def run_test(cfg, model, distributed, motion_specific=False): if distributed: model = model.module torch.cuda.empty_cache() # TODO check if it helps iou_types = ("bbox", ) if cfg.MODEL.MASK_ON: iou_types = iou_types + ("segm", ) if cfg.MODEL.KEYPOINT_ON: iou_types = iou_types + ("keypoints", ) output_folders = [None] * len(cfg.DATASETS.TEST) dataset_names = cfg.DATASETS.TEST if cfg.OUTPUT_DIR: for idx, dataset_name in enumerate(dataset_names): output_folder = os.path.join(cfg.OUTPUT_DIR, "inference", dataset_name) mkdir(output_folder) output_folders[idx] = output_folder data_loaders_val = make_data_loader(cfg, is_train=False, is_distributed=distributed) for output_folder, dataset_name, data_loader_val in zip( output_folders, dataset_names, data_loaders_val): inference( cfg, model, data_loader_val, dataset_name=dataset_name, iou_types=iou_types, motion_specific=motion_specific, box_only=False if cfg.MODEL.RETINANET_ON else cfg.MODEL.RPN_ONLY, bbox_aug=cfg.TEST.BBOX_AUG.ENABLED, device=cfg.MODEL.DEVICE, expected_results=cfg.TEST.EXPECTED_RESULTS, expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL, output_folder=output_folder, ) synchronize()
def main(): parser = argparse.ArgumentParser(description="PyTorch Object Detection Inference") parser.add_argument( '--launcher', choices=['pytorch', 'mpi'], default='pytorch', help='job launcher') parser.add_argument( "--config-file", default="/private/home/fmassa/github/detectron.pytorch_v2/configs/e2e_faster_rcnn_R_50_C4_1x_caffe2.yaml", metavar="FILE", help="path to config file", ) parser.add_argument("--local_rank", type=int, default=0) parser.add_argument( "--ckpt", help="The path to the checkpoint for test, default is the latest checkpoint.", default=None, ) parser.add_argument( "--motion-specific", "-ms", action="store_true", help="if True, evaluate motion-specific iou" ) parser.add_argument("--master_port", "-mp", type=str, default='29999') parser.add_argument( "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) args = parser.parse_args() if args.launcher == "pytorch": num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1 elif args.launcher == "mpi": num_gpus = int(os.environ["OMPI_COMM_WORLD_SIZE"]) if "OMPI_COMM_WORLD_SIZE" in os.environ else 1 else: num_gpus = 1 distributed = num_gpus > 1 if distributed: init_dist(args.launcher, args=args) synchronize() BASE_CONFIG = "configs/BASE_RCNN_{}gpu.yaml".format(num_gpus) cfg.merge_from_file(BASE_CONFIG) cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() save_dir = "" logger = setup_logger("mega_core", save_dir, get_rank()) logger.info("Using {} GPUs".format(num_gpus)) logger.info(cfg) logger.info("Collecting env info (might take some time)") logger.info("\n" + collect_env_info()) model = build_detection_model(cfg) model.to(cfg.MODEL.DEVICE) # Initialize mixed-precision if necessary use_mixed_precision = cfg.DTYPE == 'float16' amp_handle = amp.init(enabled=use_mixed_precision, verbose=cfg.AMP_VERBOSE) output_dir = cfg.OUTPUT_DIR checkpointer = DetectronCheckpointer(cfg, model, save_dir=output_dir) ckpt = cfg.MODEL.WEIGHT if args.ckpt is None else args.ckpt _ = checkpointer.load(ckpt, use_latest=args.ckpt is None, flownet=None) iou_types = ("bbox",) if cfg.MODEL.MASK_ON: iou_types = iou_types + ("segm",) if cfg.MODEL.KEYPOINT_ON: iou_types = iou_types + ("keypoints",) output_folders = [None] * len(cfg.DATASETS.TEST) dataset_names = cfg.DATASETS.TEST if cfg.OUTPUT_DIR: for idx, dataset_name in enumerate(dataset_names): output_folder = os.path.join(cfg.OUTPUT_DIR, "inference", dataset_name) mkdir(output_folder) output_folders[idx] = output_folder data_loaders_val = make_data_loader(cfg, is_train=False, is_distributed=distributed) for output_folder, dataset_name, data_loader_val in zip(output_folders, dataset_names, data_loaders_val): inference( cfg, model, data_loader_val, dataset_name=dataset_name, iou_types=iou_types, motion_specific=args.motion_specific, box_only=False if cfg.MODEL.RETINANET_ON else cfg.MODEL.RPN_ONLY, bbox_aug=cfg.TEST.BBOX_AUG.ENABLED, device=cfg.MODEL.DEVICE, expected_results=cfg.TEST.EXPECTED_RESULTS, expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL, output_folder=output_folder, ) synchronize()
def train(cfg, local_rank, distributed): model = build_detection_model(cfg) device = torch.device(cfg.MODEL.DEVICE) model.to(device) optimizer = make_optimizer(cfg, model) scheduler = make_lr_scheduler(cfg, optimizer) # Initialize mixed-precision training use_mixed_precision = cfg.DTYPE == "float16" amp_opt_level = 'O1' if use_mixed_precision else 'O0' model, optimizer = amp.initialize(model, optimizer, opt_level=amp_opt_level) if distributed: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[local_rank], output_device=local_rank, # this should be removed if we update BatchNorm stats broadcast_buffers=False, ) arguments = {} arguments["iteration"] = 0 output_dir = cfg.OUTPUT_DIR save_to_disk = get_rank() == 0 checkpointer = DetectronCheckpointer(cfg, model, optimizer, scheduler, output_dir, save_to_disk) extra_checkpoint_data = checkpointer.load(cfg.MODEL.WEIGHT, ignore=cfg.MODEL.VID.IGNORE) if cfg.MODEL.VID.METHOD in ("fgfa", ): checkpointer.load_flownet(cfg.MODEL.VID.FLOWNET_WEIGHT) if not cfg.MODEL.VID.IGNORE: arguments.update(extra_checkpoint_data) data_loader = make_data_loader( cfg, is_train=True, is_distributed=distributed, start_iter=arguments["iteration"], ) test_period = cfg.SOLVER.TEST_PERIOD if test_period > 0: data_loader_val = make_data_loader(cfg, is_train=False, is_distributed=distributed, is_for_period=True) else: data_loader_val = None checkpoint_period = cfg.SOLVER.CHECKPOINT_PERIOD do_train( cfg, model, data_loader, data_loader_val, optimizer, scheduler, checkpointer, device, checkpoint_period, test_period, arguments, ) return model
def do_train( cfg, model, data_loader, data_loader_val, optimizer, scheduler, checkpointer, device, checkpoint_period, test_period, arguments, ): logger = logging.getLogger("mega_core.trainer") logger.info("Start training") meters = MetricLogger(delimiter=" ") max_iter = len(data_loader) start_iter = arguments["iteration"] model.train() start_training_time = time.time() end = time.time() iou_types = ("bbox",) if cfg.MODEL.MASK_ON: iou_types = iou_types + ("segm",) if cfg.MODEL.KEYPOINT_ON: iou_types = iou_types + ("keypoints",) dataset_names = cfg.DATASETS.TEST for iteration, (images, targets, _) in enumerate(data_loader, start_iter): if any(len(target) < 1 for target in targets): logger.error(f"Iteration={iteration + 1} || Image Ids used for training {_} || targets Length={[len(target) for target in targets]}" ) continue data_time = time.time() - end iteration = iteration + 1 arguments["iteration"] = iteration if not cfg.MODEL.VID.ENABLE: images = images.to(device) else: method = cfg.MODEL.VID.METHOD if method in ("base", ): images = images.to(device) elif method in ("rdn", "mega", "fgfa"): images["cur"] = images["cur"].to(device) for key in ("ref", "ref_l", "ref_m", "ref_g"): if key in images.keys(): images[key] = [img.to(device) for img in images[key]] else: raise ValueError("method {} not supported yet.".format(method)) targets = [target.to(device) for target in targets] loss_dict = model(images, targets) losses = sum(loss for loss in loss_dict.values()) # reduce losses over all GPUs for logging purposes loss_dict_reduced = reduce_loss_dict(loss_dict) losses_reduced = sum(loss for loss in loss_dict_reduced.values()) meters.update(loss=losses_reduced, **loss_dict_reduced) optimizer.zero_grad() # Note: If mixed precision is not used, this ends up doing nothing # Otherwise apply loss scaling for mixed-precision recipe with amp.scale_loss(losses, optimizer) as scaled_losses: scaled_losses.backward() optimizer.step() scheduler.step() batch_time = time.time() - end end = time.time() meters.update(time=batch_time, data=data_time) eta_seconds = meters.time.global_avg * (max_iter - iteration) eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) if iteration % 20 == 0 or iteration == max_iter: logger.info( meters.delimiter.join( [ "eta: {eta}", "iter: {iter}", "{meters}", "lr: {lr:.6f}", "max mem: {memory:.0f}", ] ).format( eta=eta_string, iter=iteration, meters=str(meters), lr=optimizer.param_groups[0]["lr"], memory=torch.cuda.max_memory_allocated() / 1024.0 / 1024.0, ) ) if iteration % checkpoint_period == 0: checkpointer.save("model_{:07d}".format(iteration), **arguments) if data_loader_val is not None and test_period > 0 and iteration % test_period == 0: meters_val = MetricLogger(delimiter=" ") synchronize() _ = inference( # The result can be used for additional logging, e. g. for TensorBoard model, # The method changes the segmentation mask format in a data loader, # so every time a new data loader is created: make_data_loader(cfg, is_train=False, is_distributed=(get_world_size() > 1), is_for_period=True), dataset_name="[Validation]", iou_types=iou_types, box_only=False if cfg.MODEL.RETINANET_ON else cfg.MODEL.RPN_ONLY, device=cfg.MODEL.DEVICE, expected_results=cfg.TEST.EXPECTED_RESULTS, expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL, output_folder=None, ) synchronize() model.train() with torch.no_grad(): # Should be one image for each GPU: for iteration_val, (images_val, targets_val, _) in enumerate(tqdm(data_loader_val)): images_val = images_val.to(device) targets_val = [target.to(device) for target in targets_val] loss_dict = model(images_val, targets_val) losses = sum(loss for loss in loss_dict.values()) loss_dict_reduced = reduce_loss_dict(loss_dict) losses_reduced = sum(loss for loss in loss_dict_reduced.values()) meters_val.update(loss=losses_reduced, **loss_dict_reduced) synchronize() logger.info( meters_val.delimiter.join( [ "[Validation]: ", "eta: {eta}", "iter: {iter}", "{meters}", "lr: {lr:.6f}", "max mem: {memory:.0f}", ] ).format( eta=eta_string, iter=iteration, meters=str(meters_val), lr=optimizer.param_groups[0]["lr"], memory=torch.cuda.max_memory_allocated() / 1024.0 / 1024.0, ) ) if iteration == max_iter: checkpointer.save("model_final", **arguments) total_training_time = time.time() - start_training_time total_time_str = str(datetime.timedelta(seconds=total_training_time)) logger.info( "Total training time: {} ({:.4f} s / it)".format( total_time_str, total_training_time / (max_iter) ) )
def main(): parser = argparse.ArgumentParser( description="PyTorch Object Detection Inference") parser.add_argument( "--config-file", default= "/private/home/fmassa/github/detectron.pytorch_v2/configs/e2e_faster_rcnn_R_50_C4_1x_caffe2.yaml", metavar="FILE", help="path to config file", ) parser.add_argument( "--prediction-folder", help="The path to the prediction file to be evaluated.", default=None, ) parser.add_argument("--motion-specific", "-ms", action="store_true", help="if True, evaluate motion-specific iou") parser.add_argument( "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) args = parser.parse_args() BASE_CONFIG = "configs/BASE_RCNN_1gpu.yaml" cfg.merge_from_file(BASE_CONFIG) cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() save_dir = "" logger = setup_logger("mega_core", save_dir, 0) iou_types = ("bbox", ) if cfg.MODEL.MASK_ON: iou_types = iou_types + ("segm", ) if cfg.MODEL.KEYPOINT_ON: iou_types = iou_types + ("keypoints", ) output_folders = [None] * len(cfg.DATASETS.TEST) dataset_names = cfg.DATASETS.TEST if args.prediction_folder: for idx, dataset_name in enumerate(dataset_names): output_folder = os.path.join(args.prediction_folder, "inference", dataset_name) mkdir(output_folder) output_folders[idx] = output_folder data_loaders_val = make_data_loader(cfg, is_train=False) for output_folder, dataset_name, data_loader_val in zip( output_folders, dataset_names, data_loaders_val): inference_no_model( data_loader_val, iou_types=iou_types, motion_specific=args.motion_specific, box_only=False if cfg.MODEL.RETINANET_ON else cfg.MODEL.RPN_ONLY, expected_results=cfg.TEST.EXPECTED_RESULTS, expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL, output_folder=output_folder, )