Пример #1
0
def save_dexnet_objects(output_path, database, target_object_keys, config,
                        pointers, num):
    slice_dataset = False
    files = []

    if not os.path.exists(output_path):
        os.mkdir(output_path)
    for each_file in os.listdir(output_path):
        os.remove(output_path + '/' + each_file)
    gripper = RobotGripper.load(config['gripper'])

    # Setup grasp params:
    table_alignment_params = config['table_alignment']
    min_grasp_approach_offset = -np.deg2rad(
        table_alignment_params['max_approach_offset'])
    max_grasp_approach_offset = np.deg2rad(
        table_alignment_params['max_approach_offset'])
    max_grasp_approach_table_angle = np.deg2rad(
        table_alignment_params['max_approach_table_angle'])
    num_grasp_approach_samples = table_alignment_params[
        'num_approach_offset_samples']

    phi_offsets = []
    if max_grasp_approach_offset == min_grasp_approach_offset:
        phi_inc = 1
    elif num_grasp_approach_samples == 1:
        phi_inc = max_grasp_approach_offset - min_grasp_approach_offset + 1
    else:
        phi_inc = (max_grasp_approach_offset - min_grasp_approach_offset) / (
            num_grasp_approach_samples - 1)

    phi = min_grasp_approach_offset
    while phi <= max_grasp_approach_offset:
        phi_offsets.append(phi)
        phi += phi_inc

    # Setup collision checking
    coll_check_params = config['collision_checking']
    approach_dist = coll_check_params['approach_dist']
    delta_approach = coll_check_params['delta_approach']
    table_offset = coll_check_params['table_offset']
    stable_pose_min_p = config['stable_pose_min_p']

    table_mesh_filename = coll_check_params['table_mesh_filename']
    if not os.path.isabs(table_mesh_filename):
        table_mesh_filename = os.path.join(DATA_DIR, table_mesh_filename)
    #     #table_mesh_filename = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..', table_mesh_filename)
    # table_mesh = ObjFile(table_mesh_filename).read()

    dataset_names = target_object_keys.keys()
    datasets = [database.dataset(dn) for dn in dataset_names]

    if slice_dataset:
        datasets = [dataset.subset(0, 100) for dataset in datasets]

    start = 0
    for dataset in datasets:
        target_object_keys[dataset.name] = []
        end = start + len(dataset.object_keys)
        for cnt, _id in enumerate(pointers.obj_ids):
            if _id >= end or _id < start:
                continue
            target_object_keys[dataset.name].append(dataset.object_keys[_id -
                                                                        start])
            files.append(
                tuple([
                    dataset.object_keys[_id - start], pointers.tensor[cnt],
                    pointers.array[cnt], pointers.depths[cnt]
                ]))
        start += end
    print(target_object_keys)
    print("target object keys:", len(target_object_keys['3dnet']),
          len(target_object_keys['kit']))
    files = np.array(files,
                     dtype=[('Object_id', (np.str_, 40)), ('Tensor', int),
                            ('Array', int), ('Depth', float)])

    # Precompute set of valid grasps
    candidate_grasps_dict = {}

    counter = 0
    for dataset in datasets:
        for obj in dataset:
            if obj.key not in target_object_keys[dataset.name]:
                continue
            print("Object in subset")
            # Initiate candidate grasp storage
            candidate_grasps_dict[obj.key] = {}

            # Setup collision checker
            collision_checker = GraspCollisionChecker(gripper)
            collision_checker.set_graspable_object(obj)

            # Read in the stable poses of the mesh
            stable_poses = dataset.stable_poses(obj.key)
            try:
                stable_pose = stable_poses[pointers.pose_num[counter]]
            except IndexError:
                print(
                    "Problems with reading pose. Tensor %d, Array %d, Pose %d"
                    % (pointers.tensor[counter], pointers.array[counter],
                       pointers.pose_num[counter]))
                print("Stable poses:", stable_poses)
                print("Pointers pose:", pointers.pose_num[counter])
                counter += 1
                print("Continue.")
                continue
            print("Read in stable pose")
            candidate_grasps_dict[obj.key][stable_pose.id] = []

            # Setup table in collision checker
            T_obj_stp = stable_pose.T_obj_table.as_frames('obj', 'stp')
            T_obj_table = obj.mesh.get_T_surface_obj(
                T_obj_stp, delta=table_offset).as_frames('obj', 'table')
            T_table_obj = T_obj_table.inverse()

            collision_checker.set_table(table_mesh_filename, T_table_obj)

            # read grasp and metrics
            grasps = dataset.grasps(obj.key, gripper=gripper.name)

            # align grasps with the table
            aligned_grasps = [
                grasp.perpendicular_table(stable_pose) for grasp in grasps
            ]
            i = 0
            found = False
            if len(aligned_grasps) < pointers.grasp_num[counter]:
                raise IndexError
            print("pointers grasp num", pointers.grasp_num[counter])
            print("tensor", pointers.tensor[counter])
            print("array", pointers.array[counter])
            # Check grasp validity
            for aligned_grasp in aligned_grasps:
                # Check angle with table plane and skip unaligned grasps
                _, grasp_approach_table_angle, _ = aligned_grasp.grasp_angles_from_stp_z(
                    stable_pose)
                perpendicular_table = (np.abs(grasp_approach_table_angle) <
                                       max_grasp_approach_table_angle)
                if not perpendicular_table:
                    continue

                # Check whether any valid approach directions are collision free
                collision_free = False
                for phi_offset in phi_offsets:
                    rotated_grasp = aligned_grasp.grasp_y_axis_offset(
                        phi_offset)
                    collides = collision_checker.collides_along_approach(
                        rotated_grasp, approach_dist, delta_approach)
                    if not collides:
                        collision_free = True
                        break

                # Store if aligned to table
                if i == pointers.grasp_num[counter]:
                    found, contact_points = aligned_grasp.close_fingers(obj)
                    print("Contact points", contact_points)
                    if not found:
                        print("Could not find contact points. continue.")
                        break
                    else:
                        print("Original metric: ", pointers.metrics[counter])
                        print(
                            "Metrics mapped point: ",
                            dataset.grasp_metrics(obj.key, [aligned_grasp],
                                                  gripper=gripper.name))
                        candidate_grasps_dict[obj.key][stable_pose.id].append(
                            GraspInfo(aligned_grasp, collision_free, [
                                contact_points[0].point,
                                contact_points[1].point
                            ]))
                        # logging.info('Grasp %d' % (aligned_grasp.id))
                        # vis.figure()
                        # vis.gripper_on_object(gripper, aligned_grasp, obj, stable_pose.T_obj_world, plot_table=False)
                        # vis.show()
                        break

                i += 1

            if found:
                # Save files
                print("Saving file: ", obj.key)
                savefile = ObjFile(DATA_DIR + "/meshes/dexnet/" + obj.key +
                                   ".obj")
                savefile.write(obj.mesh)
                # print("Vertices:", obj.mesh.vertices.shape)
                # print("Triangles:", obj.mesh.triangles.shape)
                mesh = o3d.geometry.TriangleMesh(
                    o3d.utility.Vector3dVector(obj.mesh.vertices),
                    o3d.utility.Vector3iVector(obj.mesh.triangles))
                o3d.io.write_triangle_mesh(
                    DATA_DIR + '/PerfectPredictions/3D_meshes/' +
                    "%05d_%03d.ply" %
                    (pointers.tensor[counter], pointers.array[counter]), mesh)
                # Save stable poses
                save_stp = StablePoseFile(DATA_DIR + "/meshes/dexnet/" +
                                          obj.key + ".stp")
                save_stp.write(stable_poses)
                # Save candidate grasp info
                pkl.dump(
                    candidate_grasps_dict[obj.key],
                    open(DATA_DIR + "/meshes/dexnet/" + obj.key + ".pkl",
                         'wb'))
                # Save grasp metrics
                candidate_grasp_info = candidate_grasps_dict[obj.key][
                    stable_pose.id]
                candidate_grasps = [g.grasp for g in candidate_grasp_info]
                grasp_metrics = dataset.grasp_metrics(obj.key,
                                                      candidate_grasps,
                                                      gripper=gripper.name)
                write_metrics = json.dumps(grasp_metrics)
                f = open(DATA_DIR + "/meshes/dexnet/" + obj.key + ".json", "w")
                f.write(write_metrics)
                f.close()
            counter += 1
            if num is not None and counter >= num:
                break
    with open(DATA_DIR + '/meshes/dexnet/files.csv', 'w') as csv_file:
        csv_writer = csv.writer(csv_file, delimiter=',')
        for point in files:
            csv_writer.writerow(point)
def generate_gqcnn_dataset(dataset_path, database, target_object_keys,
                           env_rv_params, gripper_name, config):
    """
    Generates a GQ-CNN TensorDataset for training models with new grippers, quality metrics, objects, and cameras.

    Parameters
    ----------
    dataset_path : str
        path to save the dataset to
    database : :obj:`Hdf5Database`
        Dex-Net database containing the 3D meshes, grasps, and grasp metrics
    target_object_keys : :obj:`OrderedDict`
        dictionary mapping dataset names to target objects (either 'all' or a list of specific object keys)
    env_rv_params : :obj:`OrderedDict`
        parameters of the camera and object random variables used in sampling (see meshpy.UniformPlanarWorksurfaceImageRandomVariable for more info)
    gripper_name : str
        name of the gripper to use
    config : :obj:`autolab_core.YamlConfig`
        other parameters for dataset generation

    Notes
    -----
    Required parameters of config are specified in Other Parameters

    Other Parameters
    ----------------    
    images_per_stable_pose : int
        number of object and camera poses to sample for each stable pose
    stable_pose_min_p : float
        minimum probability of occurrence for a stable pose to be used in data generation (used to prune bad stable poses
    
    gqcnn/crop_width : int
        width, in pixels, of crop region around each grasp center, before resize (changes the size of the region seen by the GQ-CNN)
    gqcnn/crop_height : int
        height, in pixels,  of crop region around each grasp center, before resize (changes the size of the region seen by the GQ-CNN)
    gqcnn/final_width : int
        width, in pixels,  of final transformed grasp image for input to the GQ-CNN (defaults to 32)
    gqcnn/final_height : int
        height, in pixels,  of final transformed grasp image for input to the GQ-CNN (defaults to 32)

    table_alignment/max_approach_table_angle : float
        max angle between the grasp axis and the table normal when the grasp approach is maximally aligned with the table normal
    table_alignment/max_approach_offset : float
        max deviation from perpendicular approach direction to use in grasp collision checking
    table_alignment/num_approach_offset_samples : int
        number of approach samples to use in collision checking

    collision_checking/table_offset : float
        max allowable interpenetration between the gripper and table to be considered collision free
    collision_checking/table_mesh_filename : str
        path to a table mesh for collision checking (default data/meshes/table.obj)
    collision_checking/approach_dist : float
        distance, in meters, between the approach pose and final grasp pose along the grasp axis
    collision_checking/delta_approach : float
        amount, in meters, to discretize the straight-line path from the gripper approach pose to the final grasp pose

    tensors/datapoints_per_file : int
        number of datapoints to store in each unique tensor file on disk
    tensors/fields : :obj:`dict`
        dictionary mapping field names to dictionaries specifying the data type, height, width, and number of channels for each tensor

    debug : bool
        True (or 1) if the random seed should be set to enforce deterministic behavior, False (0) otherwise
    vis/candidate_grasps : bool
        True (or 1) if the collision free candidate grasps should be displayed in 3D (for debugging)
    vis/rendered_images : bool
        True (or 1) if the rendered images for each stable pose should be displayed (for debugging)
    vis/grasp_images : bool
        True (or 1) if the transformed grasp images should be displayed (for debugging)
    """
    # read data gen params
    output_dir = dataset_path
    gripper = RobotGripper.load(gripper_name)
    image_samples_per_stable_pose = config['images_per_stable_pose']
    stable_pose_min_p = config['stable_pose_min_p']

    # read gqcnn params
    gqcnn_params = config['gqcnn']
    im_crop_height = gqcnn_params['crop_height']
    im_crop_width = gqcnn_params['crop_width']
    im_final_height = gqcnn_params['final_height']
    im_final_width = gqcnn_params['final_width']
    cx_crop = float(im_crop_width) / 2
    cy_crop = float(im_crop_height) / 2

    # open database
    dataset_names = target_object_keys.keys()
    datasets = [database.dataset(dn) for dn in dataset_names]

    if CREATE_SUBSET:
        datasets = [
            dataset.subset(INDEX_START, INDEX_END) for dataset in datasets
        ]

    # set target objects
    for dataset in datasets:
        if target_object_keys[dataset.name] == 'all':
            target_object_keys[dataset.name] = dataset.object_keys

    # setup grasp params
    table_alignment_params = config['table_alignment']
    min_grasp_approach_offset = -np.deg2rad(
        table_alignment_params['max_approach_offset'])
    max_grasp_approach_offset = np.deg2rad(
        table_alignment_params['max_approach_offset'])
    max_grasp_approach_table_angle = np.deg2rad(
        table_alignment_params['max_approach_table_angle'])
    num_grasp_approach_samples = table_alignment_params[
        'num_approach_offset_samples']

    phi_offsets = []
    if max_grasp_approach_offset == min_grasp_approach_offset:
        phi_inc = 1
    elif num_grasp_approach_samples == 1:
        phi_inc = max_grasp_approach_offset - min_grasp_approach_offset + 1
    else:
        phi_inc = (max_grasp_approach_offset - min_grasp_approach_offset) / (
            num_grasp_approach_samples - 1)

    phi = min_grasp_approach_offset
    while phi <= max_grasp_approach_offset:
        phi_offsets.append(phi)
        phi += phi_inc

    # setup collision checking
    coll_check_params = config['collision_checking']
    approach_dist = coll_check_params['approach_dist']
    delta_approach = coll_check_params['delta_approach']
    table_offset = coll_check_params['table_offset']

    table_mesh_filename = coll_check_params['table_mesh_filename']
    if not os.path.isabs(table_mesh_filename):
        table_mesh_filename = os.path.join(
            os.path.dirname(os.path.realpath(__file__)), '..',
            table_mesh_filename)
    table_mesh = ObjFile(table_mesh_filename).read()

    # set tensor dataset config
    tensor_config = config['tensors']
    tensor_config['fields']['depth_ims_tf_table']['height'] = im_final_height
    tensor_config['fields']['depth_ims_tf_table']['width'] = im_final_width
    tensor_config['fields']['obj_masks']['height'] = im_final_height
    tensor_config['fields']['obj_masks']['width'] = im_final_width

    # add available metrics (assuming same are computed for all objects)
    metric_names = []
    dataset = datasets[0]
    obj_keys = dataset.object_keys
    if len(obj_keys) == 0:
        raise ValueError('No valid objects in dataset %s' % (dataset.name))

    obj = dataset[obj_keys[0]]
    grasps = dataset.grasps(obj.key, gripper=gripper.name)
    grasp_metrics = dataset.grasp_metrics(obj.key,
                                          grasps,
                                          gripper=gripper.name)
    metric_names = grasp_metrics[grasp_metrics.keys()[0]].keys()
    for metric_name in metric_names:
        tensor_config['fields'][metric_name] = {}
        tensor_config['fields'][metric_name]['dtype'] = 'float32'

    # init tensor dataset
    tensor_dataset = TensorDataset(output_dir, tensor_config)
    tensor_datapoint = tensor_dataset.datapoint_template

    # setup log file
    experiment_log_filename = os.path.join(output_dir,
                                           'dataset_generation.log')
    formatter = logging.Formatter('%(asctime)s %(levelname)s: %(message)s')
    hdlr = logging.FileHandler(experiment_log_filename)
    hdlr.setFormatter(formatter)
    logging.getLogger().addHandler(hdlr)
    root_logger = logging.getLogger()

    # copy config
    out_config_filename = os.path.join(output_dir, 'dataset_generation.json')
    ordered_dict_config = collections.OrderedDict()
    for key in config.keys():
        ordered_dict_config[key] = config[key]
    with open(out_config_filename, 'w') as outfile:
        json.dump(ordered_dict_config, outfile)

    # 1. Precompute the set of valid grasps for each stable pose:
    #    i) Perpendicular to the table
    #   ii) Collision-free along the approach direction

    # load grasps if they already exist
    grasp_cache_filename = os.path.join(output_dir, CACHE_FILENAME)
    if os.path.exists(grasp_cache_filename):
        logging.info('Loading grasp candidates from file')
        candidate_grasps_dict = pkl.load(open(grasp_cache_filename, 'rb'))
    # otherwise re-compute by reading from the database and enforcing constraints
    else:
        # create grasps dict
        candidate_grasps_dict = {}

        # loop through datasets and objects
        for dataset in datasets:
            logging.info('Reading dataset %s' % (dataset.name))
            for obj in dataset:
                if obj.key not in target_object_keys[dataset.name]:
                    continue

                # init candidate grasp storage
                candidate_grasps_dict[obj.key] = {}

                # setup collision checker
                collision_checker = GraspCollisionChecker(gripper)
                collision_checker.set_graspable_object(obj)

                # read in the stable poses of the mesh
                stable_poses = dataset.stable_poses(obj.key)
                for i, stable_pose in enumerate(stable_poses):
                    # render images if stable pose is valid
                    if stable_pose.p > stable_pose_min_p:
                        candidate_grasps_dict[obj.key][stable_pose.id] = []

                        # setup table in collision checker
                        T_obj_stp = stable_pose.T_obj_table.as_frames(
                            'obj', 'stp')
                        T_obj_table = obj.mesh.get_T_surface_obj(
                            T_obj_stp,
                            delta=table_offset).as_frames('obj', 'table')
                        T_table_obj = T_obj_table.inverse()

                        collision_checker.set_table(table_mesh_filename,
                                                    T_table_obj)

                        # read grasp and metrics
                        grasps = dataset.grasps(obj.key, gripper=gripper.name)
                        logging.info(
                            'Aligning %d grasps for object %s in stable %s' %
                            (len(grasps), obj.key, stable_pose.id))

                        # align grasps with the table
                        aligned_grasps = [
                            grasp.perpendicular_table(stable_pose)
                            for grasp in grasps
                        ]

                        # check grasp validity
                        logging.info(
                            'Checking collisions for %d grasps for object %s in stable %s'
                            % (len(grasps), obj.key, stable_pose.id))
                        for aligned_grasp in aligned_grasps:
                            # check angle with table plane and skip unaligned grasps
                            _, grasp_approach_table_angle, _ = aligned_grasp.grasp_angles_from_stp_z(
                                stable_pose)
                            perpendicular_table = (
                                np.abs(grasp_approach_table_angle) <
                                max_grasp_approach_table_angle)
                            if not perpendicular_table:
                                continue

                            # check whether any valid approach directions are collision free
                            collision_free = False
                            for phi_offset in phi_offsets:
                                rotated_grasp = aligned_grasp.grasp_y_axis_offset(
                                    phi_offset)
                                collides = collision_checker.collides_along_approach(
                                    rotated_grasp, approach_dist,
                                    delta_approach)
                                if not collides:
                                    collision_free = True
                                    break

                            # store if aligned to table
                            candidate_grasps_dict[obj.key][
                                stable_pose.id].append(
                                    GraspInfo(aligned_grasp, collision_free))

                            # visualize if specified
                            if collision_free and config['vis'][
                                    'candidate_grasps']:
                                logging.info('Grasp %d' % (aligned_grasp.id))
                                vis.figure()
                                vis.gripper_on_object(gripper, aligned_grasp,
                                                      obj,
                                                      stable_pose.T_obj_world)
                                vis.show()

        # save to file
        logging.info('Saving to file')
        pkl.dump(candidate_grasps_dict, open(grasp_cache_filename, 'wb'))

    # 2. Render a dataset of images and associate the gripper pose with image coordinates for each grasp in the Dex-Net database

    # setup variables
    obj_category_map = {}
    pose_category_map = {}

    cur_pose_label = 0
    cur_obj_label = 0
    cur_image_label = 0

    # render images for each stable pose of each object in the dataset
    render_modes = [RenderMode.SEGMASK, RenderMode.DEPTH_SCENE]
    for dataset in datasets:
        logging.info('Generating data for dataset %s' % (dataset.name))

        # iterate through all object keys
        object_keys = dataset.object_keys
        for obj_key in object_keys:
            obj = dataset[obj_key]
            obj.mesh.rescale(RESCALING_FACTOR)
            if obj.key not in target_object_keys[dataset.name]:
                continue

            # read in the stable poses of the mesh
            stable_poses = dataset.stable_poses(obj.key)

            if SAVE_ONE_OBJECT:
                # Save object mesh
                savefile = ObjFile("./data/meshes/dexnet/" + obj.key + ".obj")
                savefile.write(obj.mesh)
                # Save stable poses
                save_stp = StablePoseFile("./data/meshes/dexnet/" + obj.key +
                                          ".stp")
                save_stp.write(stable_poses)
                candidate_grasp_info = candidate_grasps_dict[obj.key][
                    stable_poses[0].id]
                print("Stable pose id:", stable_poses[0].id)
                candidate_grasps = [g.grasp for g in candidate_grasp_info]
                # Save candidate grasp info
                pkl.dump(
                    candidate_grasps_dict[obj.key],
                    open("./data/meshes/dexnet/" + obj.key + ".pkl", 'wb'))
                # Save grasp metrics
                grasp_metrics = dataset.grasp_metrics(obj.key,
                                                      candidate_grasps,
                                                      gripper=gripper.name)
                write_metrics = json.dumps(grasp_metrics)
                f = open("./data/meshes/dexnet/" + obj.key + ".json", "w")
                f.write(write_metrics)
                f.close()

            for i, stable_pose in enumerate(stable_poses):

                # render images if stable pose is valid
                if stable_pose.p > stable_pose_min_p:
                    # log progress
                    logging.info('Rendering images for object %s in %s' %
                                 (obj.key, stable_pose.id))

                    # add to category maps
                    if obj.key not in obj_category_map.keys():
                        obj_category_map[obj.key] = cur_obj_label
                    pose_category_map['%s_%s' %
                                      (obj.key,
                                       stable_pose.id)] = cur_pose_label

                    # read in candidate grasps and metrics
                    candidate_grasp_info = candidate_grasps_dict[obj.key][
                        stable_pose.id]
                    candidate_grasps = [g.grasp for g in candidate_grasp_info]
                    grasp_metrics = dataset.grasp_metrics(obj.key,
                                                          candidate_grasps,
                                                          gripper=gripper.name)

                    # compute object pose relative to the table
                    T_obj_stp = stable_pose.T_obj_table.as_frames('obj', 'stp')
                    T_obj_stp = obj.mesh.get_T_surface_obj(T_obj_stp)

                    # sample images from random variable
                    T_table_obj = RigidTransform(from_frame='table',
                                                 to_frame='obj')
                    scene_objs = {
                        'table': SceneObject(table_mesh, T_table_obj)
                    }
                    urv = UniformPlanarWorksurfaceImageRandomVariable(
                        obj.mesh,
                        render_modes,
                        'camera',
                        env_rv_params,
                        stable_pose=stable_pose,
                        scene_objs=scene_objs)

                    render_start = time.time()
                    render_samples = urv.rvs(
                        size=image_samples_per_stable_pose)
                    render_stop = time.time()
                    logging.info('Rendering images took %.3f sec' %
                                 (render_stop - render_start))

                    # visualize
                    if config['vis']['rendered_images']:
                        d = int(np.ceil(
                            np.sqrt(image_samples_per_stable_pose)))

                        #segmask
                        vis2d.figure()
                        for j, render_sample in enumerate(render_samples):
                            vis2d.subplot(d, d, j + 1)
                            vis2d.imshow(render_sample.renders[
                                RenderMode.SEGMASK].image)

                        # depth table
                        vis2d.figure()
                        for j, render_sample in enumerate(render_samples):
                            vis2d.subplot(d, d, j + 1)
                            vis2d.imshow(render_sample.renders[
                                RenderMode.DEPTH_SCENE].image)
                        vis2d.show()

                        if False:
                            # binary
                            fig = plt.figure(figsize=(8, 8))
                            fig.suptitle('SEGMASK')
                            for j, render_sample in enumerate(render_samples):
                                plt.subplot(d, d, j + 1)
                                plt.imshow(render_sample.renders[
                                    RenderMode.SEGMASK].image.data)

                            # depth table
                            fig = plt.figure(figsize=(8, 8))
                            fig.suptitle('DEPTH SCENE')
                            for j, render_sample in enumerate(render_samples):
                                plt.subplot(d, d, j + 1)
                                plt.imshow(render_sample.renders[
                                    RenderMode.DEPTH_SCENE].image.data)
                            plt.show()

                    # tally total amount of data
                    num_grasps = len(candidate_grasps)
                    num_images = image_samples_per_stable_pose
                    num_save = num_images * num_grasps
                    logging.info('Saving %d datapoints' % (num_save))

                    # for each candidate grasp on the object compute the projection
                    # of the grasp into image space
                    for render_sample in render_samples:
                        # read images
                        binary_im = render_sample.renders[
                            RenderMode.SEGMASK].image
                        depth_im_table = render_sample.renders[
                            RenderMode.DEPTH_SCENE].image
                        # read camera params
                        T_stp_camera = render_sample.camera.object_to_camera_pose
                        shifted_camera_intr = render_sample.camera.camera_intr

                        # read pixel offsets
                        cx = depth_im_table.center[1]
                        cy = depth_im_table.center[0]

                        # compute intrinsics for virtual camera of the final
                        # cropped and rescaled images
                        camera_intr_scale = float(im_final_height) / float(
                            im_crop_height)
                        cropped_camera_intr = shifted_camera_intr.crop(
                            im_crop_height, im_crop_width, cy, cx)
                        final_camera_intr = cropped_camera_intr.resize(
                            camera_intr_scale)

                        # create a thumbnail for each grasp
                        for grasp_info in candidate_grasp_info:
                            # read info
                            grasp = grasp_info.grasp
                            collision_free = grasp_info.collision_free

                            # get the gripper pose
                            T_obj_camera = T_stp_camera * T_obj_stp.as_frames(
                                'obj', T_stp_camera.from_frame)
                            grasp_2d = grasp.project_camera(
                                T_obj_camera, shifted_camera_intr)

                            # center images on the grasp, rotate to image x axis
                            dx = cx - grasp_2d.center.x
                            dy = cy - grasp_2d.center.y
                            translation = np.array([dy, dx])

                            binary_im_tf = binary_im.transform(
                                translation, grasp_2d.angle)
                            depth_im_tf_table = depth_im_table.transform(
                                translation, grasp_2d.angle)

                            # crop to image size
                            binary_im_tf = binary_im_tf.crop(
                                im_crop_height, im_crop_width)
                            depth_im_tf_table = depth_im_tf_table.crop(
                                im_crop_height, im_crop_width)

                            # resize to image size
                            binary_im_tf = binary_im_tf.resize(
                                (im_final_height, im_final_width),
                                interp='nearest')
                            depth_im_tf_table = depth_im_tf_table.resize(
                                (im_final_height, im_final_width))

                            # visualize the transformed images
                            if config['vis']['grasp_images']:
                                grasp_center = Point(
                                    depth_im_tf_table.center,
                                    frame=final_camera_intr.frame)

                                # plot 2D grasp image
                                grasp_center = Point(
                                    depth_im_tf_table.center,
                                    frame=final_camera_intr.frame)
                                tf_grasp_2d = Grasp2D(
                                    grasp_center,
                                    0,
                                    grasp_2d.depth,
                                    width=gripper.max_width,
                                    camera_intr=final_camera_intr)

                                vis2d.figure()
                                vis2d.subplot(2, 2, 1)
                                vis2d.imshow(binary_im)
                                vis2d.grasp(grasp_2d)
                                vis2d.subplot(2, 2, 2)
                                vis2d.imshow(depth_im_table)
                                vis2d.grasp(grasp_2d)
                                vis2d.subplot(2, 2, 3)
                                vis2d.imshow(binary_im_tf)
                                vis2d.grasp(tf_grasp_2d)
                                vis2d.subplot(2, 2, 4)
                                vis2d.imshow(depth_im_tf_table)
                                vis2d.grasp(tf_grasp_2d)
                                vis2d.title('Coll Free? %d' %
                                            (grasp_info.collision_free))
                                vis2d.show()

                                if False:
                                    plt.figure(figsize=(8, 8))
                                    plt.subplot(2, 2, 1)
                                    plt.imshow(binary_im.data)
                                    plt.title('Binary Image')

                                    plt.subplot(2, 2, 2)
                                    plt.imshow(depth_im_table.data)

                                    plt.subplot(2, 2, 3)
                                    plt.imshow(binary_im_tf.data)

                                    plt.subplot(2, 2, 4)
                                    plt.imshow(depth_im_tf_table.data)

                                    plt.title('Coll Free? %d' %
                                              (grasp_info.collision_free))
                                    plt.show()
                                    plt.close()

                                # plot 3D visualization

# Whooza

                                fig = plt.figure()
                                ax = fig.add_subplot(111,
                                                     projection='3d',
                                                     transform=T_obj_camera)

                                object_vertices = obj.mesh.trimesh.vertices

                                table_vertices = table_mesh.trimesh.vertices
                                #				ax.plot_trisurf(table_vertices[:,0],table_vertices[:,1],triangles=table_mesh.trimesh.faces,Z=table_vertices[:,2],color='g')
                                ax.plot_trisurf(
                                    object_vertices[:, 0],
                                    object_vertices[:, 1],
                                    triangles=obj.mesh.trimesh.faces,
                                    Z=object_vertices[:, 2],
                                    color='b')
                                #				Axes3D(fig,rect=(-0.2,-0.2,0.4,0.4),transform=T_obj_camera)
                                plt.show()

                                if False:
                                    vis.figure()
                                    T_obj_world = vis.mesh_stable_pose(
                                        obj.mesh.trimesh,
                                        stable_pose.T_obj_world,
                                        style='surface',
                                        dim=0.5)
                                    vis.gripper(gripper,
                                                grasp,
                                                T_obj_world,
                                                color=(0.3, 0.3, 0.3))
                                    vis.show()

                            # form hand pose array
                            hand_pose = np.r_[grasp_2d.center.y,
                                              grasp_2d.center.x,
                                              grasp_2d.depth, grasp_2d.angle,
                                              grasp_2d.center.y -
                                              shifted_camera_intr.cy,
                                              grasp_2d.center.x -
                                              shifted_camera_intr.cx,
                                              grasp_2d.width_px]

                            # store to data buffers
                            tensor_datapoint[
                                'depth_ims_tf_table'] = depth_im_tf_table.raw_data
                            tensor_datapoint[
                                'obj_masks'] = binary_im_tf.raw_data
                            tensor_datapoint['hand_poses'] = hand_pose
                            tensor_datapoint['collision_free'] = collision_free
                            tensor_datapoint['obj_labels'] = cur_obj_label
                            tensor_datapoint['pose_labels'] = cur_pose_label
                            tensor_datapoint['image_labels'] = cur_image_label

                            for metric_name, metric_val in grasp_metrics[
                                    grasp.id].iteritems():
                                coll_free_metric = (
                                    1 * collision_free) * metric_val
                                tensor_datapoint[
                                    metric_name] = coll_free_metric
                            tensor_dataset.add(tensor_datapoint)

                        # update image label
                        cur_image_label += 1

                    # update pose label
                    cur_pose_label += 1

                    # force clean up
                    gc.collect()

            # update object label
            cur_obj_label += 1

            # force clean up
            gc.collect()

    # save last file
    tensor_dataset.flush()

    # save category mappings
    obj_cat_filename = os.path.join(output_dir, 'object_category_map.json')
    json.dump(obj_category_map, open(obj_cat_filename, 'w'))
    pose_cat_filename = os.path.join(output_dir, 'pose_category_map.json')
    json.dump(pose_category_map, open(pose_cat_filename, 'w'))