def __init__(self): self.mid_dim = 14 self.num_class = 2 super().__init__() self.fc0 = M.Linear(self.num_class, self.mid_dim, bias=True) self.bn0 = M.BatchNorm1d(self.mid_dim) self.fc1 = M.Linear(self.mid_dim, self.mid_dim, bias=True) self.bn1 = M.BatchNorm1d(self.mid_dim) self.fc2 = M.Linear(self.mid_dim, self.num_class, bias=True)
def __init__(self): self.mid_dim = 14 self.num_class = 2 super().__init__() self.fc0 = M.Linear(self.num_class, self.mid_dim, bias=True) self.bn0 = M.BatchNorm1d(self.mid_dim) self.fc1 = M.Linear(self.mid_dim, self.mid_dim, bias=True) self.bn1 = M.BatchNorm1d(self.mid_dim) self.fc2 = M.Linear(self.mid_dim, self.num_class, bias=True) self.data = np.random.random((12, 2)).astype(np.float32)
def __init__(self, converter="normal"): self.converter = converter self.mid_dim = 14 self.num_class = 2 super().__init__() self.fc0 = M.Linear(self.num_class, self.mid_dim, bias=True) self.bn0 = M.BatchNorm1d(self.mid_dim) self.fc1 = M.Linear(self.mid_dim, self.mid_dim, bias=True) self.bn1 = M.BatchNorm1d(self.mid_dim) self.fc2 = M.Linear(self.mid_dim, self.num_class, bias=True) self.data = np.arange(24).reshape(12, 2).astype(np.float32)
def __init__(self, mode): super().__init__() self.mode = mode self.data1 = np.random.random((1, 32, 32)).astype(np.float32) self.data2 = np.random.random((20, 3, 24, 24)).astype(np.float32) self.bn1d = M.BatchNorm1d(32) self.bn2d = M.BatchNorm2d(3)
def __init__(self, transpose=False): super().__init__() self.transpose = transpose self.data = np.random.random((10, 100)).astype(np.float32) weight = np.random.random((200, 100) if transpose else (100, 200)) self.linear_weight = mge.Tensor(weight) self.bn = M.BatchNorm1d(200)
def __init__(self, i, value_embedding, key_embedding): self.key_embedding = key_embedding super(TransformerBlock).__init__() self.position_encoding = M.Linear(L, key_embedding) self.init_map = M.Linear(i, key_embedding) self.value_mapping = M.Linear(key_embedding, value_embedding) self.key_mapping = M.Linear(key_embedding, key_embedding) self.query_mapping = M.Linear(key_embedding, key_embedding) self.norm = M.BatchNorm1d(key_embedding)
def __init__(self, gate_channel, reduction_ratio=16, num_layers=1): super(ChannelGate, self).__init__() gate_channels = [gate_channel] gate_channels += [gate_channel // reduction_ratio] * num_layers gate_channels += [gate_channel] self.gate_c = M.Sequential( Flatten(), M.Linear(gate_channels[0], gate_channels[1]), M.BatchNorm1d(gate_channels[1]), M.ReLU(), M.Linear(gate_channels[-2], gate_channels[-1]))
def __init__(self, input_size: int, output_size: int): super(LinearBlock, self).__init__() self.relu = M.ReLU() self.normalize = M.BatchNorm1d( output_size, affine=True, momentum=0.999, eps=1e-3, track_running_stats=False, ) self.linear = M.Linear(input_size, output_size) fc_init_(self.linear)
def __init__(self, feature_dim, channel, size=7): """initialzation Args: feature_dim (int): dimension number of output embedding channel (int): channel number of input feature map size (int, optional): size of input feature map. defaults to 7 """ super().__init__() self.size = size self.bn1 = M.BatchNorm2d(channel) self.dropout = M.Dropout(drop_prob=0.1) self.fc = M.Linear(channel, feature_dim) self.bn2 = M.BatchNorm1d(feature_dim, affine=False)
def __init__(self): super().__init__() self.data = np.random.random((10, 100)).astype(np.float32) self.linear = M.Linear(100, 200, bias=False) self.bn = M.BatchNorm1d(200)