def run_trainer(): with open('SETTINGS.json') as f: settings_dict = json.load(f) reg_list = [10000000, 100, 10, 1.0, 0.1, 0.01] for reg_C in reg_list: print reg_C data_path = settings_dict['path']['processed_data_path'] + '/' + create_fft_data_name(settings_dict) submission_path = settings_dict['path']['submission_path'] + '/logreg_' + str( reg_C) + '_' + create_fft_data_name(settings_dict) if not os.path.exists(data_path): fft.run_fft_preprocessor() if not os.path.exists(submission_path): os.makedirs(submission_path) subjects = ['Dog_1', 'Dog_2', 'Dog_3', 'Dog_4', 'Dog_5', 'Patient_1', 'Patient_2'] for subject in subjects: print subject model, data_scaler, = train(subject, data_path, reg_C) predict(subject, model, data_scaler, data_path, submission_path) merge_csv_files(submission_path, subjects, 'submission') merge_csv_files(submission_path, subjects, 'submission_softmax') merge_csv_files(submission_path, subjects, 'submission_minmax') merge_csv_files(submission_path, subjects, 'submission_median')
def run_trainer(): with open('SETTINGS.json') as f: settings_dict = json.load(f) data_path = settings_dict['path']['processed_data_path'] + '/' + create_fft_data_name(settings_dict) submission_path = settings_dict['path']['submission_path'] + '/LDA_' + create_fft_data_name(settings_dict) print data_path if not os.path.exists(data_path): fft.run_fft_preprocessor() if not os.path.exists(submission_path): os.makedirs(submission_path) test_labels_path = '/mnt/sda4/CODING/python/kaggle_data/test_labels.csv' test_labels = load_test_labels(test_labels_path) subjects = ['Dog_1', 'Dog_2', 'Dog_3', 'Dog_4', 'Dog_5', 'Patient_1', 'Patient_2'] coef_list = [] for subject in subjects: print '***********************', subject, '***************************' model, data_scaler, coefs = train(subject, data_path) predict(subject, model, data_scaler, data_path, submission_path, test_labels[subject]['preictal']) coef_list.append(coefs) merge_csv_files(submission_path, subjects, 'submission') merge_csv_files(submission_path, subjects, 'submission_softmax') merge_csv_files(submission_path, subjects, 'submission_minmax') merge_csv_files(submission_path, subjects, 'submission_median')
def run_trainer(): with open('SETTINGS.json') as f: settings_dict = json.load(f) data_path = settings_dict['path'][ 'processed_data_path'] + '/' + create_fft_data_name(settings_dict) submission_path = settings_dict['path'][ 'submission_path'] + '/LDA_' + create_fft_data_name(settings_dict) print data_path if not os.path.exists(data_path): fft.run_fft_preprocessor() if not os.path.exists(submission_path): os.makedirs(submission_path) test_labels_path = '/mnt/sda4/CODING/python/kaggle_data/test_labels.csv' test_labels = load_test_labels(test_labels_path) subjects = [ 'Dog_1', 'Dog_2', 'Dog_3', 'Dog_4', 'Dog_5', 'Patient_1', 'Patient_2' ] coef_list = [] for subject in subjects: print '***********************', subject, '***************************' model, data_scaler, coefs = train(subject, data_path) predict(subject, model, data_scaler, data_path, submission_path, test_labels[subject]['preictal']) coef_list.append(coefs) merge_csv_files(submission_path, subjects, 'submission') merge_csv_files(submission_path, subjects, 'submission_softmax') merge_csv_files(submission_path, subjects, 'submission_minmax') merge_csv_files(submission_path, subjects, 'submission_median')