def __init__(self, images, group=None, holistic_features=no_op, reference_shape=None, diagonal=None, scales=(0.5, 1), patch_shape=(17, 17), patch_normalisation=no_op, context_shape=(34, 34), cosine_mask=True, sample_offsets=None, shape_model_cls=OrthoPDM, expert_ensemble_cls=CorrelationFilterExpertEnsemble, max_shape_components=None, verbose=False, batch_size=None): self.scales = checks.check_scales(scales) n_scales = len(scales) self.diagonal = checks.check_diagonal(diagonal) self.holistic_features = checks.check_callable(holistic_features, n_scales) self.expert_ensemble_cls = checks.check_callable(expert_ensemble_cls, n_scales) self._shape_model_cls = checks.check_callable(shape_model_cls, n_scales) self.max_shape_components = checks.check_max_components( max_shape_components, n_scales, 'max_shape_components') self.reference_shape = reference_shape self.patch_shape = checks.check_patch_shape(patch_shape, n_scales) self.patch_normalisation = patch_normalisation self.context_shape = checks.check_patch_shape(context_shape, n_scales) self.cosine_mask = cosine_mask self.sample_offsets = sample_offsets self.shape_models = [] self.expert_ensembles = [] # Train CLM self._train(images, increment=False, group=group, verbose=verbose, batch_size=batch_size)
def __init__(self, images, group=None, holistic_features=no_op, reference_shape=None, diagonal=None, scales=(0.5, 1.0), expert_ensemble_cls=CorrelationFilterExpertEnsemble, patch_shape=(17, 17), context_shape=(34, 34), sample_offsets=None, transform=DifferentiablePiecewiseAffine, shape_model_cls=OrthoPDM, max_shape_components=None, max_appearance_components=None, sigma=None, boundary=3, response_covariance=2, patch_normalisation=no_op, cosine_mask=True, verbose=False): # Check parameters checks.check_diagonal(diagonal) scales = checks.check_scales(scales) n_scales = len(scales) holistic_features = checks.check_callable(holistic_features, n_scales) shape_model_cls = checks.check_callable(shape_model_cls, n_scales) max_shape_components = checks.check_max_components( max_shape_components, n_scales, 'max_shape_components') max_appearance_components = checks.check_max_components( max_appearance_components, n_scales, 'max_appearance_components') # Assign attributes self.expert_ensemble_cls = checks.check_callable( expert_ensemble_cls, n_scales) self.expert_ensembles = [] self.patch_shape = checks.check_patch_shape(patch_shape, n_scales) self.context_shape = checks.check_patch_shape(context_shape, n_scales) self.holistic_features = holistic_features self.transform = transform self.diagonal = diagonal self.scales = scales self.max_shape_components = max_shape_components self.max_appearance_components = max_appearance_components self.reference_shape = reference_shape self.shape_model_cls = shape_model_cls self.sigma = sigma self.boundary = boundary self.sample_offsets = sample_offsets self.response_covariance = response_covariance self.patch_normalisation = patch_normalisation self.cosine_mask = cosine_mask self.shape_models = [] self.appearance_models = [] self.expert_ensembles = [] self._train(images=images, group=group, verbose=verbose)
def __init__( self, template, shapes, group=None, verbose=False, holistic_features=no_op, patch_normalisation=no_op, diagonal=None, scales=(0.5, 1.0), patch_shape=(17, 17), max_shape_components=None, batch_size=None, ): self.patch_shape = checks.check_patch_shape(patch_shape, len(scales)) self.patch_normalisation = patch_normalisation super(PatchATM, self).__init__( template, shapes, group=group, verbose=verbose, holistic_features=holistic_features, transform=DifferentiableThinPlateSplines, diagonal=diagonal, scales=scales, max_shape_components=max_shape_components, batch_size=batch_size, )
def __init__(self, images, group=None, bounding_box_group_glob=None, reference_shape=None, sd_algorithm_cls=Newton, holistic_features=no_op, patch_features=no_op, patch_shape=(17, 17), diagonal=None, scales=(0.5, 1.0), n_iterations=6, n_perturbations=30, perturb_from_gt_bounding_box=noisy_shape_from_bounding_box, batch_size=None, verbose=False): # check parameters checks.check_diagonal(diagonal) scales = checks.check_scales(scales) n_scales = len(scales) patch_features = checks.check_features(patch_features, n_scales) holistic_features = checks.check_features(holistic_features, n_scales) patch_shape = checks.check_patch_shape(patch_shape, n_scales) # set parameters self.algorithms = [] self.reference_shape = reference_shape self._sd_algorithm_cls = sd_algorithm_cls self.holistic_features = holistic_features self.patch_features = patch_features self.patch_shape = patch_shape self.diagonal = diagonal self.scales = scales self.n_perturbations = n_perturbations self.n_iterations = checks.check_max_iters(n_iterations, n_scales) self._perturb_from_gt_bounding_box = perturb_from_gt_bounding_box # set up algorithms self._setup_algorithms() # Now, train the model! self._train(images,increment=False, group=group, bounding_box_group_glob=bounding_box_group_glob, verbose=verbose, batch_size=batch_size)
def __init__(self, images, group=None, holistic_features=no_op, reference_shape=None, diagonal=None, scales=(0.5, 1.0), expert_ensemble_cls=CorrelationFilterExpertEnsemble, patch_shape=(17, 17), context_shape=(34, 34), sample_offsets=None, transform=DifferentiablePiecewiseAffine, shape_model_cls=OrthoPDM, max_shape_components=None, max_appearance_components=None, sigma=None, boundary=3, response_covariance=2, patch_normalisation=no_op, cosine_mask=True, verbose=False): # Check parameters checks.check_diagonal(diagonal) scales = checks.check_scales(scales) n_scales = len(scales) holistic_features = checks.check_callable(holistic_features, n_scales) shape_model_cls = checks.check_callable(shape_model_cls, n_scales) max_shape_components = checks.check_max_components( max_shape_components, n_scales, 'max_shape_components') max_appearance_components = checks.check_max_components( max_appearance_components, n_scales, 'max_appearance_components') # Assign attributes self.expert_ensemble_cls = checks.check_callable(expert_ensemble_cls, n_scales) self.expert_ensembles = [] self.patch_shape = checks.check_patch_shape(patch_shape, n_scales) self.context_shape = checks.check_patch_shape(context_shape, n_scales) self.holistic_features = holistic_features self.transform = transform self.diagonal = diagonal self.scales = scales self.max_shape_components = max_shape_components self.max_appearance_components = max_appearance_components self.reference_shape = reference_shape self.shape_model_cls = shape_model_cls self.sigma = sigma self.boundary = boundary self.sample_offsets = sample_offsets self.response_covariance = response_covariance self.patch_normalisation = patch_normalisation self.cosine_mask = cosine_mask self.shape_models = [] self.appearance_models = [] self.expert_ensembles = [] self._train(images=images, group=group, verbose=verbose)
def __init__( self, images, group=None, holistic_features=no_op, reference_shape=None, diagonal=None, scales=(1, ), # scales=(0.5, 1) patch_shape=(8, 8), patch_normalisation=no_op, context_shape=(8, 8), cosine_mask=True, sample_offsets=None, shape_model_cls=OrthoPDM, expert_ensemble_cls=CorrelationFilterExpertEnsemble, max_shape_components=None, verbose=False, batch_size=None): self.scales = checks.check_scales(scales) n_scales = len(scales) self.diagonal = checks.check_diagonal(diagonal) self.holistic_features = checks.check_callable(holistic_features, n_scales) self.expert_ensemble_cls = checks.check_callable( expert_ensemble_cls, n_scales) self._shape_model_cls = checks.check_callable(shape_model_cls, n_scales) self.max_shape_components = checks.check_max_components( max_shape_components, n_scales, 'max_shape_components') self.reference_shape = reference_shape self.patch_shape = checks.check_patch_shape(patch_shape, n_scales) self.patch_normalisation = patch_normalisation self.context_shape = checks.check_patch_shape(context_shape, n_scales) self.cosine_mask = cosine_mask self.sample_offsets = sample_offsets self.shape_models = [] self.expert_ensembles = [] # Train CLM self._train(images, increment=False, group=group, verbose=verbose, batch_size=batch_size)
def __init__( self, images, group=None, bounding_box_group_glob=None, reference_shape=None, sd_algorithm_cls=None, holistic_features=no_op, patch_features=no_op, patch_shape=(17, 17), diagonal=None, scales=(0.5, 1.0), n_iterations=3, n_perturbations=30, perturb_from_gt_bounding_box=noisy_shape_from_bounding_box, batch_size=None, verbose=False, ): if batch_size is not None: raise NotImplementedError("Training an SDM with a batch size " "(incrementally) is not implemented yet.") # check parameters checks.check_diagonal(diagonal) scales = checks.check_scales(scales) n_scales = len(scales) patch_features = checks.check_callable(patch_features, n_scales) sd_algorithm_cls = checks.check_callable(sd_algorithm_cls, n_scales) holistic_features = checks.check_callable(holistic_features, n_scales) patch_shape = checks.check_patch_shape(patch_shape, n_scales) # set parameters self.algorithms = [] self.reference_shape = reference_shape self._sd_algorithm_cls = sd_algorithm_cls self.holistic_features = holistic_features self.patch_features = patch_features self.patch_shape = patch_shape self.diagonal = diagonal self.scales = scales self.n_perturbations = n_perturbations self.n_iterations = checks.check_max_iters(n_iterations, n_scales) self._perturb_from_gt_bounding_box = perturb_from_gt_bounding_box # set up algorithms self._setup_algorithms() # Now, train the model! self._train( images, increment=False, group=group, bounding_box_group_glob=bounding_box_group_glob, verbose=verbose, batch_size=batch_size, )
def __init__(self, images, group=None, bounding_box_group_glob=None, reference_shape=None, sd_algorithm_cls=None, holistic_features=no_op, patch_features=no_op, patch_shape=(17, 17), diagonal=None, scales=(0.5, 1.0), n_iterations=3, n_perturbations=30, perturb_from_gt_bounding_box=noisy_shape_from_bounding_box, batch_size=None, verbose=False): if batch_size is not None: raise NotImplementedError( 'Training an SDM with a batch size ' '(incrementally) is not implemented yet.') # check parameters checks.check_diagonal(diagonal) scales = checks.check_scales(scales) n_scales = len(scales) patch_features = checks.check_callable(patch_features, n_scales) sd_algorithm_cls = checks.check_callable(sd_algorithm_cls, n_scales) holistic_features = checks.check_callable(holistic_features, n_scales) patch_shape = checks.check_patch_shape(patch_shape, n_scales) # set parameters self.algorithms = [] self.reference_shape = reference_shape self._sd_algorithm_cls = sd_algorithm_cls self.holistic_features = holistic_features self.patch_features = patch_features self.patch_shape = patch_shape self.diagonal = diagonal self.scales = scales self.n_perturbations = n_perturbations self.n_iterations = checks.check_max_iters(n_iterations, n_scales) self._perturb_from_gt_bounding_box = perturb_from_gt_bounding_box # set up algorithms self._setup_algorithms() # Now, train the model! self._train(images, increment=False, group=group, bounding_box_group_glob=bounding_box_group_glob, verbose=verbose, batch_size=batch_size)
def __init__(self, images, group=None, appearance_graph=None, shape_graph=None, deformation_graph=None, holistic_features=no_op, reference_shape=None, diagonal=None, scales=(0.5, 1.0), patch_shape=(17, 17), patch_normalisation=no_op, use_procrustes=True, precision_dtype=np.float32, max_shape_components=None, n_appearance_components=None, can_be_incremented=False, verbose=False, batch_size=None): # Check parameters checks.check_diagonal(diagonal) scales = checks.check_scales(scales) n_scales = len(scales) holistic_features = checks.check_callable(holistic_features, n_scales) patch_shape = checks.check_patch_shape(patch_shape, n_scales) patch_normalisation = checks.check_callable(patch_normalisation, n_scales) max_shape_components = checks.check_max_components( max_shape_components, n_scales, 'max_shape_components') n_appearance_components = checks.check_max_components( n_appearance_components, n_scales, 'n_appearance_components') # Assign attributes self.diagonal = diagonal self.scales = scales self.holistic_features = holistic_features self.patch_shape = patch_shape self.patch_normalisation = patch_normalisation self.reference_shape = reference_shape self.use_procrustes = use_procrustes self.is_incremental = can_be_incremented self.precision_dtype = precision_dtype self.max_shape_components = max_shape_components self.n_appearance_components = n_appearance_components # Check provided graphs self.appearance_graph = checks.check_graph( appearance_graph, UndirectedGraph, 'appearance_graph', n_scales) self.shape_graph = checks.check_graph(shape_graph, UndirectedGraph, 'shape_graph', n_scales) self.deformation_graph = checks.check_graph( deformation_graph, [DirectedGraph, Tree], 'deformation_graph', n_scales) # Initialize models' lists self.shape_models = [] self.appearance_models = [] self.deformation_models = [] # Train APS self._train(images, increment=False, group=group, batch_size=batch_size, verbose=verbose)
def __init__(self, template, shapes, group=None, holistic_features=no_op, reference_shape=None, diagonal=None, scales=(0.5, 1.0), patch_shape=(17, 17), max_shape_components=None, verbose=False, batch_size=None): # Check arguments self.patch_shape = checks.check_patch_shape(patch_shape, len(scales)) # Call superclass super(LinearMaskedATM, self).__init__( template, shapes, group=group, holistic_features=holistic_features, reference_shape=reference_shape, diagonal=diagonal, scales=scales, transform=DifferentiableThinPlateSplines, max_shape_components=max_shape_components, verbose=verbose, batch_size=batch_size)
def __init__(self, images, group=None, verbose=False, reference_shape=None, holistic_features=no_op, diagonal=None, scales=(0.5, 1.0), patch_shape=(17, 17), max_shape_components=None, max_appearance_components=None, batch_size=None): n_scales = len(checks.check_scales(scales)) self.patch_shape = checks.check_patch_shape(patch_shape, n_scales) super(LinearMaskedAAM, self).__init__( images, group=group, verbose=verbose, reference_shape=reference_shape, holistic_features=holistic_features, transform=DifferentiableThinPlateSplines, diagonal=diagonal, scales=scales, max_shape_components=max_shape_components, max_appearance_components=max_appearance_components, batch_size=batch_size)
def __init__(self, images, group=None, verbose=False, reference_shape=None, holistic_features=no_op, diagonal=None, scales=(0.5, 1.0), patch_shape=(17, 17), max_shape_components=None, max_appearance_components=None, shape_model_cls=OrthoPDM, batch_size=None): n_scales = len(checks.check_scales(scales)) self.patch_shape = checks.check_patch_shape(patch_shape, n_scales) super(LinearMaskedAAM, self).__init__( images, group=group, verbose=verbose, reference_shape=reference_shape, holistic_features=holistic_features, transform=DifferentiableThinPlateSplines, diagonal=diagonal, scales=scales, max_shape_components=max_shape_components, max_appearance_components=max_appearance_components, shape_model_cls=shape_model_cls, batch_size=batch_size)
def __init__(self, images, group=None, verbose=False, reference_shape=None, holistic_features=no_op, patch_normalisation=no_op, diagonal=None, scales=(0.5, 1.0), patch_shape=(17, 17), max_shape_components=None, max_appearance_components=None, batch_size=None): n_scales = len(checks.check_scales(scales)) self.patch_shape = checks.check_patch_shape(patch_shape, n_scales) self.patch_normalisation = patch_normalisation super(PatchAAM, self).__init__( images, group=group, verbose=verbose, reference_shape=reference_shape, holistic_features=holistic_features, transform=None, diagonal=diagonal, scales=scales, max_shape_components=max_shape_components, max_appearance_components=max_appearance_components, batch_size=batch_size)