Пример #1
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "-a",
        "--arch",
        default="simplebaseline_res50",
        type=str,
        choices=[
            "simplebaseline_res50",
            "simplebaseline_res101",
            "simplebaseline_res152",
        ],
    )
    parser.add_argument("--pretrained", default=True, type=bool)
    parser.add_argument("-s", "--save", default="/data/models", type=str)
    parser.add_argument("--data_root", default="/data/coco/images/", type=str)
    parser.add_argument(
        "--ann_file",
        default="/data/coco/annotations/person_keypoints_train2017.json",
        type=str,
    )
    parser.add_argument("--continue", default=None, type=str)

    parser.add_argument("-b", "--batch_size", default=64, type=int)
    parser.add_argument("--lr", default=6e-4, type=float)
    parser.add_argument("--epochs", default=200, type=int)

    parser.add_argument("--multi_scale_supervision", default=True, type=bool)

    parser.add_argument("-n", "--ngpus", default=8, type=int)
    parser.add_argument("-w", "--workers", default=8, type=int)
    parser.add_argument("--report-freq", default=10, type=int)

    args = parser.parse_args()

    model_name = "{}_{}x{}".format(args.arch, cfg.input_shape[0],
                                   cfg.input_shape[1])
    save_dir = os.path.join(args.save, model_name)
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
    mge.set_log_file(os.path.join(save_dir, "log.txt"))

    world_size = mge.get_device_count(
        "gpu") if args.ngpus is None else args.ngpus

    if world_size > 1:
        # scale learning rate by number of gpus
        args.lr *= world_size
        # start distributed training, dispatch sub-processes
        processes = []
        for rank in range(world_size):
            p = mp.Process(target=worker, args=(rank, world_size, args))
            p.start()
            processes.append(p)

        for p in processes:
            p.join()
    else:
        worker(0, 1, args)
Пример #2
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "-a",
        "--arch",
        default="simplebaseline_res50",
        type=str,
        choices=cfg.model_choices,
    )
    parser.add_argument("-s", "--save", default="/data/models", type=str)
    parser.add_argument("-b", "--batch_size", default=32, type=int)
    parser.add_argument("-lr", "--initial_lr", default=3e-4, type=float)

    parser.add_argument("--resume", default=None, type=str)

    parser.add_argument("--multi_scale_supervision", action="store_true")

    parser.add_argument("-n", "--ngpus", default=8, type=int)
    parser.add_argument("-w", "--workers", default=8, type=int)

    args = parser.parse_args()

    model_name = "{}_{}x{}".format(args.arch, cfg.input_shape[0], cfg.input_shape[1])
    save_dir = os.path.join(args.save, model_name)
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
    mge.set_log_file(os.path.join(save_dir, "log.txt"))

    if args.batch_size != cfg.batch_size:
        cfg.batch_size = args.batch_size
    if args.initial_lr != cfg.initial_lr:
        cfg.initial_lr = args.initial_lr

    world_size = mge.get_device_count("gpu") if args.ngpus is None else args.ngpus

    if world_size > 1:
        # scale learning rate by number of gpus
        master_ip = "localhost"

        port = dist.get_free_ports(1)[0]
        dist.Server(port)

        cfg.weight_decay *= world_size
        # start distributed training, dispatch sub-processes
        processes = []
        for rank in range(world_size):
            p = mp.Process(
                target=worker, args=(master_ip, port, rank, world_size, args)
            )
            p.start()
            processes.append(p)

        for p in processes:
            p.join()
    else:
        worker(None, None, 0, 1, args)
Пример #3
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "-a",
        "--arch",
        default="resnet50",
        type=str,
        choices=[
            "resnet18",
            "resnet34",
            "resnet50",
            "resnet101",
            "resnet152",
            "resnext50_32x4d",
            "resnext101_32x8d",
        ],
    )
    parser.add_argument("-d", "--data", default=None, type=str)
    parser.add_argument("-s", "--save", default="/data/models", type=str)

    parser.add_argument("-b", "--batch-size", default=32, type=int)
    parser.add_argument("--learning-rate", default=0.0125, type=float)
    parser.add_argument("--momentum", default=0.9, type=float)
    parser.add_argument("--weight-decay", default=1e-4, type=float)
    parser.add_argument("--epochs", default=90, type=int)

    parser.add_argument("-n", "--ngpus", default=None, type=int)
    parser.add_argument("-w", "--workers", default=4, type=int)
    parser.add_argument("--report-freq", default=50, type=int)
    args = parser.parse_args()

    save_dir = os.path.join(args.save, args.arch)
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
    mge.set_log_file(os.path.join(save_dir, "log.txt"))

    world_size = mge.get_device_count(
        "gpu") if args.ngpus is None else args.ngpus

    if world_size > 1:
        # scale learning rate by number of gpus
        args.learning_rate *= world_size
        # start distributed training, dispatch sub-processes
        mp.set_start_method("spawn")
        processes = []
        for rank in range(world_size):
            p = mp.Process(target=worker, args=(rank, world_size, args))
            p.start()
            processes.append(p)

        for p in processes:
            p.join()
    else:
        worker(0, 1, args)
Пример #4
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("-a", "--arch", default="shufflenet_v2_x0_5", type=str)
    parser.add_argument("-d", "--data", default=None, type=str)
    parser.add_argument("-s", "--save", default="./models", type=str)
    parser.add_argument("-m", "--model", default=None, type=str)
    parser.add_argument('-o',
                        '--output',
                        type=str,
                        required=True,
                        help='set path for checkpoints \w tensorboard')

    parser.add_argument("-b", "--batch-size", default=128, type=int)
    parser.add_argument("--learning-rate", default=0.0625, type=float)
    parser.add_argument("--momentum", default=0.9, type=float)
    parser.add_argument("--weight-decay", default=4e-5, type=float)
    parser.add_argument("--steps", default=300000, type=int)

    parser.add_argument("-n", "--ngpus", default=None, type=int)
    parser.add_argument("-w", "--workers", default=4, type=int)
    parser.add_argument("--report-freq", default=50, type=int)
    args = parser.parse_args()

    world_size = mge.get_device_count(
        "gpu") if args.ngpus is None else args.ngpus

    save_dir = os.path.join(args.save, args.arch,
                            "b{}".format(args.batch_size * world_size))
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
    mge.set_log_file(os.path.join(save_dir, "log.txt"))

    if not os.path.exists(args.output):
        os.makedirs(args.output)

    if world_size > 1:
        # scale learning rate by number of gpus
        args.learning_rate *= world_size
        # start distributed training, dispatch sub-processes
        mp.set_start_method("spawn")
        processes = []
        for rank in range(world_size):
            p = mp.Process(target=worker, args=(rank, world_size, args))
            p.start()
            processes.append(p)

        for p in processes:
            p.join()
    else:
        worker(0, 1, args)
Пример #5
0
def main(args):
    configs = load_config_from_path(args.config_file)

    configs["evaluate_epoch"] = args.epoch if args.epoch is not None else configs["num_epoch"]

    # write log to worklog.txt
    os.makedirs(configs["base_dir"], exist_ok=True)
    worklog_path = os.path.join(configs["base_dir"], "worklog.txt")
    mge.set_log_file(worklog_path)

    inference_func = get_inference_func(configs)
    facescrub_feature, facescrub_label, megaface_feature = extract_feature_and_clean_noise(configs, inference_func)
    megaface_score = calculate_score(configs, facescrub_feature, facescrub_label, megaface_feature)

    logger.info("Epoch: %d", configs["evaluate_epoch"])
    logger.info("MegaFace Top1: %.2f", megaface_score)
Пример #6
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "-a",
        "--arch",
        default="simplebaseline_res50",
        type=str,
        choices=cfg.model_choices,
    )
    parser.add_argument("-s", "--save", default="/data/models", type=str)
    parser.add_argument("-b", "--batch_size", default=32, type=int)
    parser.add_argument("-lr", "--initial_lr", default=3e-4, type=float)

    parser.add_argument("--resume", default=None, type=str)

    parser.add_argument("--multi_scale_supervision", action="store_true")

    parser.add_argument("-n", "--ngpus", default=8, type=int)
    parser.add_argument("-w", "--workers", default=8, type=int)

    args = parser.parse_args()

    model_name = "{}_{}x{}".format(args.arch, cfg.input_shape[0],
                                   cfg.input_shape[1])
    save_dir = os.path.join(args.save, model_name)
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
    mge.set_log_file(os.path.join(save_dir, "log.txt"))

    if args.batch_size != cfg.batch_size:
        cfg.batch_size = args.batch_size
    if args.initial_lr != cfg.initial_lr:
        cfg.initial_lr = args.initial_lr

    if args.ngpus is None:
        args.ngpus = dist.helper.get_device_count_by_fork("gpu")

    if args.ngpus > 1:
        # scale learning rate by number of gpus
        cfg.weight_decay *= args.ngpus
        dist_worker = dist.launcher(n_gpus=args.ngpus)(worker)
        dist_worker(args)
    else:
        worker(args)
Пример #7
0
def worker(rank, world_size, args):
    # pylint: disable=too-many-statements
    mge.set_log_file(os.path.join(args.save, args.arch, "log.txt"))

    if world_size > 1:
        # Initialize distributed process group
        logger.info("init distributed process group {} / {}".format(
            rank, world_size))
        dist.init_process_group(
            master_ip="localhost",
            master_port=23456,
            world_size=world_size,
            rank=rank,
            dev=rank,
        )

    save_dir = os.path.join(args.save, args.arch)

    model = getattr(M, args.arch)()
    step_start = 0
    if args.model:
        logger.info("load weights from %s", args.model)
        model.load_state_dict(mge.load(args.model))
        step_start = int(args.model.split("-")[1].split(".")[0])

    optimizer = optim.SGD(
        get_parameters(model),
        lr=args.learning_rate,
        momentum=args.momentum,
        weight_decay=args.weight_decay,
    )

    # Define train and valid graph
    @jit.trace(symbolic=True)
    def train_func(image, label):
        model.train()
        logits = model(image)
        loss = F.cross_entropy_with_softmax(logits, label, label_smooth=0.)
        acc1, acc5 = F.accuracy(logits, label, (1, 5))
        optimizer.backward(loss)  # compute gradients
        if dist.is_distributed():  # all_reduce_mean
            loss = dist.all_reduce_sum(loss,
                                       "train_loss") / dist.get_world_size()
            acc1 = dist.all_reduce_sum(acc1,
                                       "train_acc1") / dist.get_world_size()
            acc5 = dist.all_reduce_sum(acc5,
                                       "train_acc5") / dist.get_world_size()
        return loss, acc1, acc5

    @jit.trace(symbolic=True)
    def valid_func(image, label):
        model.eval()
        logits = model(image)
        loss = F.cross_entropy_with_softmax(logits, label, label_smooth=0.)
        acc1, acc5 = F.accuracy(logits, label, (1, 5))
        if dist.is_distributed():  # all_reduce_mean
            loss = dist.all_reduce_sum(loss,
                                       "valid_loss") / dist.get_world_size()
            acc1 = dist.all_reduce_sum(acc1,
                                       "valid_acc1") / dist.get_world_size()
            acc5 = dist.all_reduce_sum(acc5,
                                       "valid_acc5") / dist.get_world_size()
        return loss, acc1, acc5

    # Build train and valid datasets
    logger.info("preparing dataset..")
    train_dataset = data.dataset.ImageNet(args.data, train=True)
    train_sampler = data.Infinite(
        data.RandomSampler(train_dataset,
                           batch_size=args.batch_size,
                           drop_last=True))
    train_queue = data.DataLoader(
        train_dataset,
        sampler=train_sampler,
        transform=T.Compose([
            T.RandomResizedCrop(224),
            T.RandomHorizontalFlip(),
            T.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4),
            T.ToMode("CHW"),
        ]),
        num_workers=args.workers,
    )

    valid_dataset = data.dataset.ImageNet(args.data, train=False)
    valid_sampler = data.SequentialSampler(valid_dataset,
                                           batch_size=100,
                                           drop_last=False)
    valid_queue = data.DataLoader(
        valid_dataset,
        sampler=valid_sampler,
        transform=T.Compose([
            T.Resize(256),
            T.CenterCrop(224),
            T.ToMode("CHW"),
        ]),
        num_workers=args.workers,
    )

    # Start training
    objs = AverageMeter("Loss")
    top1 = AverageMeter("Acc@1")
    top5 = AverageMeter("Acc@5")
    total_time = AverageMeter("Time")

    t = time.time()
    for step in range(step_start, args.steps + 1):
        # Linear learning rate decay
        decay = 1.0
        decay = 1 - float(step) / args.steps if step < args.steps else 0
        for param_group in optimizer.param_groups:
            param_group["lr"] = args.learning_rate * decay

        image, label = next(train_queue)
        time_data = time.time() - t
        image = image.astype("float32")
        label = label.astype("int32")

        n = image.shape[0]

        optimizer.zero_grad()
        loss, acc1, acc5 = train_func(image, label)
        optimizer.step()

        top1.update(100 * acc1.numpy()[0], n)
        top5.update(100 * acc5.numpy()[0], n)
        objs.update(loss.numpy()[0], n)
        total_time.update(time.time() - t)
        time_iter = time.time() - t
        t = time.time()
        if step % args.report_freq == 0 and rank == 0:
            logger.info(
                "TRAIN Iter %06d: lr = %f,\tloss = %f,\twc_loss = 1,\tTop-1 err = %f,\tTop-5 err = %f,\tdata_time = %f,\ttrain_time = %f,\tremain_hours=%f",
                step,
                args.learning_rate * decay,
                float(objs.__str__().split()[1]),
                1 - float(top1.__str__().split()[1]) / 100,
                1 - float(top5.__str__().split()[1]) / 100,
                time_data,
                time_iter - time_data,
                time_iter * (args.steps - step) / 3600,
            )
            objs.reset()
            top1.reset()
            top5.reset()
            total_time.reset()
        if step % 10000 == 0 and rank == 0 and step != 0:
            logger.info("SAVING %06d", step)
            mge.save(
                model.state_dict(),
                os.path.join(save_dir, "checkpoint-{:06d}.pkl".format(step)),
            )
        if step % 50000 == 0 and step != 0:
            _, valid_acc, valid_acc5 = infer(valid_func, valid_queue, args)
            logger.info(
                "TEST Iter %06d: loss = %f,\tTop-1 err = %f,\tTop-5 err = %f",
                step, _, 1 - valid_acc / 100, 1 - valid_acc5 / 100)

    mge.save(model.state_dict(),
             os.path.join(save_dir, "checkpoint-{:06d}.pkl".format(step)))
    _, valid_acc, valid_acc5 = infer(valid_func, valid_queue, args)
    logger.info("TEST Iter %06d: loss=%f,\tTop-1 err = %f,\tTop-5 err = %f",
                step, _, 1 - valid_acc / 100, 1 - valid_acc5 / 100)
Пример #8
0
import numpy as np
import tensorflow as tf
from datetime import datetime

import megengine as mge
import megengine.functional as F
from megengine.data import RandomSampler, SequentialSampler, DataLoader
from megengine.data.dataset import MNIST
from megengine.data.transform import RandomResizedCrop, Normalize, ToMode, Pad, Compose
import megengine.optimizer as optim

mge.set_log_file('log.txt')
logger = mge.get_logger(__name__)

#logdir = "logs/scalars/" + datetime.now().strftime("%Y%m%d-%H%M%S")

# dataset
root_dir = '/data/.cache/dataset/MNIST'
mnist_train_dataset = MNIST(root=root_dir, train=True, download=False)

mnist_test_dataset = MNIST(root=root_dir, train=False, download=False)

random_sampler = RandomSampler(dataset=mnist_train_dataset, batch_size=256)
sequential_sampler = SequentialSampler(dataset=mnist_test_dataset,
                                       batch_size=256)

mnist_train_dataloader = DataLoader(
    dataset=mnist_train_dataset,
    sampler=random_sampler,
    transform=Compose([
        RandomResizedCrop(output_size=28),
Пример #9
0
def worker(master_ip, port, world_size, rank, configs):
    if world_size > 1:
        dist.init_process_group(
            master_ip=master_ip,
            port=port,
            world_size=world_size,
            rank=rank,
            device=rank,
        )
        logger.info("init process group for gpu{} done".format(rank))

    # set up logger
    os.makedirs(configs["base_dir"], exist_ok=True)
    worklog_path = os.path.join(configs["base_dir"], "worklog.txt")
    mge.set_log_file(worklog_path)

    # prepare model-related components
    model = FaceRecognitionModel(configs)

    # prepare data-related components
    preprocess = T.Compose([T.Normalize(mean=127.5, std=128), T.ToMode("CHW")])
    augment = T.Compose([T.RandomHorizontalFlip()])

    train_dataset = get_train_dataset(configs["dataset"],
                                      dataset_dir=configs["dataset_dir"])
    train_sampler = data.RandomSampler(train_dataset,
                                       batch_size=configs["batch_size"],
                                       drop_last=True)
    train_queue = data.DataLoader(train_dataset,
                                  sampler=train_sampler,
                                  transform=T.Compose([augment, preprocess]))

    # prepare optimize-related components
    configs["learning_rate"] = configs["learning_rate"] * dist.get_world_size()
    if dist.get_world_size() > 1:
        dist.bcast_list_(model.parameters())
        gm = ad.GradManager().attach(
            model.parameters(), callbacks=[dist.make_allreduce_cb("mean")])
    else:
        gm = ad.GradManager().attach(model.parameters())
    opt = optim.SGD(
        model.parameters(),
        lr=configs["learning_rate"],
        momentum=configs["momentum"],
        weight_decay=configs["weight_decay"],
    )

    # try to load checkpoint
    model, start_epoch = try_load_latest_checkpoint(model, configs["base_dir"])

    # do training
    def train_one_epoch():
        def train_func(images, labels):
            opt.clear_grad()
            with gm:
                loss, accuracy, _ = model(images, labels)
                gm.backward(loss)
                if dist.is_distributed():
                    # all_reduce_mean
                    loss = dist.functional.all_reduce_sum(
                        loss) / dist.get_world_size()
                    accuracy = dist.functional.all_reduce_sum(
                        accuracy) / dist.get_world_size()
            opt.step()
            return loss, accuracy

        model.train()

        average_loss = AverageMeter("loss")
        average_accuracy = AverageMeter("accuracy")
        data_time = AverageMeter("data_time")
        train_time = AverageMeter("train_time")

        total_step = len(train_queue)
        data_iter = iter(train_queue)
        for step in range(total_step):
            # get next batch of data
            data_tic = time.time()
            images, labels = next(data_iter)
            data_toc = time.time()

            # forward pass & backward pass
            train_tic = time.time()
            images = mge.tensor(images, dtype="float32")
            labels = mge.tensor(labels, dtype="int32")
            loss, accuracy = train_func(images, labels)
            train_toc = time.time()

            # do the statistics and logging
            n = images.shape[0]
            average_loss.update(loss.item(), n)
            average_accuracy.update(accuracy.item() * 100, n)
            data_time.update(data_toc - data_tic)
            train_time.update(train_toc - train_tic)
            if step % configs["log_interval"] == 0 and dist.get_rank() == 0:
                logger.info(
                    "epoch: %d, step: %d, %s, %s, %s, %s",
                    epoch,
                    step,
                    average_loss,
                    average_accuracy,
                    data_time,
                    train_time,
                )

    for epoch in range(start_epoch, configs["num_epoch"]):
        adjust_learning_rate(opt, epoch, configs)
        train_one_epoch()

        if dist.get_rank() == 0:
            checkpoint_path = os.path.join(configs["base_dir"],
                                           f"epoch-{epoch+1}-checkpoint.pkl")
            mge.save(
                {
                    "epoch": epoch + 1,
                    "state_dict": model.state_dict()
                },
                checkpoint_path,
            )
Пример #10
0
def worker(rank, world_size, args):
    # pylint: disable=too-many-statements

    if world_size > 1:
        # Initialize distributed process group
        logger.info("init distributed process group {} / {}".format(
            rank, world_size))
        dist.init_process_group(
            master_ip="localhost",
            master_port=23456,
            world_size=world_size,
            rank=rank,
            dev=rank,
        )

    save_dir = os.path.join(args.save, args.arch + "." + args.mode)
    if not os.path.exists(save_dir):
        os.makedirs(save_dir, exist_ok=True)
    mge.set_log_file(os.path.join(save_dir, "log.txt"))

    model = models.__dict__[args.arch]()
    cfg = config.get_finetune_config(args.arch)

    cfg.LEARNING_RATE *= world_size  # scale learning rate in distributed training
    total_batch_size = cfg.BATCH_SIZE * world_size
    steps_per_epoch = 1280000 // total_batch_size
    total_steps = steps_per_epoch * cfg.EPOCHS

    if args.mode != "normal":
        Q.quantize_qat(model, Q.ema_fakequant_qconfig)

    if args.checkpoint:
        logger.info("Load pretrained weights from %s", args.checkpoint)
        ckpt = mge.load(args.checkpoint)
        ckpt = ckpt["state_dict"] if "state_dict" in ckpt else ckpt
        model.load_state_dict(ckpt, strict=False)

    if args.mode == "quantized":
        raise ValueError("mode = quantized only used during inference")
        Q.quantize(model)

    optimizer = optim.SGD(
        get_parameters(model, cfg),
        lr=cfg.LEARNING_RATE,
        momentum=cfg.MOMENTUM,
    )

    # Define train and valid graph
    @jit.trace(symbolic=True)
    def train_func(image, label):
        model.train()
        logits = model(image)
        loss = F.cross_entropy_with_softmax(logits, label, label_smooth=0.1)
        acc1, acc5 = F.accuracy(logits, label, (1, 5))
        optimizer.backward(loss)  # compute gradients
        if dist.is_distributed():  # all_reduce_mean
            loss = dist.all_reduce_sum(loss,
                                       "train_loss") / dist.get_world_size()
            acc1 = dist.all_reduce_sum(acc1,
                                       "train_acc1") / dist.get_world_size()
            acc5 = dist.all_reduce_sum(acc5,
                                       "train_acc5") / dist.get_world_size()
        return loss, acc1, acc5

    @jit.trace(symbolic=True)
    def valid_func(image, label):
        model.eval()
        logits = model(image)
        loss = F.cross_entropy_with_softmax(logits, label, label_smooth=0.1)
        acc1, acc5 = F.accuracy(logits, label, (1, 5))
        if dist.is_distributed():  # all_reduce_mean
            loss = dist.all_reduce_sum(loss,
                                       "valid_loss") / dist.get_world_size()
            acc1 = dist.all_reduce_sum(acc1,
                                       "valid_acc1") / dist.get_world_size()
            acc5 = dist.all_reduce_sum(acc5,
                                       "valid_acc5") / dist.get_world_size()
        return loss, acc1, acc5

    # Build train and valid datasets
    logger.info("preparing dataset..")
    train_dataset = data.dataset.ImageNet(args.data, train=True)
    train_sampler = data.Infinite(
        data.RandomSampler(train_dataset,
                           batch_size=cfg.BATCH_SIZE,
                           drop_last=True))
    train_queue = data.DataLoader(
        train_dataset,
        sampler=train_sampler,
        transform=T.Compose([
            T.RandomResizedCrop(224),
            T.RandomHorizontalFlip(),
            cfg.COLOR_JITTOR,
            T.Normalize(mean=128),
            T.ToMode("CHW"),
        ]),
        num_workers=args.workers,
    )
    train_queue = iter(train_queue)
    valid_dataset = data.dataset.ImageNet(args.data, train=False)
    valid_sampler = data.SequentialSampler(valid_dataset,
                                           batch_size=100,
                                           drop_last=False)
    valid_queue = data.DataLoader(
        valid_dataset,
        sampler=valid_sampler,
        transform=T.Compose([
            T.Resize(256),
            T.CenterCrop(224),
            T.Normalize(mean=128),
            T.ToMode("CHW"),
        ]),
        num_workers=args.workers,
    )

    def adjust_learning_rate(step, epoch):
        learning_rate = cfg.LEARNING_RATE
        if cfg.SCHEDULER == "Linear":
            learning_rate *= 1 - float(step) / total_steps
        elif cfg.SCHEDULER == "Multistep":
            learning_rate *= cfg.SCHEDULER_GAMMA**bisect.bisect_right(
                cfg.SCHEDULER_STEPS, epoch)
        else:
            raise ValueError(cfg.SCHEDULER)
        for param_group in optimizer.param_groups:
            param_group["lr"] = learning_rate
        return learning_rate

    # Start training
    objs = AverageMeter("Loss")
    top1 = AverageMeter("Acc@1")
    top5 = AverageMeter("Acc@5")
    total_time = AverageMeter("Time")

    t = time.time()
    for step in range(0, total_steps):
        # Linear learning rate decay
        epoch = step // steps_per_epoch
        learning_rate = adjust_learning_rate(step, epoch)

        image, label = next(train_queue)
        image = image.astype("float32")
        label = label.astype("int32")

        n = image.shape[0]

        optimizer.zero_grad()
        loss, acc1, acc5 = train_func(image, label)
        optimizer.step()

        top1.update(100 * acc1.numpy()[0], n)
        top5.update(100 * acc5.numpy()[0], n)
        objs.update(loss.numpy()[0], n)
        total_time.update(time.time() - t)
        t = time.time()
        if step % args.report_freq == 0 and rank == 0:
            logger.info("TRAIN e%d %06d %f %s %s %s %s", epoch, step,
                        learning_rate, objs, top1, top5, total_time)
            objs.reset()
            top1.reset()
            top5.reset()
            total_time.reset()
        if step % 10000 == 0 and rank == 0:
            logger.info("SAVING %06d", step)
            mge.save(
                {
                    "step": step,
                    "state_dict": model.state_dict()
                },
                os.path.join(save_dir, "checkpoint.pkl"),
            )
        if step % 10000 == 0 and step != 0:
            _, valid_acc, valid_acc5 = infer(valid_func, valid_queue, args)
            logger.info("TEST %06d %f, %f", step, valid_acc, valid_acc5)

    mge.save({
        "step": step,
        "state_dict": model.state_dict()
    }, os.path.join(save_dir, "checkpoint-final.pkl"))
    _, valid_acc, valid_acc5 = infer(valid_func, valid_queue, args)
    logger.info("TEST %06d %f, %f", step, valid_acc, valid_acc5)
Пример #11
0
def worker(world_size, args):
    # pylint: disable=too-many-statements

    rank = dist.get_rank()
    if world_size > 1:
        logger.info("init distributed process group {} / {}".format(
            rank, world_size))

    save_dir = os.path.join(args.save, args.arch + "." + args.mode)
    if not os.path.exists(save_dir):
        os.makedirs(save_dir, exist_ok=True)
    mge.set_log_file(os.path.join(save_dir, "log.txt"))

    model = models.__dict__[args.arch]()
    cfg = config.get_config(args.arch)

    cfg.LEARNING_RATE *= world_size  # scale learning rate in distributed training
    total_batch_size = cfg.BATCH_SIZE * world_size
    steps_per_epoch = 1280000 // total_batch_size
    total_steps = steps_per_epoch * cfg.EPOCHS

    if args.mode != "normal":
        quantize_qat(model, qconfig=Q.ema_fakequant_qconfig)

    if world_size > 1:
        # Sync parameters
        dist.bcast_list_(model.parameters(), dist.WORLD)

    # Autodiff gradient manager
    gm = autodiff.GradManager().attach(
        model.parameters(),
        callbacks=dist.make_allreduce_cb("MEAN") if world_size > 1 else None,
    )

    optimizer = optim.SGD(
        get_parameters(model, cfg),
        lr=cfg.LEARNING_RATE,
        momentum=cfg.MOMENTUM,
    )

    # Define train and valid graph
    def train_func(image, label):
        with gm:
            model.train()
            logits = model(image)
            loss = F.loss.cross_entropy(logits, label, label_smooth=0.1)
            acc1, acc5 = F.topk_accuracy(logits, label, (1, 5))
            gm.backward(loss)
            optimizer.step().clear_grad()
        return loss, acc1, acc5

    def valid_func(image, label):
        model.eval()
        logits = model(image)
        loss = F.loss.cross_entropy(logits, label, label_smooth=0.1)
        acc1, acc5 = F.topk_accuracy(logits, label, (1, 5))
        return loss, acc1, acc5

    # Build train and valid datasets
    logger.info("preparing dataset..")
    train_dataset = data.dataset.ImageNet(args.data, train=True)
    train_sampler = data.Infinite(
        data.RandomSampler(train_dataset,
                           batch_size=cfg.BATCH_SIZE,
                           drop_last=True))
    train_queue = data.DataLoader(
        train_dataset,
        sampler=train_sampler,
        transform=T.Compose([
            T.RandomResizedCrop(224),
            T.RandomHorizontalFlip(),
            cfg.COLOR_JITTOR,
            T.Normalize(mean=128),
            T.ToMode("CHW"),
        ]),
        num_workers=args.workers,
    )
    train_queue = iter(train_queue)
    valid_dataset = data.dataset.ImageNet(args.data, train=False)
    valid_sampler = data.SequentialSampler(valid_dataset,
                                           batch_size=100,
                                           drop_last=False)
    valid_queue = data.DataLoader(
        valid_dataset,
        sampler=valid_sampler,
        transform=T.Compose([
            T.Resize(256),
            T.CenterCrop(224),
            T.Normalize(mean=128),
            T.ToMode("CHW")
        ]),
        num_workers=args.workers,
    )

    def adjust_learning_rate(step, epoch):
        learning_rate = cfg.LEARNING_RATE
        if cfg.SCHEDULER == "Linear":
            learning_rate *= 1 - float(step) / total_steps
        elif cfg.SCHEDULER == "Multistep":
            learning_rate *= cfg.SCHEDULER_GAMMA**bisect.bisect_right(
                cfg.SCHEDULER_STEPS, epoch)
        else:
            raise ValueError(cfg.SCHEDULER)
        for param_group in optimizer.param_groups:
            param_group["lr"] = learning_rate
        return learning_rate

    # Start training
    objs = AverageMeter("Loss")
    top1 = AverageMeter("Acc@1")
    top5 = AverageMeter("Acc@5")
    total_time = AverageMeter("Time")

    t = time.time()
    for step in range(0, total_steps):
        # Linear learning rate decay
        epoch = step // steps_per_epoch
        learning_rate = adjust_learning_rate(step, epoch)

        image, label = next(train_queue)
        image = mge.tensor(image, dtype="float32")
        label = mge.tensor(label, dtype="int32")

        n = image.shape[0]

        loss, acc1, acc5 = train_func(image, label)

        top1.update(100 * acc1.numpy()[0], n)
        top5.update(100 * acc5.numpy()[0], n)
        objs.update(loss.numpy()[0], n)
        total_time.update(time.time() - t)
        t = time.time()
        if step % args.report_freq == 0 and rank == 0:
            logger.info(
                "TRAIN e%d %06d %f %s %s %s %s",
                epoch,
                step,
                learning_rate,
                objs,
                top1,
                top5,
                total_time,
            )
            objs.reset()
            top1.reset()
            top5.reset()
            total_time.reset()
        if step != 0 and step % 10000 == 0 and rank == 0:
            logger.info("SAVING %06d", step)
            mge.save(
                {
                    "step": step,
                    "state_dict": model.state_dict()
                },
                os.path.join(save_dir, "checkpoint.pkl"),
            )
        if step % 10000 == 0 and step != 0:
            _, valid_acc, valid_acc5 = infer(valid_func, valid_queue, args)
            logger.info("TEST %06d %f, %f", step, valid_acc, valid_acc5)

    mge.save(
        {
            "step": step,
            "state_dict": model.state_dict()
        },
        os.path.join(save_dir, "checkpoint-final.pkl"),
    )
    _, valid_acc, valid_acc5 = infer(valid_func, valid_queue, args)
    logger.info("TEST %06d %f, %f", step, valid_acc, valid_acc5)
Пример #12
0
def worker(world_size, args):
    # pylint: disable=too-many-statements

    rank = dist.get_rank()
    if world_size > 1:
        # Initialize distributed process group
        logger.info("init distributed process group {} / {}".format(rank, world_size))

    save_dir = os.path.join(args.save, args.arch + "." + "calibration")
    if not os.path.exists(save_dir):
        os.makedirs(save_dir, exist_ok=True)
    mge.set_log_file(os.path.join(save_dir, "log.txt"))

    model = models.__dict__[args.arch]()

    # load calibration model
    assert args.checkpoint
    logger.info("Load pretrained weights from %s", args.checkpoint)
    ckpt = mge.load(args.checkpoint)
    ckpt = ckpt["state_dict"] if "state_dict" in ckpt else ckpt
    model.load_state_dict(ckpt, strict=False)

    # Build valid datasets
    valid_dataset = data.dataset.ImageNet(args.data, train=False)
    valid_sampler = data.SequentialSampler(
        valid_dataset, batch_size=100, drop_last=False
    )
    valid_queue = data.DataLoader(
        valid_dataset,
        sampler=valid_sampler,
        transform=T.Compose(
            [T.Resize(256), T.CenterCrop(224), T.Normalize(mean=128), T.ToMode("CHW")]
        ),
        num_workers=args.workers,
    )

    # calibration
    model.fc.disable_quantize()
    model = quantize_qat(model, qconfig=Q.calibration_qconfig)

    # calculate scale
    def calculate_scale(image, label):
        model.eval()
        enable_observer(model)
        logits = model(image)
        loss = F.loss.cross_entropy(logits, label, label_smooth=0.1)
        acc1, acc5 = F.topk_accuracy(logits, label, (1, 5))
        if dist.is_distributed():  # all_reduce_mean
            loss = dist.functional.all_reduce_sum(loss) / dist.get_world_size()
            acc1 = dist.functional.all_reduce_sum(acc1) / dist.get_world_size()
            acc5 = dist.functional.all_reduce_sum(acc5) / dist.get_world_size()
        return loss, acc1, acc5

    infer(calculate_scale, valid_queue, args)

    # quantized
    model = quantize(model)

    # eval quantized model
    def eval_func(image, label):
        model.eval()
        logits = model(image)
        loss = F.loss.cross_entropy(logits, label, label_smooth=0.1)
        acc1, acc5 = F.topk_accuracy(logits, label, (1, 5))
        if dist.is_distributed():  # all_reduce_mean
            loss = dist.functional.all_reduce_sum(loss) / dist.get_world_size()
            acc1 = dist.functional.all_reduce_sum(acc1) / dist.get_world_size()
            acc5 = dist.functional.all_reduce_sum(acc5) / dist.get_world_size()
        return loss, acc1, acc5

    _, valid_acc, valid_acc5 = infer(eval_func, valid_queue, args)
    logger.info("TEST %f, %f", valid_acc, valid_acc5)

    # save quantized model
    mge.save(
        {"step": -1, "state_dict": model.state_dict()},
        os.path.join(save_dir, "checkpoint-calibration.pkl"),
    )
    logger.info(
        "save in {}".format(os.path.join(save_dir, "checkpoint-calibration.pkl"))
    )
Пример #13
0
from megengine import optimizer as optim
import megengine.autodiff as autodiff
from megengine import jit
# import dataset
import network
from config import config as cfg
from dataset.CrowdHuman import CrowdHuman
from misc_utils import ensure_dir
from megengine.core._imperative_rt.utils import Logger
from megengine import data
import pdb

ensure_dir(cfg.output_dir)
logger = mge.get_logger(__name__)
log_path = osp.join(cfg.output_dir, 'logger.log')
mge.set_log_file(log_path, mode='a')
Logger.set_log_level(Logger.LogLevel.Error)

def find_free_port():
    import socket
    sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    # Binding to port 0 will cause the OS to find an available port for us
    sock.bind(("", 0))
    port = sock.getsockname()[1]
    sock.close()
    # NOTE: there is still a chance the port could be taken by other processes.
    return port
def allreduce_cb(param, grad, group=dist.WORLD):
    return dist.functional.all_reduce_sum(grad, group) / group.size

def train_one_epoch(model, gm, data_iter, opt, max_steps, rank, epoch_id, gpu_num):
Пример #14
0
logger = mge.get_logger(__name__)


if __name__ == '__main__':
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument("-e", "--embedding", required=True, type=int, help="")
    parser.add_argument("-i", "--input", required=True, type=int, help="")
    parser.add_argument("-s", "--save", required=True, type=str, help="")
    parser.add_argument("--epoch", required=True, type=int, help="")
    args = parser.parse_args()

    mkdir_p(args.save)
    logfile = os.path.join(args.save, "log.txt")
    #open(logfile, 'w')
    mge.set_log_file(logfile)

    train_dataset = PCADataset(args.input, setting.points_num, setting.batch_size)
    test_dataset = PCADataset(args.input, setting.points_num, batch_size=setting.batch_size, istrain=False)
    model = TwolayerFC(args.embedding, args.input)

    data = mge.tensor(dtype='float32')
    label = mge.tensor(dtype="float32")
    optimizer = optim.SGD(
                    model.parameters(), # 参数列表,将指定参数与优化器绑定
                    lr=setting.learning_rate,  # 学习速率
                )
    total_epochs = args.epoch
    for epoch in range(total_epochs):
        model.train()
        train_batch_generator = train_dataset.batch_generator()
Пример #15
0
def worker(rank, world_size, args):
    # pylint: disable=too-many-statements

    if world_size > 1:
        # Initialize distributed process group
        logger.info("init distributed process group {} / {}".format(rank, world_size))
        dist.init_process_group(
            master_ip="localhost",
            master_port=23456,
            world_size=world_size,
            rank=rank,
            dev=rank,
        )

    save_dir = os.path.join(args.save, args.arch + "." + args.mode)
    if not os.path.exists(save_dir):
        os.makedirs(save_dir, exist_ok=True)
    mge.set_log_file(os.path.join(save_dir, "log.txt"))

    model = models.__dict__[args.arch]()
    cfg = config.get_finetune_config(args.arch)

    cfg.LEARNING_RATE *= world_size  # scale learning rate in distributed training
    total_batch_size = cfg.BATCH_SIZE * world_size
    steps_per_epoch = 1280000 // total_batch_size
    total_steps = steps_per_epoch * cfg.EPOCHS
    
    # load calibration model
    assert args.checkpoint
    logger.info("Load pretrained weights from %s", args.checkpoint)
    ckpt = mge.load(args.checkpoint)
    ckpt = ckpt["state_dict"] if "state_dict" in ckpt else ckpt
    model.load_state_dict(ckpt, strict=False)

    # Build valid datasets
    valid_dataset = data.dataset.ImageNet(args.data, train=False)
    # valid_dataset = ImageNetNoriDataset(args.data)
    valid_sampler = data.SequentialSampler(
        valid_dataset, batch_size=100, drop_last=False
    )
    valid_queue = data.DataLoader(
        valid_dataset,
        sampler=valid_sampler,
        transform=T.Compose(
            [
                T.Resize(256),
                T.CenterCrop(224),
                T.Normalize(mean=128),
                T.ToMode("CHW"),
            ]
        ),
        num_workers=args.workers,
    )

    # calibration
    model.fc.disable_quantize()
    model = quantize_qat(model, qconfig=Q.calibration_qconfig)
    
    # calculate scale
    @jit.trace(symbolic=True)
    def calculate_scale(image, label):
        model.eval()
        enable_observer(model)
        logits = model(image)
        loss = F.cross_entropy_with_softmax(logits, label, label_smooth=0.1)
        acc1, acc5 = F.accuracy(logits, label, (1, 5))
        if dist.is_distributed():  # all_reduce_mean
            loss = dist.all_reduce_sum(loss, "valid_loss") / dist.get_world_size()
            acc1 = dist.all_reduce_sum(acc1, "valid_acc1") / dist.get_world_size()
            acc5 = dist.all_reduce_sum(acc5, "valid_acc5") / dist.get_world_size()
        return loss, acc1, acc5
    
    # model.fc.disable_quantize()
    infer(calculate_scale, valid_queue, args)

    # quantized
    model = quantize(model)

    # eval quantized model
    @jit.trace(symbolic=True)
    def eval_func(image, label):
        model.eval()
        logits = model(image)
        loss = F.cross_entropy_with_softmax(logits, label, label_smooth=0.1)
        acc1, acc5 = F.accuracy(logits, label, (1, 5))
        if dist.is_distributed():  # all_reduce_mean
            loss = dist.all_reduce_sum(loss, "valid_loss") / dist.get_world_size()
            acc1 = dist.all_reduce_sum(acc1, "valid_acc1") / dist.get_world_size()
            acc5 = dist.all_reduce_sum(acc5, "valid_acc5") / dist.get_world_size()
        return loss, acc1, acc5
        
    _, valid_acc, valid_acc5 = infer(eval_func, valid_queue, args)
    logger.info("TEST %f, %f", valid_acc, valid_acc5)

    # save quantized model
    mge.save(
        {"step": -1, "state_dict": model.state_dict()},
        os.path.join(save_dir, "checkpoint-calibration.pkl")
    )
    logger.info("save in {}".format(os.path.join(save_dir, "checkpoint-calibration.pkl")))
Пример #16
0
def main():
    from pycocotools.coco import COCO
    from pycocotools.cocoeval import COCOeval

    parser = make_parser()
    args = parser.parse_args()
    model_name = "{}_{}x{}".format(args.arch, cfg.input_shape[0],
                                   cfg.input_shape[1])
    save_dir = os.path.join(args.save_dir, model_name)
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
    mge.set_log_file(os.path.join(save_dir, "log.txt"))

    args.ngpus = (dist.helper.get_device_count_by_fork("gpu")
                  if args.ngpus is None else args.ngpus)
    cfg.batch_size = cfg.batch_size if args.batch_size is None else args.batch_size

    dt_path = os.path.join(cfg.data_root, "person_detection_results",
                           args.dt_file)
    dets = json.load(open(dt_path, "r"))

    gt_path = os.path.join(cfg.data_root, "annotations",
                           "person_keypoints_val2017.json")
    eval_gt = COCO(gt_path)
    gt = eval_gt.dataset

    dets = [
        i for i in dets
        if (i["image_id"] in eval_gt.imgs and i["category_id"] == 1)
    ]
    ann_file = {"images": gt["images"], "annotations": dets}

    if args.end_epoch == -1:
        args.end_epoch = args.start_epoch

    for epoch_num in range(args.start_epoch, args.end_epoch + 1,
                           args.test_freq):
        if args.model:
            model_file = args.model
        else:
            model_file = "{}/epoch_{}.pkl".format(args.model_dir, epoch_num)
        logger.info("Load Model : %s completed", model_file)

        dist_worker = dist.launcher(n_gpus=args.ngpus)(worker)
        all_results = dist_worker(args.arch, model_file, cfg.data_root,
                                  ann_file)
        all_results = sum(all_results, [])

        json_name = "log-of-{}_epoch_{}.json".format(args.arch, epoch_num)
        json_path = os.path.join(save_dir, json_name)
        all_results = json.dumps(all_results)
        with open(json_path, "w") as fo:
            fo.write(all_results)
        logger.info("Save to %s finished, start evaluation!", json_path)

        eval_dt = eval_gt.loadRes(json_path)
        cocoEval = COCOeval(eval_gt, eval_dt, iouType="keypoints")
        cocoEval.evaluate()
        cocoEval.accumulate()
        cocoEval.summarize()
        metrics = [
            "AP",
            "[email protected]",
            "[email protected]",
            "APm",
            "APl",
            "AR",
            "[email protected]",
            "[email protected]",
            "ARm",
            "ARl",
        ]
        logger.info("mmAP".center(32, "-"))
        for i, m in enumerate(metrics):
            logger.info("|\t%s\t|\t%.03f\t|", m, cocoEval.stats[i])
        logger.info("-" * 32)