_bleed:
                for stem in track.stems:
                    if stem.instrument in valid_instruments:
                        if count and counts[stem.instrument] >= count:
                            continue
                        counts[stem.instrument] += 1
                        if rm_silence or trim:
                            ext = os.path.splitext(stem.file_path)[1]
                            dest = tempfile.mktemp(suffix=ext, dir=self.tempdir)
                            logging.info('Processing (sox): ' + str(stem.file_path))
                            sox_args = ['sox', stem.file_path, dest]
                            if rm_silence:
                                sox_args.extend(['silence', '1', '0.1', '0.1%', '-1', '0.1', '0.1%'])
                            if trim:
                                sox_args.extend(['trim', '0', str(trim)])
                            subprocess.Popen(sox_args, stderr=subprocess.PIPE)
                            stem.file_path = dest
                        stem.label = stem.instrument
                        yield self.track_to_dict(stem)

        logging.info(counts)
def main(args):
    mtracks = mdb.load_all_multitracks()
    mix_coefs = dict()
    for mtrack in mtracks:
        mix_coefs[mtrack.track_id] = analyze_mix(mtrack)
    with open(args.output_path, 'w') as fdesc:
        yaml.dump(mix_coefs, fdesc)
Пример #4
0
    def get_tracks(self, min_sources=10, instruments=None, rm_silence=False, trim=None, count=None, **kwargs):
        import medleydb as mdb
        if instruments:
            valid_instruments = instruments
        else:
            valid_instruments = self.get_valid_instruments(min_sources)
        logging.info('Valid instruments: ' + str(valid_instruments) + '\n')

        counts = defaultdict(lambda: 0)

        multitrack_list = mdb.load_all_multitracks()

        for track in multitrack_list:
            if not track.has_bleed:
                for stem in track.stems:
                    if stem.instrument in valid_instruments:
                        if count and counts[stem.instrument] >= count:
                            continue
                        counts[stem.instrument] += 1
                        if rm_silence or trim:
                            ext = os.path.splitext(stem.file_path)[1]
                            dest = tempfile.mktemp(suffix=ext, dir=self.tempdir)
                            logging.info('Processing (sox): ' + str(stem.file_path))
                            sox_args = ['sox', stem.file_path, dest]
                            if rm_silence:
                                sox_args.extend(['silence', '1', '0.1', '0.1%', '-1', '0.1', '0.1%'])
                            if trim:
                                sox_args.extend(['trim', '0', str(trim)])
                            subprocess.Popen(sox_args, stderr=subprocess.PIPE)
                            stem.file_path = dest
                        stem.label = stem.instrument
                        yield self.track_to_dict(stem)

        logging.info(counts)
Пример #5
0
    def get_tracks(self):
        multitrack_list = mdb.load_all_multitracks()

        for track in multitrack_list:
            if track.genre:
                track.file_path = track.mix_path
                track.label = track.genre
                yield track
Пример #6
0
    def get_valid_genres(self, min_sources):
        """Get set of genres with at least min_sources different sources"""
        logging.info('Determining valid genres...\n')
        multitrack_list = mdb.load_all_multitracks()

        genre_counts = defaultdict(lambda: 0)
        for track in multitrack_list:
            if track.genre:
                genre_counts[track.genre] += 1
        logging.info(genre_counts)
        return {g for g in genre_counts if genre_counts[g] >= min_sources}
Пример #7
0
    def get_valid_genres(self, min_sources):
        """Get set of genres with at least min_sources different sources"""
        import medleydb as mdb
        logging.info('Determining valid genres...\n')
        multitrack_list = mdb.load_all_multitracks()

        genre_counts = defaultdict(lambda: 0)
        for track in multitrack_list:
            if track.genre:
                genre_counts[track.genre] += 1
        logging.info(genre_counts)
        return {g for g in genre_counts if genre_counts[g] >= min_sources}
Пример #8
0
def main(args):

    if args.use_mdb2:
        dataset_version = ['V1', 'V2', 'EXTRA']
    else:
        dataset_version = ['V1']

    mtracks = mdb.load_all_multitracks(dataset_version=dataset_version)

    Parallel(n_jobs=args.n_jobs, verbose=5)(delayed(compute_features_mtrack)(
        mtrack, args.save_dir, args.option, args.precomputed_hcqt_path)
                                            for mtrack in mtracks)

    print("Done!")
Пример #9
0
    def get_valid_instruments(self, min_sources):
        """Get set of instruments with at least min_sources different sources"""
        logging.info('Determining valid instruments...\n')
        multitrack_list = mdb.load_all_multitracks()

        instrument_counts = defaultdict(lambda: 0)
        for track in multitrack_list:
            if not track.has_bleed:
                instruments = set()
                for stem in track.stems:
                    instruments.add(stem.instrument)
                for instrument in instruments:
                    instrument_counts[instrument] += 1
        logging.info(instrument_counts)
        return {i for i in instrument_counts if instrument_counts[i] >= min_sources}
Пример #10
0
    def get_valid_instruments(self, min_sources):
        """Get set of instruments with at least min_sources different sources"""
        import medleydb as mdb
        logging.info('Determining valid instruments...\n')
        multitrack_list = mdb.load_all_multitracks()

        instrument_counts = defaultdict(lambda: 0)
        for track in multitrack_list:
            if not track.has_bleed:
                instruments = set()
                for stem in track.stems:
                    instruments.add(stem.instrument)
                for instrument in instruments:
                    instrument_counts[instrument] += 1
        logging.info(instrument_counts)
        return {i for i in instrument_counts if instrument_counts[i] >= min_sources}
Пример #11
0
def main(args):
    mtracks = mdb.load_all_multitracks(dataset_version=['V1', 'V2', 'EXTRA', 'BACH10'])
    mix_coefs = dict()
    for mtrack in mtracks:

        print(mtrack.track_id)

        # compute mixing weights on both stft and squared audio
        coeffs_stft = analyze_mix_stft(mtrack)
        coeffs_audio = analyze_mix_audio(mtrack)

        mix_coefs[mtrack.track_id] = {'stft': coeffs_stft, 'audio': coeffs_audio}

        print(mix_coefs[mtrack.track_id])
        print("")
        
        with open(args.output_path, 'w') as fdesc:
            yaml.dump(mix_coefs, fdesc)
Пример #12
0
def main(args):
    mtracks = mdb.load_all_multitracks(dataset_version=['V1', 'V2', 'EXTRA'])
    for mtrack in mtracks:

        print("Processing {}...".format(mtrack.track_id))

        if os.path.exists(
                os.path.join(args.save_dir, "{}_training_pairs.json".format(
                    mtrack.track_id))):
            print("    already done!")
            continue

        json_path = get_all_audio_annot_pairs(mtrack, args.save_dir,
                                              args.resynth_path,
                                              args.replace_path)
        print("...saved to {}".format(json_path))
        print("")

    print("done!")
Пример #13
0
    def get_tracks(self, min_sources=10, genres=None, count=None, **kwargs):
        if genres:
            valid_genres = genres
        else:
            valid_genres = self.get_valid_genres(min_sources)
        logging.info('Valid genres: ' + str(valid_genres) + '\n')

        counts = defaultdict(lambda: 0)

        multitrack_list = mdb.load_all_multitracks()

        for track in multitrack_list:
            if track.genre and track.genre in valid_genres:
                if count and counts[track.genre] >= count:
                    continue
                counts[track.genre] += 1

                track.file_path = track.mix_path
                track.label = track.genre
                yield self.track_to_dict(track)
        logging.info(counts)
Пример #14
0
    def get_tracks(self, min_sources=10, genres=None, count=None, **kwargs):
        import medleydb as mdb
        if genres:
            valid_genres = genres
        else:
            valid_genres = self.get_valid_genres(min_sources)
        logging.info('Valid genres: ' + str(valid_genres) + '\n')

        counts = defaultdict(lambda: 0)

        multitrack_list = mdb.load_all_multitracks()

        for track in multitrack_list:
            if track.genre and track.genre in valid_genres:
                if count and counts[track.genre] >= count:
                    continue
                counts[track.genre] += 1

                track.file_path = track.mix_path
                track.label = track.genre
                yield self.track_to_dict(track)
        logging.info(counts)
Пример #15
0
def main(args):
    mtracks = mdb.load_all_multitracks(
        dataset_version=['V1', 'V2', 'EXTRA', 'BACH10'])
    mix_coefs = dict()
    for mtrack in mtracks:

        print(mtrack.track_id)

        # compute mixing weights on both stft and squared audio
        coeffs_stft = analyze_mix_stft(mtrack)
        coeffs_audio = analyze_mix_audio(mtrack)

        mix_coefs[mtrack.track_id] = {
            'stft': coeffs_stft,
            'audio': coeffs_audio
        }

        print(mix_coefs[mtrack.track_id])
        print("")

        with open(args.output_path, 'w') as fdesc:
            yaml.dump(mix_coefs, fdesc)
Пример #16
0
import utils
import medleydb as mdb
import json

# Load all multitracks
mtrack_generator = mdb.load_all_multitracks()

all_tracks_id = [mtrack.track_id for mtrack in mtrack_generator]

# Create a dictionary with all vocal pieces and its sources
mtrack_generator = mdb.load_all_multitracks()

soma = 0
lista = []
dicionario = {}
for mtrack in mtrack_generator:
    if not mtrack.is_instrumental:
        soma += 1
        lista.append(mtrack.track_id)
        dicionario[mtrack.track_id] = mtrack.stem_instruments

# Save dictionary to a json file
with open('vocal_pieces.json', 'w') as json_file:
    json.dump(dicionario, json_file)

print(" >> Generated vocal_pieces.json!")
Пример #17
0
def test_all():
    assert next(mdb.load_all_multitracks())
                        nargs='*',
                        default=None,
                        help='List of instruments to extract')
    parser.add_argument('-k',
                        '--keep_silence',
                        action='store_true',
                        help="Don't remove silence from audio files")
    args = parser.parse_args()

    if args.instruments:
        valid_instruments = args.instruments
    else:
        valid_instruments = get_valid_instruments(args.min_sources)
    logging.info('Valid instruments: ' + str(valid_instruments) + '\n')

    multitrack_list = mdb.load_all_multitracks()

    for track in multitrack_list:
        if not track.has_bleed:
            for stem in track.stems:
                if stem.instrument in valid_instruments:
                    filename = os.path.basename(stem.file_path)
                    dest = os.path.join(args.destination, stem.instrument,
                                        filename)

                    # Create directory if necessary
                    try:
                        os.makedirs(os.path.dirname(dest))
                    except OSError:
                        pass
                    if args.keep_silence:
Пример #19
0
def compute_feature(n_fft, hop_length, genres, chunk, rsr, unvoice, melody, bass,
                        n_random, n_val, get_attr):
    # init
    genres = genres.split(",")
    t_slice = int(chunk * rsr)
    tracks = mdb.load_all_multitracks()
    instruments_dict = {}
    train_set = {}
    val_set = {}
    tracks_meta = [[] for i in range(len(genres))]
    idx_cnt = 0

    print("Reading the metadata and build dictionary for instruments ...")
    for t in tracks:
        if t.genre in genres:
            # get the mix audio as well as build a table for instrumental attributes
            metadata = get_metadata(t, unvoice, melody, bass)
            if get_attr:
                for instrument in metadata["instruments"]:
                    if instrument not in instruments_dict.keys():
                        instruments_dict[instrument] = idx_cnt
                        idx_cnt += 1
            tracks_meta[get_gid(t.genre, genres)].append(metadata)

    print("Done! Start generating features ...")
    target_path = "mix_path" if not unvoice else "unvoice_path"
    # generate data for each genre
    for gid, g in enumerate(genres):
        start = time.time()
        audio_chunks = []
        instruments_attrs = []
        print("Generating features for {} ...".format(g))
        file_path = "{}.hdf5".format(g)

        for md in tracks_meta[gid]:
            print("Converting {} ...".format(md[target_path]))
            audio = (md[target_path],)
            audio += (md["melody_path"],) if melody else () # append the melody part if needed.
            audio += (md["bass_path"],) if bass else ()
            # get the atual mix, and turn them into stft.
            chunks = get_mix_chunks(audio, t_slice, n_fft, hop_length, n_random[gid], rsr)
            audio_chunks.extend(chunks)
            print("{} clips for {}.".format(len(chunks), md[target_path]))
            if get_attr:
                attrs = get_instruments_attrs(md["instruments"], instruments_dict, len(chunks))
                instruments_attrs.extend(attrs)

        # get random indices
        print("We have {} clips for {}.".format(len(audio_chunks), g))
        idx = np.linspace(0, len(audio_chunks)-1, len(audio_chunks), dtype=int)
        np.random.shuffle(idx)

        audio_chunks = np.asarray(audio_chunks, dtype=np.float32)
        print("shape: {}, type: {}".format(audio_chunks.shape, audio_chunks.dtype))
        if audio_chunks.shape[1] == 1:
            audio_chunks = np.squeeze(audio_chunks, axis=1)
        print(audio_chunks.shape)
        audio_chunks = (audio_chunks - audio_chunks.mean()) / audio_chunks.std()
        train_set["audio"] = audio_chunks[idx][n_val:, ...]
        val_set["audio"] = audio_chunks[idx][:n_val, ...]

        print(train_set["audio"].shape)
        print(val_set["audio"].shape)

        if get_attr:
            train_set["attrs"] = np.asarray(instruments_attrs)[idx][n_val:, ...]
            val_set["attrs"] = np.asarray(instruments_attrs)[idx][:n_val, ...]

        print("Saving ...")
        for k in train_set.keys():
            np.save("./output/{}_{}_val.npy".format(g, k), val_set[k])
            np.save("./output/{}_{}_train.npy".format(g, k), train_set[k])

        print("Generation for {} is complete, {} sec elapsed.".format(g, time.time()-start))
    parser.add_argument('-s', '--min_sources', type=int, default=10,
                        help='Minimum number of seperate sources in medleyDB '
                             'for an instrument to be valid')
    parser.add_argument('-i', '--instruments', nargs='*', default=None,
                        help='List of instruments to extract')
    parser.add_argument('-k', '--keep_silence', action='store_true',
                        help="Don't remove silence from audio files")
    args = parser.parse_args()

    if args.instruments:
        valid_instruments = args.instruments
    else:
        valid_instruments = get_valid_instruments(args.min_sources)
    logging.info('Valid instruments: ' + str(valid_instruments) + '\n')

    multitrack_list = mdb.load_all_multitracks()

    for track in multitrack_list:
        if not track.has_bleed:
            for stem in track.stems:
                if stem.instrument in valid_instruments:
                    filename = os.path.basename(stem.file_path)
                    dest = os.path.join(args.destination,
                                        stem.instrument,
                                        filename)

                    # Create directory if necessary
                    try:
                        os.makedirs(os.path.dirname(dest))
                    except OSError:
                        pass