Пример #1
0
def get_token_stream(model, context_tokens):

    args = get_args()
    tokenizer = get_tokenizer()

    context_tokens, context_lengths = pad_batch(context_tokens, tokenizer.eod,
                                                args)

    context_tokens_tensor = torch.cuda.LongTensor(context_tokens)
    context_length_tensor = torch.cuda.LongTensor(context_lengths)

    torch.distributed.broadcast(context_length_tensor,
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
    torch.distributed.broadcast(context_tokens_tensor,
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())

    context_length = context_length_tensor.min().item()
    tokens, attention_mask, position_ids = get_batch(context_tokens_tensor)

    batch_token_iterator = sample_sequence_batch(model, context_tokens_tensor,
                                                 context_length_tensor,
                                                 attention_mask, position_ids)
    for tokens, lengths in batch_token_iterator:
        context_length += 1
        if tokens is not None:
            yield tokens[:, :context_length], lengths
        else:
            yield None, None
Пример #2
0
def get_samples_mapping_(indexed_dataset,
                         data_prefix,
                         num_epochs,
                         max_num_samples,
                         max_seq_length,
                         short_seq_prob,
                         seed,
                         name):
    if not num_epochs:
        if not max_num_samples:
            raise ValueError("Need to specify either max_num_samples "
                             "or num_epochs")
        num_epochs = np.iinfo(np.int32).max - 1
    if not max_num_samples:
        max_num_samples = np.iinfo(np.int64).max - 1

    # Filename of the index mapping
    indexmap_filename = data_prefix
    indexmap_filename += '_{}_indexmap'.format(name)
    if num_epochs != (np.iinfo(np.int32).max - 1):
        indexmap_filename += '_{}ep'.format(num_epochs)
    if max_num_samples != (np.iinfo(np.int64).max - 1):
        indexmap_filename += '_{}mns'.format(max_num_samples)
    indexmap_filename += '_{}msl'.format(max_seq_length)
    indexmap_filename += '_{:0.2f}ssp'.format(short_seq_prob)
    indexmap_filename += '_{}s'.format(seed)
    indexmap_filename += '.npy'

    # Build the indexed mapping if not exist.
    if torch.distributed.get_rank() == 0 and \
       not os.path.isfile(indexmap_filename):
        print(' > WARNING: could not find index map file {}, building '
              'the indices on rank 0 ...'.format(indexmap_filename))

        # Make sure the types match the helpers input types.
        assert indexed_dataset.doc_idx.dtype == np.int64
        assert indexed_dataset.sizes.dtype == np.int32

        # Build samples mapping
        verbose = torch.distributed.get_rank() == 0
        start_time = time.time()
        print_rank_0(' > building sapmles index mapping for {} ...'.format(
            name))
        # First compile and then import.
        from megatron.data import helpers
        samples_mapping = helpers.build_mapping(
            indexed_dataset.doc_idx,
            indexed_dataset.sizes,
            num_epochs,
            max_num_samples,
            max_seq_length - 3,  # account for added tokens
            short_seq_prob,
            seed,
            verbose)
        print_rank_0(' > done building sapmles index maping')
        np.save(indexmap_filename, samples_mapping, allow_pickle=True)
        print_rank_0(' > saved the index mapping in {}'.format(
            indexmap_filename))
        # Make sure all the ranks have built the mapping
        print_rank_0(' > elasped time to build and save samples mapping '
                     '(seconds): {:4f}'.format(
                         time.time() - start_time))
    # This should be a barrier but nccl barrier assumes
    # device_index=rank which is not the case for model
    # parallel case
    counts = torch.cuda.LongTensor([1])
    torch.distributed.all_reduce(counts, group=mpu.get_data_parallel_group())
    torch.distributed.all_reduce(counts, group=mpu.get_pipeline_model_parallel_group())
    assert counts[0].item() == (
        torch.distributed.get_world_size() //
        torch.distributed.get_world_size(group=mpu.get_tensor_model_parallel_group()))

    # Load indexed dataset.
    print_rank_0(' > loading indexed mapping from {}'.format(
        indexmap_filename))
    start_time = time.time()
    samples_mapping = np.load(indexmap_filename, allow_pickle=True, mmap_mode='r')
    print_rank_0('    loaded indexed file in {:3.3f} seconds'.format(
        time.time() - start_time))
    print_rank_0('    total number of samples: {}'.format(
        samples_mapping.shape[0]))

    return samples_mapping
Пример #3
0
def _build_index_mappings(name, data_prefix, documents, sizes,
                          num_samples, seq_length, seed):
    """Build doc-idx, sample-idx, and shuffle-idx.
    doc-idx: is an array (ordered) of documents to be used in training.
    sample-idx: is the start document index and document offset for each
       training sample.
    shuffle-idx: maps the sample index into a random index into sample-idx.
    """
    # Number of tokens in each epoch and number of required epochs.
    tokens_per_epoch = _num_tokens(documents, sizes)
    num_epochs = _num_epochs(tokens_per_epoch, seq_length, num_samples)
    # rng state
    np_rng = np.random.RandomState(seed=seed)

    # Filename of the index mappings.
    _filename = data_prefix
    _filename += '_{}_indexmap'.format(name)
    _filename += '_{}ns'.format(num_samples)
    _filename += '_{}sl'.format(seq_length)
    _filename += '_{}s'.format(seed)
    doc_idx_filename = _filename + '_doc_idx.npy'
    sample_idx_filename = _filename + '_sample_idx.npy'
    shuffle_idx_filename = _filename + '_shuffle_idx.npy'

    # Build the indexed mapping if not exist.
    if torch.distributed.get_rank() == 0:
        if (not os.path.isfile(doc_idx_filename)) or \
           (not os.path.isfile(sample_idx_filename)) or \
           (not os.path.isfile(shuffle_idx_filename)):

            print_rank_0(' > WARNING: could not find index map files, building '
                         'the indices on rank 0 ...')

            # For the last epoch, decide whether include the entire epoch
            # in the global shuffle or not.

            # If we need only one epoch, then separating last epoch  does
            # not mean anything.
            if num_epochs == 1:
                separate_last_epoch = False
                print(' > only one epoch required, setting '
                      'separate_last_epoch to False', flush=True)

            else:
                # Get the number of samples for the last epoch
                num_samples_from_epochs_minus_one = (
                    (num_epochs - 1) * tokens_per_epoch - 1) // seq_length
                last_epoch_num_samples = num_samples - \
                                         num_samples_from_epochs_minus_one
                assert last_epoch_num_samples >= 0, \
                    'last epoch number of samples should be non-negative.'
                num_samples_per_epoch = (tokens_per_epoch - 1) // seq_length
                assert last_epoch_num_samples < (num_samples_per_epoch + 1), \
                    'last epoch number of samples exceeded max value.'
                # If we have less than 80% of the samples for the last epoch,
                # seperate out the epoch and treat it differently.
                # Note: the 80% number is just based on common sense and can
                # be adjusted if needed.
                separate_last_epoch = (last_epoch_num_samples <
                                       int(0.80 * num_samples_per_epoch))
                if separate_last_epoch:
                    string = ' > last epoch number of samples ({}) is smaller '\
                             'than 80% of number of samples per epoch ({}), '\
                             'setting separate_last_epoch to True'
                else:
                    string = ' > last epoch number of samples ({}) is larger '\
                             'than 80% of number of samples per epoch ({}), '\
                             'setting separate_last_epoch to False'
                print(string.format(last_epoch_num_samples,
                                    num_samples_per_epoch), flush=True)

            # doc-idx.
            start_time = time.time()
            doc_idx = _build_doc_idx(documents, num_epochs, np_rng,
                                     separate_last_epoch)
            np.save(doc_idx_filename, doc_idx, allow_pickle=True)
            print_rank_0(' > elasped time to build and save doc-idx mapping '
                         '(seconds): {:4f}'.format(time.time() - start_time))
            # sample-idx.
            start_time = time.time()
            # Use C++ implementation for speed.
            # First compile and then import.
            from megatron.data import helpers
            assert doc_idx.dtype == np.int32
            assert sizes.dtype == np.int32
            sample_idx = helpers.build_sample_idx(sizes, doc_idx, seq_length,
                                                  num_epochs, tokens_per_epoch)
            # sample_idx = _build_sample_idx(sizes, doc_idx, seq_length,
            #                               num_epochs, tokens_per_epoch)
            np.save(sample_idx_filename, sample_idx, allow_pickle=True)
            print_rank_0(' > elasped time to build and save sample-idx mapping '
                         '(seconds): {:4f}'.format(time.time() - start_time))
            # shuffle-idx.
            start_time = time.time()
            # -1 is due to data structure used to retieve the index:
            #    sample i --> [sample_idx[i], sample_idx[i+1])
            if separate_last_epoch:
                num_samples_ = num_samples_from_epochs_minus_one
            else:
                num_samples_ = sample_idx.shape[0] - 1
            shuffle_idx = _build_shuffle_idx(num_samples_,
                                             sample_idx.shape[0] - 1, np_rng)
            np.save(shuffle_idx_filename, shuffle_idx, allow_pickle=True)
            print_rank_0(' > elasped time to build and save shuffle-idx mapping'
                         ' (seconds): {:4f}'.format(time.time() - start_time))

    # This should be a barrier but nccl barrier assumes
    # device_index=rank which is not the case for model
    # parallel case
    counts = torch.cuda.LongTensor([1])
    torch.distributed.all_reduce(counts, group=mpu.get_data_parallel_group())
    torch.distributed.all_reduce(counts, group=mpu.get_pipeline_model_parallel_group())
    assert counts[0].item() == (
        torch.distributed.get_world_size() //
        torch.distributed.get_world_size(group=mpu.get_tensor_model_parallel_group()))

    # Load mappings.
    start_time = time.time()
    print_rank_0(' > loading doc-idx mapping from {}'.format(
        doc_idx_filename))
    doc_idx = np.load(doc_idx_filename, allow_pickle=True, mmap_mode='r')
    print_rank_0(' > loading sample-idx mapping from {}'.format(
        sample_idx_filename))
    sample_idx = np.load(sample_idx_filename, allow_pickle=True, mmap_mode='r')
    print_rank_0(' > loading shuffle-idx mapping from {}'.format(
        shuffle_idx_filename))
    shuffle_idx = np.load(shuffle_idx_filename, allow_pickle=True, mmap_mode='r')
    print_rank_0('    loaded indexed file in {:3.3f} seconds'.format(
        time.time() - start_time))
    print_rank_0('    total number of samples: {}'.format(
        sample_idx.shape[0]))
    print_rank_0('    total number of epochs: {}'.format(num_epochs))

    return doc_idx, sample_idx, shuffle_idx
Пример #4
0
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
    args = get_args()

    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
        args.consumed_train_samples = args.iteration * args.global_batch_size
    if args.iteration > 0 and args.consumed_valid_samples == 0:
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
        args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
            args.eval_iters * args.global_batch_size

    # Data loader only on rank 0 of each model parallel group.
    if mpu.get_tensor_model_parallel_rank() == 0:

        # Number of train/valid/test samples.
        if args.train_samples:
            train_samples = args.train_samples
        else:
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
                     args.eval_iters
        test_iters = args.eval_iters
        train_val_test_num_samples = [
            train_samples, eval_iters * args.global_batch_size,
            test_iters * args.global_batch_size
        ]
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(
            train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(
            train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(
            train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid),
             int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

    # Build iterators.
    if train_dataloader is not None:
        train_data_iterator = iter(train_dataloader)
    else:
        train_data_iterator = None

    if valid_dataloader is not None:
        valid_data_iterator = iter(valid_dataloader)
    else:
        valid_data_iterator = None

    if test_dataloader is not None:
        test_data_iterator = iter(test_dataloader)
    else:
        test_data_iterator = None

    return train_data_iterator, valid_data_iterator, test_data_iterator