Пример #1
0
def main():
    # parse cmd arguments
    parser = getParser()
    parser.parse_args()
    args = getArguments(parser)
    
    # prepare logger
    logger = Logger.getInstance()
    if args.debug: logger.setLevel(logging.DEBUG)
    elif args.verbose: logger.setLevel(logging.INFO)
    
    # build output image name
    image_bg_name = args.folder + '/' + args.mask.split('/')[-1][:-4] + '.bg'
    image_bg_name += args.mask.split('/')[-1][-4:]
        
    # check if output image exists
    if not args.force:
        if os.path.exists(image_bg_name):
            logger.warning('The output image {} already exists. Breaking.'.format(image_bg_name))
            exit(1)
    
    # load mask
    logger.info('Loading mask {}...'.format(args.mask))
    try: 
        mask_image = load(args.mask)
        mask_image_data = numpy.squeeze(mask_image.get_data()).astype(scipy.bool_)
    except ImageFileError as e:
        logger.critical('The mask image does not exist or its file type is unknown.')
        raise ArgumentError('The mask image does not exist or its file type is unknown.', e)  
    
    # array of indices to access desired slices
    sls = [(slice(1), slice(None), slice(None)),
           (slice(-1, None), slice(None), slice(None)),
           (slice(None), slice(1), slice(None)),
           (slice(None), slice(-1, None), slice(None)),
           (slice(None), slice(None), slice(1)),
           (slice(None), slice(None), slice(-1, None))]
    
    # security check
    logger.info('Determine if the slices are not intersection with the reference liver mask...')
    for sl in sls:
        if not 0 == len(mask_image_data[sl].nonzero()[0]):
            logger.critical('Reference mask reaches till the image border.')
            raise ArgumentError('Reference mask reaches till the image border.')
        
    # create and save background marker image
    logger.info('Creating background marker image...')
    image_bg_data = scipy.zeros(mask_image_data.shape, dtype=scipy.bool_)
    for sl in sls:
        image_bg_data[sl] = True
    
    logger.info('Saving background marker image...')
    mask_image.get_header().set_data_dtype(scipy.int8)
    save(image_like(image_bg_data, mask_image), image_bg_name)
    
    logger.info('Successfully terminated.')
Пример #2
0
def main():
    # parse cmd arguments
    parser = getParser()
    parser.parse_args()
    args = getArguments(parser)
    
    # prepare logger
    logger = Logger.getInstance()
    if args.debug: logger.setLevel(logging.DEBUG)
    elif args.verbose: logger.setLevel(logging.INFO)
    
    # check if output image exists (will also be performed before saving, but as the watershed might be very time intensity, a initial check can save frustration)
    if not args.force:
        if os.path.exists(args.output):
            raise ArgumentError('The output image {} already exists.'.format(args.output))
    
    # loading image
    data_input, header_input = load(args.input)
    
    # apply the watershed
    logger.info('Watershedding with settings: thr={} / level={}...'.format(args.threshold, args.level))
    data_output = watershed(data_input, get_pixel_spacing(header_input), args.threshold, args.level)

    # save file
    save(data_output, args.output, header_input, args.force)
    
    logger.info('Successfully terminated.')
Пример #3
0
def main():
    # parse cmd arguments
    parser = getParser()
    parser.parse_args()
    args = getArguments(parser)
    
    # prepare logger
    logger = Logger.getInstance()
    if args.debug: logger.setLevel(logging.DEBUG)
    elif args.verbose: logger.setLevel(logging.INFO)
        
    # load input image
    logger.info('Loading {}...'.format(args.image))
    image_data, image_header = load(args.image)
    
    # check if supplied cut dimension is inside the input images dimensions
    if args.dimension < 0 or args.dimension >= image_data.ndim:
        logger.critical('The supplied cut-dimensions {} is invalid. The input image has only {} dimensions.'.format(args.dimension, image_data.ndim))
        raise ArgumentError('The supplied cut-dimensions {} is invalid. The input image has only {} dimensions.'.format(args.dimension, image_data.ndim))
    
    # prepare output filenames
    name_output = args.output.replace('{}', '{:03d}')
    
    # determine cut lines
    no_sub_volumes = image_data.shape[args.dimension] / args.maxsize + 1 # int-division is desired
    slices_per_volume = image_data.shape[args.dimension] / no_sub_volumes # int-division is desired
    
    # construct processing dict for each sub-volume
    processing_array = []
    for i in range(no_sub_volumes):
        processing_array.append(
            {'path': name_output.format(i+1),
             'cut': (i * slices_per_volume, (i + 1) * slices_per_volume)})
        if no_sub_volumes - 1 == i: # last volume has to have increased cut end
            processing_array[i]['cut'] = (processing_array[i]['cut'][0], image_data.shape[args.dimension])

    # construct base indexing list
    index = [slice(None) for _ in range(image_data.ndim)]
    
    # execute extraction of the sub-volumes
    logger.info('Extracting sub-volumes...')
    for dic in processing_array:
        # check if output images exists
        if not args.force:
            if os.path.exists(dic['path']):
                logger.warning('The output file {} already exists. Skipping this volume.'.format(dic['path']))
                continue
        
        # extracting sub-volume
        index[args.dimension] = slice(dic['cut'][0], dic['cut'][1])
        volume = image_data[index]
        
        logger.debug('Extracted volume is of shape {}.'.format(volume.shape))
        
        # saving sub-volume in same format as input image
        logger.info('Saving cut {} as {}...'.format(dic['cut'], dic['path']))
        save(volume, dic['path'], image_header, args.force)
        
    logger.info('Successfully terminated.')
Пример #4
0
def getArguments(parser):
    "Provides additional validation of the arguments collected by argparse."
    args = parser.parse_args()
    if 0 != len(args.masks) % 2:
        raise ArgumentError(
            'Every supplied mask image must be followed directly by a string that identifies its segmentation.'
        )
    return args
def getArguments(parser):
    "Provides additional validation of the arguments collected by argparse."
    args = parser.parse_args()    
    # check output image exists if override not forced
    if not args.force:
        if os.path.exists(args.output + args.image[-4:]):
            raise ArgumentError('The supplied output file {} already exists. Run -f/force flag to override.'.format(args.output))

    return args
def main():
    # parse cmd arguments
    parser = getParser()
    parser.parse_args()
    args = getArguments(parser)

    # prepare logger
    logger = Logger.getInstance()
    if args.debug: logger.setLevel(logging.DEBUG)
    elif args.verbose: logger.setLevel(logging.INFO)

    # check if output image exists
    if not args.force:
        if os.path.exists(args.output + args.image[-4:]):
            logger.warning(
                'The output file {} already exists. Breaking.'.format(
                    args.output + args.image[-4:]))
            exit(1)

    # load images
    image_data, image_header = load(args.image)

    # check image dimensions against sub-volume dimensions
    if len(image_data.shape) != len(args.volume):
        logger.critical(
            'The supplied input image is of different dimension as the sub volume requested ({} to {})'
            .format(len(image_data.shape), len(args.volume)))
        raise ArgumentError(
            'The supplied input image is of different dimension as the sub volume requested ({} to {})'
            .format(len(image_data.shape), len(args.volume)))

    # execute extraction of the sub-area
    logger.info('Extracting sub-volume...')
    index = [slice(x[0], x[1]) for x in args.volume]
    volume = image_data[index]

    # check if the output image contains data
    if 0 == len(volume):
        logger.exception(
            'The extracted sub-volume is of zero-size. This usual means that the supplied volume coordinates and the image coordinates do not intersect. Exiting the application.'
        )
        sys.exit(-1)

    # squeeze extracted sub-volume for the case in which one dimensions has been eliminated
    volume = scipy.squeeze(volume)

    logger.debug('Extracted volume is of shape {}.'.format(volume.shape))

    # save results in same format as input image
    save(volume, args.output, image_header, args.force)

    logger.info('Successfully terminated.')
Пример #7
0
def main():
    # parse cmd arguments
    parser = getParser()
    parser.parse_args()
    args = getArguments(parser)

    # prepare logger
    logger = Logger.getInstance()
    if args.debug: logger.setLevel(logging.DEBUG)
    elif args.verbose: logger.setLevel(logging.INFO)

    # check if output image exists (will also be performed before saving, but as the watershed might be very time intensity, a initial check can save frustration)
    if not args.force:
        if os.path.exists(args.output):
            raise ArgumentError('The output image {} already exists.'.format(
                args.output))

    # loading images
    data_input, header_input = load(args.input)
    if args.mask:
        mask = load(args.mask)[0].astype(numpy.bool)
    else:
        mask = None

    # extract local minima and convert to markers
    logger.info('Extract local minima with minimum distance of {}...'.format(
        args.mindist))
    lm, _ = local_minima(data_input, args.mindist)
    lm_indices = tuple([numpy.asarray(x) for x in lm.T])
    minima_labels = numpy.zeros(data_input.shape, dtype=numpy.uint64)
    minima_labels[lm_indices] = 1
    if not None == mask:
        minima_labels[~mask] = 0
    minima_labels, _ = label(minima_labels)

    # apply the watershed
    logger.info('Watershedding...')
    data_output = watershed(data_input, minima_labels, mask=mask)

    # save file
    save(data_output, args.output, header_input, args.force)

    logger.info('Successfully terminated.')
def getArguments(parser):
    "Provides additional validation of the arguments collected by argparse."
    args = parser.parse_args()
    # parse volume and adapt to zero-indexing
    try:

        def _to_int_or_none(string):
            if 0 == len(string): return None
            return int(string)

        def _to_int_or_none_double(string):
            if 0 == len(string): return [None, None]
            return map(_to_int_or_none, string.split(':'))

        args.volume = map(_to_int_or_none_double, args.volume.split(','))
        args.volume = [(x[0], x[1]) for x in args.volume]
    except (ValueError, IndexError) as e:
        raise ArgumentError(
            'Maleformed volume parameter "{}", see description with -h flag.'.
            format(args.volume), e)

    return args
Пример #9
0
def main():
    # parse cmd arguments
    parser = getParser()
    parser.parse_args()
    args = getArguments(parser)
    
    # prepare logger
    logger = Logger.getInstance()
    if args.debug: logger.setLevel(logging.DEBUG)
    elif args.verbose: logger.setLevel(logging.INFO)
        
    # check if output image exists
    if not args.force:
        if os.path.exists(args.output):
            logger.warning('The output image {} already exists. Exiting.'.format(args.output))
            exit(-1)
            
    # select boundary term
    if args.boundary == 'stawiaski':
        boundary_term = graphcut.energy_label.boundary_stawiaski
        logger.info('Selected boundary term: stawiaski')
    else:
        boundary_term = graphcut.energy_label.boundary_difference_of_means
        logger.info('Selected boundary term: difference of means')

    # load input images
    region_image_data, reference_header = load(args.region)
    badditional_image_data, _ = load(args.badditional)
    markers_image_data, _ = load(args.markers)
    
    # split marker image into fg and bg images
    fgmarkers_image_data, bgmarkers_image_data = split_marker(markers_image_data)
       
    # check if all images dimensions are the same
    if not (badditional_image_data.shape == region_image_data.shape == fgmarkers_image_data.shape == bgmarkers_image_data.shape):
        logger.critical('Not all of the supplied images are of the same shape.')
        raise ArgumentError('Not all of the supplied images are of the same shape.')
       
    # recompute the label ids to start from id = 1
    logger.info('Relabel input image...')
    region_image_data = filter.relabel(region_image_data)

    # generate graph
    logger.info('Preparing graph...')
    gcgraph = graphcut.graph_from_labels(region_image_data,
                                    fgmarkers_image_data,
                                    bgmarkers_image_data,
                                    boundary_term = boundary_term,
                                    boundary_term_args = (badditional_image_data)) # second is directedness of graph , 0)

    logger.info('Removing images that are not longer required from memory...')
    del fgmarkers_image_data
    del bgmarkers_image_data
    del badditional_image_data
    
    # execute min-cut
    logger.info('Executing min-cut...')
    maxflow = gcgraph.maxflow()
    logger.debug('Maxflow is {}'.format(maxflow))
    
    # apply results to the region image
    logger.info('Applying results...')
    mapping = [0] # no regions with id 1 exists in mapping, entry used as padding
    mapping.extend(map(lambda x: 0 if gcgraph.termtype.SINK == gcgraph.what_segment(int(x) - 1) else 1,
                       scipy.unique(region_image_data)))
    region_image_data = filter.relabel_map(region_image_data, mapping)
    
    # save resulting mask
    save(region_image_data.astype(scipy.bool_), args.output, reference_header, args.force)

    logger.info('Successfully terminated.')
Пример #10
0
def main():
    # parse cmd arguments
    parser = getParser()
    parser.parse_args()
    args = getArguments(parser)

    # prepare logger
    logger = Logger.getInstance()
    if args.debug: logger.setLevel(logging.DEBUG)
    elif args.verbose: logger.setLevel(logging.INFO)

    # build output image name
    image_fg_name = args.folder + '/' + args.mask.split('/')[-1][:-4] + '.fg'
    image_fg_name += args.mask.split('/')[-1][-4:]
    image_bg_name = args.folder + '/' + args.mask.split('/')[-1][:-4] + '.bg'
    image_bg_name += args.mask.split('/')[-1][-4:]

    # check if output image exists
    if not args.force:
        if os.path.exists(image_fg_name):
            logger.warning(
                'The output image {} already exists. Breaking.'.format(
                    image_fg_name))
            exit(1)
        elif os.path.exists(image_bg_name):
            logger.warning(
                'The output image {} already exists. Breaking.'.format(
                    image_bg_name))
            exit(1)

    # load mask
    logger.info('Loading mask {}...'.format(args.mask))

    try:
        mask_image = load(args.mask)
        mask_image_data = numpy.squeeze(mask_image.get_data()).astype(
            scipy.bool_)
    except ImageFileError as e:
        logger.critical(
            'The mask image does not exist or its file type is unknown.')
        raise ArgumentError(
            'The mask image does not exist or its file type is unknown.', e)

    # erode mask stepwise
    logger.info('Step-wise reducing mask to find center...')
    mask_remains = mask_image_data.copy()
    while (True):
        mask_remains_next = ndimage.binary_erosion(mask_remains, iterations=2)
        if 0 == len(mask_remains_next.nonzero()[0]):
            break
        mask_remains = mask_remains_next

    # extract one of the remaining voxels
    voxels = mask_remains.nonzero()
    marker = (voxels[0][0], voxels[1][0], voxels[2][0])

    logger.debug('Extracted foreground seed is {}.'.format(marker))

    # check suitability of corners as background markers
    logger.info(
        'Checking if the corners are suitable background seed candidates...')
    if True == mask_image_data[0,0,0] or \
       True == mask_image_data[-1,0,0] or \
       True == mask_image_data[0,-1,0] or \
       True == mask_image_data[0,0,-1] or \
       True == mask_image_data[-1,-1,0] or \
       True == mask_image_data[-1,0,-1] or \
       True == mask_image_data[0,-1,-1] or \
       True == mask_image_data[-1,-1,-1]:
        logger.critical(
            'The corners of the image do not correspond to background voxels.')
        raise ArgumentError(
            'The corners of the image do not correspond to background voxels.')

    # create and save foreground marker image
    logger.info('Creating foreground marker image...')
    image_fg_data = scipy.zeros(mask_image_data.shape, dtype=scipy.bool_)
    image_fg_data[marker[0], marker[1], marker[2]] = True

    logger.info('Saving foreground marker image...')
    mask_image.get_header().set_data_dtype(scipy.int8)
    save(image_like(image_fg_data, mask_image), image_fg_name)

    # create and save background marker image
    logger.info('Creating background marker image...')
    image_bg_data = scipy.zeros(mask_image_data.shape, dtype=scipy.bool_)
    image_bg_data[0, 0, 0] = True
    image_bg_data[-1, 0, 0] = True
    image_bg_data[0, -1, 0] = True
    image_bg_data[0, 0, -1] = True
    image_bg_data[-1, -1, 0] = True
    image_bg_data[-1, 0, -1] = True
    image_bg_data[0, -1, -1] = True
    image_bg_data[-1, -1, -1] = True

    logger.info('Saving background marker image...')
    mask_image.get_header().set_data_dtype(scipy.int8)
    save(image_like(image_bg_data, mask_image), image_bg_name)

    logger.info('Successfully terminated.')
Пример #11
0
def main():
    # parse cmd arguments
    parser = getParser()
    parser.parse_args()
    args = getArguments(parser)
    
    # prepare logger
    logger = Logger.getInstance()
    if args.debug: logger.setLevel(logging.DEBUG)
    elif args.verbose: logger.setLevel(logging.INFO)
        
    # check if output image exists
    if not args.force:
        if os.path.exists(args.output):
            logger.warning('The output image {} already exists. Exiting.'.format(args.output))
            exit(-1)
            
    # select boundary term
    ['diff_linear', 'diff_exp', 'diff_div', 'diff_pow', 'max_linear', 'max_exp', 'max_div', 'max_pow']
    if 'diff_linear' == args.boundary:
        boundary_term = graphcut.energy_voxel.boundary_difference_linear
        logger.info('Selected boundary term: linear difference of intensities')
    elif 'diff_exp' == args.boundary:
        boundary_term = graphcut.energy_voxel.boundary_difference_exponential
        logger.info('Selected boundary term: exponential difference of intensities')
    elif 'diff_div' == args.boundary:
        boundary_term = graphcut.energy_voxel.boundary_difference_division
        logger.info('Selected boundary term: divided difference of intensities')
    elif 'diff_pow' == args.boundary:
        boundary_term = graphcut.energy_voxel.boundary_difference_power
        logger.info('Selected boundary term: power based / raised difference of intensities')
    elif 'max_linear' == args.boundary:
        boundary_term = graphcut.energy_voxel.boundary_maximum_linear
        logger.info('Selected boundary term: linear maximum of intensities')
    elif 'max_exp' == args.boundary:
        boundary_term = graphcut.energy_voxel.boundary_maximum_exponential
        logger.info('Selected boundary term: exponential maximum of intensities')
    elif 'max_div' == args.boundary:
        boundary_term = graphcut.energy_voxel.boundary_maximum_division
        logger.info('Selected boundary term: divided maximum of intensities')
    elif 'max_pow' == args.boundary:
        boundary_term = graphcut.energy_voxel.boundary_maximum_power
        logger.info('Selected boundary term: power based / raised maximum of intensities')

    # load input images
    badditional_image_data, reference_header = load(args.badditional)
    markers_image_data, _ = load(args.markers)
    
    # split marker image into fg and bg images
    fgmarkers_image_data, bgmarkers_image_data = split_marker(markers_image_data)
       
    # check if all images dimensions are the same
    if not (badditional_image_data.shape == fgmarkers_image_data.shape == bgmarkers_image_data.shape):
        logger.critical('Not all of the supplied images are of the same shape.')
        raise ArgumentError('Not all of the supplied images are of the same shape.')

    # extract spacing if required
    if args.spacing:
        spacing = header.get_pixel_spacing(reference_header)
        logger.info('Taking spacing of {} into account.'.format(spacing))
    else:
        spacing = False

    # generate graph
    logger.info('Preparing BK_MFMC C++ graph...')
    gcgraph = graphcut.graph_from_voxels(fgmarkers_image_data,
                                         bgmarkers_image_data,
                                         boundary_term = boundary_term,
                                         boundary_term_args = (badditional_image_data, args.sigma, spacing))
    
    # execute min-cut
    logger.info('Executing min-cut...')
    maxflow = gcgraph.maxflow()
    logger.debug('Maxflow is {}'.format(maxflow))
    
    # reshape results to form a valid mask
    logger.info('Applying results...')
    result_image_data = scipy.zeros(bgmarkers_image_data.size, dtype=scipy.bool_)
    for idx in range(len(result_image_data)):
        result_image_data[idx] = 0 if gcgraph.termtype.SINK == gcgraph.what_segment(idx) else 1    
    result_image_data = result_image_data.reshape(bgmarkers_image_data.shape)
    
    # save resulting mask    
    save(result_image_data.astype(scipy.bool_), args.output, reference_header, args.force)

    logger.info('Successfully terminated.')
def main():
    # parse cmd arguments
    parser = getParser()
    parser.parse_args()
    args = getArguments(parser)

    # prepare logger
    logger = Logger.getInstance()
    if args.debug: logger.setLevel(logging.DEBUG)
    elif args.verbose: logger.setLevel(logging.INFO)

    # check if output image exists
    if not args.force:
        if os.path.exists(args.output):
            logger.warning(
                'The output image {} already exists. Exiting.'.format(
                    args.output))
            exit(-1)

    # load input images
    region_image_data, reference_header = load(args.region)
    markers_image_data, _ = load(args.markers)
    gradient_image_data, _ = load(args.gradient)

    # split marker image into fg and bg images
    logger.info('Extracting foreground and background markers...')
    fgmarkers_image_data, bgmarkers_image_data = split_marker(
        markers_image_data)

    # check if all images dimensions are the same shape
    if not (gradient_image_data.shape == region_image_data.shape ==
            fgmarkers_image_data.shape == bgmarkers_image_data.shape):
        logger.critical(
            'Not all of the supplied images are of the same shape.')
        raise ArgumentError(
            'Not all of the supplied images are of the same shape.')

    # collect cut objects
    cut_xy = __get_bg_bounding_pipe(bgmarkers_image_data)

    # cut volumes
    old_size = region_image_data.shape
    gradient_image_data = gradient_image_data[cut_xy]
    region_image_data = region_image_data[cut_xy]
    fgmarkers_image_data = fgmarkers_image_data[cut_xy]
    bgmarkers_image_data = bgmarkers_image_data[cut_xy]

    # recompute the label ids to start from id = 1
    logger.info('Relabel input image...')
    region_image_data = filter.relabel(region_image_data)

    # generate graph
    logger.info('Preparing graph...')
    gcgraph = graphcut.graph_from_labels(
        region_image_data,
        fgmarkers_image_data,
        bgmarkers_image_data,
        boundary_term=graphcut.energy_label.boundary_stawiaski,
        boundary_term_args=(
            gradient_image_data))  # second is directedness of graph , 0)

    logger.info('Removing images that are not longer required from memory...')
    del fgmarkers_image_data
    del bgmarkers_image_data
    del gradient_image_data

    # execute min-cut
    logger.info('Executing min-cut...')
    maxflow = gcgraph.maxflow()
    logger.debug('Maxflow is {}'.format(maxflow))

    # apply results to the region image
    logger.info('Applying results...')
    mapping = [
        0
    ]  # no regions with id 1 exists in mapping, entry used as padding
    mapping.extend(
        map(
            lambda x: 0 if gcgraph.termtype.SINK == gcgraph.what_segment(
                int(x) - 1) else 1, scipy.unique(region_image_data)))
    region_image_data = filter.relabel_map(region_image_data, mapping)

    # generating final image by increasing the size again
    output_image_data = scipy.zeros(old_size, dtype=scipy.bool_)
    output_image_data[cut_xy] = region_image_data

    # save resulting mask
    save(output_image_data, args.output, reference_header, args.force)

    logger.info('Successfully terminated.')
def main():
    # parse cmd arguments
    parser = getParser()
    parser.parse_args()
    args = getArguments(parser)
    
    # prepare logger
    logger = Logger.getInstance()
    if args.debug: logger.setLevel(logging.DEBUG)
    elif args.verbose: logger.setLevel(logging.INFO)
    
    # load mask
    logger.info('Loading mask {}...'.format(args.mask))
    mask_image, _ = load(args.mask)
    
    # store mask images shape for later check against the input image
    mask_image_shape = mask_image.shape 
    
    # extract the position of the foreground object in the mask image
    logger.info('Extract the position of the foreground object...')
    mask = mask_image.nonzero()
    position = ((max(0, mask[0].min() - args.offset), mask[0].max() + 1 + args.offset), # crop negative values
                (max(0, mask[1].min() - args.offset), mask[1].max() + 1 + args.offset),
                (max(0, mask[2].min() - args.offset), mask[2].max() + 1 + args.offset)) # minx, maxx / miny, maxy / minz, maxz
    
    logger.debug('Extracted position is {}.'.format(position))

    # unload mask and mask image
    del mask
    del mask_image

    # load image
    logger.info('Loading image {}...'.format(args.image))
    image_data, image_header = load(args.image)
    
    # check if the mask image and the input image are of the same shape
    if mask_image_shape != image_data.shape:
        raise ArgumentError('The two input images are of different shape (mask: {} and image: {}).'.format(mask_image_shape, image_data.shape))
    
    # execute extraction of the sub-area  
    logger.info('Extracting sub-volume...')
    index = [slice(x[0], x[1]) for x in position]
    volume = image_data[index]
    
    # check if the output image contains data
    if 0 == len(volume):
        logger.exception('The extracted sub-volume is of zero-size. This usual means that the mask image contained no foreground object.')
        sys.exit(0)
    
    logger.debug('Extracted volume is of shape {}.'.format(volume.shape))
    
    # get base origin of the image
    origin_base = numpy.array([0] * image_data.ndim) # for backwards compatibility
        
    # modify the volume offset to imitate numpy behavior (e.g. wrap negative values)
    offset = numpy.array([x[0] for x in position])
    for i in range(0, len(offset)):
        if None == offset[i]: offset[i] = 0
    offset[offset<0] += numpy.array(image_data.shape)[offset<0] # wrap around
    offset[offset<0] = 0 # set negative to zero
    
    # calculate final new origin
    origin = origin_base + offset
    
    logger.debug('Final origin created as {} + {} = {}.'.format(origin_base, offset, origin))
    
    # save results in same format as input image
    logger.info('Saving extracted volume...')
    save(volume, args.output, image_header, args.force)
    
    logger.info('Successfully terminated.')
Пример #14
0
def main():
    # parse cmd arguments
    parser = getParser()
    parser.parse_args()
    args = getArguments(parser)

    # prepare logger
    logger = Logger.getInstance()
    if args.debug: logger.setLevel(logging.DEBUG)
    elif args.verbose: logger.setLevel(logging.INFO)

    # build output image name
    output_hdr_name = args.output + '.hdr'
    output_img_name = args.output + '.img'
    output_msk_name = args.output + '.msk'

    # check if output image exists
    if not args.force:
        if os.path.exists(output_hdr_name):
            logger.warning(
                'The output header {} already exists. Breaking.'.format(
                    output_hdr_name))
            exit(1)
        elif os.path.exists(output_img_name):
            logger.warning(
                'The output image {} already exists. Breaking.'.format(
                    output_img_name))
            exit(1)
        elif os.path.exists(output_msk_name):
            logger.warning(
                'The output infor file {} already exists. Breaking.'.format(
                    output_msk_name))
            exit(1)

    # decide on most suitable bit format
    if len(args.masks) / 2 <= 8:
        bit_format = scipy.uint8
    elif len(args.masks) / 2 <= 16:
        bit_format = scipy.uint16
    elif len(args.masks) / 2 <= 32:
        bit_format = scipy.uint32
    elif len(args.masks) / 2 <= 64:
        bit_format = scipy.uint64
    else:
        raise ArgumentError(
            'It is not possible to combine more than 64 single masks.')

    logger.info(
        'Creating a Radiance® segmentation image in {} bit format...'.format(
            bit_format))

    # loading first mask image as reference and template for saving
    logger.info('Loading mask {} ({} segmentation) using NiBabel...'.format(
        args.masks[0], args.masks[1]))
    image_mask = load(args.masks[0])
    image_mask_data = scipy.squeeze(image_mask.get_data())

    # prepare result image
    image_radiance_data = scipy.zeros(image_mask_data.shape, dtype=bit_format)

    logger.debug('Result image is of dimensions {} and type {}.'.format(
        image_radiance_data.shape, image_radiance_data.dtype))

    # preparing .msk file
    f = open(output_msk_name, 'w')

    # adding first mask to result image
    image_radiance_data[image_mask_data > 0] = 1

    # adding first mask segmentation identifier to the .msk file
    f.write('{}\t1\t{}\t{}\t{}\n'.format(args.masks[1],
                                         *__COLOURS[0 % len(__COLOURS)]))

    for i in range(2, len(args.masks), 2):
        # loading mask image
        logger.info(
            'Loading mask {} ({} segmentation) using NiBabel...'.format(
                args.masks[i], args.masks[i + 1]))
        image_mask_data = scipy.squeeze(load(args.masks[i]).get_data())

        # check if the shape of the images is consistent
        if image_mask_data.shape != image_radiance_data.shape:
            raise ArgumentError(
                'Mask {} is with {} of a different shape as the first mask image (which has {}).'
                .format(args.masks[i], image_mask_data.shape,
                        image_radiance_data.shape))

        # adding mask to result image
        image_radiance_data[image_mask_data > 0] += pow(2, i / 2)

        # adding mask segmentation identifier to the .msk file
        f.write('{}\t{}\t{}\t{}\t{}\n'.format(
            args.masks[i + 1], pow(2, i / 2),
            *__COLOURS[(i / 2) % len(__COLOURS)]))

    logger.info(
        'Saving Radiance® segmentation image as {}/.img/.msk...'.format(
            output_hdr_name))
    image_mask.get_header().set_data_dtype(bit_format)
    save(image_like(image_radiance_data, image_mask), output_hdr_name)

    logger.info('Successfully terminated.')