Пример #1
0
def test_quantize_batchmatmul_activation():
    batch = 4
    in_features = 8
    out_features = 4

    class TestNet(Module):
        def __init__(self, bias):
            super().__init__()
            self.quant = QuantStub()
            self.dequant = DequantStub()
            self.batch_mm = BatchMatMulActivation(
                batch, in_features, out_features, bias=bias
            )

        def forward(self, inp):
            out = self.quant(inp)
            out = self.batch_mm(out)
            out = expand_dims(out, -1)
            out = self.dequant(out)
            return out

    inputs = tensor(
        np.random.randn(batch, in_features, out_features).astype(np.float32)
    )
    for bias in (True, False):
        net = TestNet(bias)
        net.train()
        qat_net = quantize_qat(net, inplace=False)
        disable_fake_quant(qat_net)
        normal_outputs = net(inputs)
        qat_outputs = qat_net(inputs)
        np.testing.assert_allclose(normal_outputs.numpy(), qat_outputs.numpy())

        net.eval()
        normal_outputs = net(inputs)
        qat_net.eval()
        qat_outputs = qat_net(inputs)
        np.testing.assert_allclose(normal_outputs.numpy(), qat_outputs.numpy())

        enable_fake_quant(qat_net)
        qat_outputs = qat_net(inputs)
        qnet = quantize(qat_net, inplace=False)
        qnet.eval()
        quantize_outputs = qnet(inputs)
        np.testing.assert_allclose(
            qat_outputs.numpy(), quantize_outputs.numpy(), atol=1e-6
        )

        @jit.trace(capture_as_const=True)
        def f(x):
            qnet.eval()
            return qnet(x)

        f(inputs)
        file = io.BytesIO()
        f.dump(file, enable_nchw4=True)
        file.seek(0)
        dumped_outputs = cgtools.load_and_inference(file, [inputs])[0]
        np.testing.assert_allclose(quantize_outputs.numpy(), dumped_outputs, atol=1e-6)
Пример #2
0
def test_enable_and_disable_fake_quant():
    net = init_qat_net()
    disable_fake_quant(net)
    assert net.quant.act_fake_quant.enabled == False
    assert net.linear.weight_fake_quant.enabled == False
    assert net.linear.act_fake_quant.enabled == False
    enable_fake_quant(net)
    assert net.quant.act_fake_quant.enabled == True
    assert net.linear.weight_fake_quant.enabled == True
    assert net.linear.act_fake_quant.enabled == True
Пример #3
0
def test_enable_and_disable_all():
    x = tensor(np.random.randint(1, 10, size=(3, 3)).astype(np.float32))
    net = Net()
    y1 = net(x).numpy()
    net = quantize_qat(net, min_max_fakequant_qconfig)

    init_observer(net, x)

    y2 = net(x).numpy()
    disable_fake_quant(net)
    y3 = net(x).numpy()
    enable_fake_quant(net)
    y4 = net(x).numpy()
    np.testing.assert_allclose(y1, y3)
    np.testing.assert_allclose(y2, y4)
    with pytest.raises(AssertionError):
        np.testing.assert_allclose(y2, y3)
Пример #4
0
def init_observer(module, data):
    enable_observer(module)
    disable_fake_quant(module)
    module(data)
    disable_observer(module)
    enable_fake_quant(module)