Пример #1
0
def update_model(model_path):
    """
    Update the dumped model with test cases for new reference values.

    The model with pre-trained weights is trained for one iter with the test data attached.
    The loss and updated net state dict is dumped.

    .. code-block:: python

        from test_correctness import update_model
        update_model('mnist_model_with_test.mge') # for gpu
        update_model('mnist_model_with_test_cpu.mge') # for cpu

    """
    net = MnistNet(has_bn=True)
    checkpoint = mge.load(model_path)
    net.load_state_dict(checkpoint["net_init"])
    lr = checkpoint["sgd_lr"]
    opt = SGD(net.parameters(), lr=lr)
    gm = ad.GradManager().attach(net.parameters())

    data = Tensor(checkpoint["data"], dtype=np.float32)
    label = Tensor(checkpoint["label"], dtype=np.int32)

    opt.clear_grad()
    loss = train(data, label, net, opt, gm)
    opt.step()

    xpu_name = get_xpu_name()

    checkpoint.update(
        {"net_updated": net.state_dict(), "loss": loss.numpy(), "xpu": xpu_name}
    )
    mge.save(checkpoint, model_path)
Пример #2
0
def run_train(
    model_path,
    use_jit,
    use_symbolic,
    sublinear_memory_config=None,
    max_err=None,
    use_adaptive_pooling=False,
):

    """
    Load the model with test cases and run the training for one iter.
    The loss and updated weights are compared with reference value to verify the correctness.

    Dump a new file with updated result by calling update_model
    if you think the test fails due to numerical rounding errors instead of bugs.
    Please think twice before you do so.

    """
    net = MnistNet(has_bn=True, use_adaptive_pooling=use_adaptive_pooling)
    checkpoint = mge.load(model_path)
    net.load_state_dict(checkpoint["net_init"])
    lr = checkpoint["sgd_lr"]
    opt = SGD(net.parameters(), lr=lr)
    gm = ad.GradManager().attach(net.parameters())

    data = Tensor(checkpoint["data"], dtype=np.float32)
    label = Tensor(checkpoint["label"], dtype=np.int32)

    if max_err is None:
        max_err = 1e-5

    train_func = train
    if use_jit:
        train_func = jit.trace(
            train_func,
            symbolic=use_symbolic,
            sublinear_memory_config=sublinear_memory_config,
        )

    opt.clear_grad()
    loss = train_func(data, label, net, opt, gm)
    opt.step()

    np.testing.assert_allclose(loss.numpy(), checkpoint["loss"], atol=max_err)

    for param, param_ref in zip(
        net.state_dict().items(), checkpoint["net_updated"].items()
    ):
        assert param[0] == param_ref[0]
        if "bn" in param[0]:
            ref = param_ref[1].reshape(param[1].shape)
            np.testing.assert_allclose(param[1], ref, atol=max_err)
        else:
            np.testing.assert_allclose(param[1], param_ref[1], atol=max_err)
def test_training_converge_with_swap_and_drop():
    _set_swap_flag(True)
    _set_drop_flag(True)
    old_buffer_length = get_option("buffer_length")
    set_option("buffer_length", 0)
    net = XORNet()
    opt = SGD(net.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
    gm = ad.GradManager().attach(net.parameters())

    def train(data, label):
        with gm:
            pred = net(data)
            loss = F.nn.cross_entropy(pred, label)
            gm.backward(loss)
        return loss

    def infer(data):
        return net(data)

    train_dataset = minibatch_generator()
    losses = []

    for data, label in itertools.islice(train_dataset, 2000):
        data = Tensor(data, dtype=np.float32)
        label = Tensor(label, dtype=np.int32)
        opt.clear_grad()
        loss = train(data, label)
        opt.step()
        losses.append(loss.numpy())

    assert np.mean(
        losses[-100:]) < 0.1, "Final training Loss must be low enough"

    ngrid = 10
    x = np.linspace(-1.0, 1.0, ngrid)
    xx, yy = np.meshgrid(x, x)
    xx = xx.reshape((ngrid * ngrid, 1))
    yy = yy.reshape((ngrid * ngrid, 1))
    data = np.concatenate((xx, yy), axis=1).astype(np.float32)

    pred = infer(Tensor(data)).numpy()
    precision = calculate_precision(data, pred)
    assert precision == 1.0, "Test precision must be high enough, get {}".format(
        precision)

    _set_swap_flag(False)
    _set_drop_flag(False)
    set_option("buffer_length", old_buffer_length)
Пример #4
0
    def worker():
        net = Simple()
        opt = SGD(net.parameters(), lr=0.1)

        gm = ad.GradManager().attach(
            net.parameters(),
            callbacks=[dist.make_allreduce_cb("MEAN", dist.WORLD)])

        opt.clear_grad()
        with gm:
            x = tensor(data)
            loss = net(x)
            loss = loss.sum()
            gm.backward(loss)
        for p in net.params:
            np.testing.assert_equal(p.grad.numpy(), 1)
Пример #5
0
def test_training_converge(test_traced_module):
    net = XORNet()
    if test_traced_module:
        inp = Tensor(np.random.random((14, 2)))
        net = trace_module(net, inp)
    opt = SGD(net.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
    gm = ad.GradManager().attach(net.parameters())

    @trace(symbolic=False)
    def train(data, label):
        with gm:
            pred = net(data)
            loss = F.nn.cross_entropy(pred, label)
            gm.backward(loss)
            optim.clip_grad_norm(net.parameters(), max_norm=0.2, ord=2.0)
        return loss

    def infer(data):
        return net(data)

    train_dataset = minibatch_generator()
    losses = []

    for data, label in itertools.islice(train_dataset, 2000):
        data = Tensor(data, dtype=np.float32)
        label = Tensor(label, dtype=np.int32)
        opt.clear_grad()
        loss = train(data, label)
        optim.clip_grad_value(net.parameters(), lower=-0.1, upper=0.1)
        opt.step()
        losses.append(loss.numpy())
    assert (np.mean(losses[-100:]) <
            0.1), "Final training Loss must be low enough, get {}".format(
                np.mean(losses[-100:]))

    ngrid = 10
    x = np.linspace(-1.0, 1.0, ngrid)
    xx, yy = np.meshgrid(x, x)
    xx = xx.reshape((ngrid * ngrid, 1))
    yy = yy.reshape((ngrid * ngrid, 1))
    data = mge.tensor(np.concatenate((xx, yy), axis=1).astype(np.float32))
    pred = infer(data)
    precision = calculate_precision(data.numpy(), pred.numpy())
    assert precision == 1.0, "Test precision must be high enough, get {}".format(
        precision)