import pandas as pd import metabolyze as met import numpy as np #skeleton_name = [x for x in os.listdir('inputs') if x.endswith('output.tsv')][0] # result = Analysis(data=skeleton_name,samplesheet='Groups.csv',blank_threshold_value=10000) # result.t_test() #normalized_df=(df-df.mean())/df.std() #result = Analysis(data='skeleton_output.tsv',samplesheet='Groups.csv',blank_threshold_value=10000) #matrix = result.get_matrix(result.get_ids('All')) x = met.Analysis(data='skeleton_output.tsv', samplesheet='Groups.csv', blank_threshold_value=10000, method='default') corrected_matrix = (x.get_imputed_full_matrix( x.get_matrix(ids=x.get_ids('True')), param='corrected')) ## blank_matrix = x.get_matrix(ids=x.get_ids('Blank')) blank_matrix[blank_matrix > 1] = 0 mergedDf = corrected_matrix.merge(blank_matrix, left_index=True, right_index=True) matrix_sum_normalized = mergedDf.div(mergedDf.sum(axis=0), axis=1) matrix_sum_normalized = matrix_sum_normalized.fillna(0) #matrix_median_normalized = mergedDf.div(mergedDf.replace(0, np.nan).median(axis=0), axis=1) # matrix_median_normalized['Metabolite'] = matrix_median_normalized.index # matrix_median_normalized = matrix_median_normalized.reset_index(drop=True) original = pd.read_csv('inputs/skeleton_output.tsv', sep='\t') original.update(matrix_sum_normalized) original.to_csv('inputs/skeleton_sum_normalized.tsv', sep='\t') normalize_result = met.Analysis(data='skeleton_sum_normalized.tsv', samplesheet='Groups.csv',
from scipy import stats from sklearn.decomposition import PCA import chart_studio.plotly as py #%matplotlib inline import plotly #plotly.offline.init_notebook_mode() # To embed plots in the output cell of the notebook import plotly.graph_objs as go import os import operator import matplotlib.pyplot as plt from matplotlib.lines import Line2D from math import sqrt from itertools import combinations from matplotlib import rcParams result = met.Analysis('skeleton_output.tsv', 'Groups.csv') def register_callbacks(dashapp): COLORS20 = [ '#1f77b4', '#aec7e8', '#ff7f0e', '#ffbb78', '#2ca02c', '#98df8a', '#d62728', '#ff9896', '#9467bd', '#c5b0d5',
import os import pandas as pd import metabolyze as met import numpy as np skeleton_name = [x for x in os.listdir('inputs') if x.endswith('output.tsv')][0] # result = Analysis(data=skeleton_name,samplesheet='Groups.csv',blank_threshold_value=10000) # result.t_test() #normalized_df=(df-df.mean())/df.std() #result = Analysis(data='skeleton_output.tsv',samplesheet='Groups.csv',blank_threshold_value=10000) #matrix = result.get_matrix(result.get_ids('All')) x = met.Analysis(data=skeleton_name,samplesheet='Groups.csv',blank_threshold_value=10000,method='default') corrected_matrix = (x.get_imputed_full_matrix(x.get_matrix(ids=x.get_ids('True')),param='corrected'))## blank_matrix = x.get_matrix(ids=x.get_ids('Blank')) blank_matrix[blank_matrix>1] = 0 mergedDf = corrected_matrix.merge(blank_matrix, left_index=True, right_index=True) matrix_sum_normalized = mergedDf.div(mergedDf.sum(axis=0), axis=1) matrix_sum_normalized = matrix_sum_normalized.fillna(0) matrix_median_normalized = mergedDf.div(mergedDf.replace(0, np.nan).median(axis=0), axis=1) matrix_median_normalized = matrix_median_normalized.fillna(0) #matrix_median_normalized = matrix_median_normalized.reset_index(drop=True) #sum original = pd.read_csv('inputs/'+skeleton_name,sep='\t',index_col=0) matrix_sum_normalized.index.names = ['Metabolite'] detect_column = original.columns.get_loc("detections") meta_data_df = original[original.columns[0:detect_column+1]]
grouped_samples = {} for condition in (project.id.unique()): test = [ x.split('.')[0] for x in project.loc[project['id'] == condition, 'File'].tolist() ] test = ''.join(test) grouped_samples[test] = condition detection_column_index = standard.columns.get_loc("detections") standard = pd.read_table('inputs/skeleton_output.tsv') standard = standard.iloc[:, 0:detection_column_index + 1] merged = pd.merge(standard, flux_output, on='Metabolite') merged_2 = pd.merge(merged, blanks, on='Metabolite') for x, y in grouped_samples.items(): merged_2.rename(columns={y: x}, inplace=True) merged_2['Metabolite'] = merged_2['Metabolite'].str.replace('-13C-0', '') merged_2.to_csv('inputs/flux_skeleton_output.tsv', sep='\t') flux_result = met.Analysis(data='flux_skeleton_output.tsv', samplesheet='Groups.csv', blank_threshold_value=0, method='flux') flux_result.t_test()
def get_layout(): result = met.Analysis('skeleton_output.tsv', 'Groups.csv') dropdown_comparison = [ ' vs. '.join(list(x)) for x in result.dme_comparisons() ] #print("met_comparison",result.dme_comparisons()) dropdown_list = [] for dropdown, met_comparison in zip(dropdown_comparison, result.dme_comparisons()): drop_dict = {} drop_dict['label'] = dropdown met_list = list(met_comparison) met_list = ','.join("'{0}'".format(comparison) for comparison in met_list) drop_dict['value'] = met_list dropdown_list.append(drop_dict) logo = '' search_bar = dbc.Row( [ dbc.Col(dbc.Input(type="search", placeholder="Search")), dbc.Col( dbc.Button("Search", color="primary", className="ml-2"), width="auto", ), ], no_gutters=True, className="ml-auto flex-nowrap mt-3 mt-md-0", align="center", ) navbar = dbc.Navbar( [ html.A( # Use row and col to control vertical alignment of logo / brand dbc.Row( [ dbc.Col(html.Img(src=logo, height="80")), dbc.Col(dbc.NavbarBrand("Metabolive", className="ml-2")), ], align="center", no_gutters=True, ), href="/login", ), dbc.NavItem( dbc.NavLink("Home", active=True, href="/", external_link=True)), dbc.NavItem( dbc.NavLink( "Logout", active=True, href="/logout", external_link=True)), dbc.NavItem( dbc.NavLink( "Contact Us", active=True, href="", external_link=True)), dbc.NavbarToggler(id="navbar-toggler"), dbc.Collapse(search_bar, id="navbar-collapse", navbar=True), ], color="dark", dark=True, ) jumbotron = dbc.Jumbotron([ html.H1("Metabolive Beta", className="display-3"), html. P("Beta testing for the interactive analysis of Metabolyze results."), ]) tab1_content = dbc.Card( dbc.CardBody([ dbc.Button("Hybrid", size="lg", outline=True, color="primary"), dbc.Button("Untargeted", size="lg", outline=True, color="primary"), dbc.Button("Global", size="lg", outline=True, color="primary") ]), className="mt-3", ) tab2_content = dbc.Card( dbc.CardBody([ dbc.Button("Run", outline=True, color="primary"), ]), className="mt-3", ) tabs = dbc.Tabs([ dbc.Tab(tab1_content, label="Metabolyze"), dbc.Tab(tab2_content, label="XIC Analysis") ]) #"'1e6 per mL','RPMI_PBS'" #[{'label': 'OLFR2 vs. GPI1', 'value': ['OLFR2', 'GPI1']}] button = html.Div([ dbc.Button("Submit", id="button"), html.Span(id="example-output"), ]) dropdown_processing = dcc.Dropdown( id='pipeline-dropdown', #options=[{'label':'OLFR2 vs. GPI1', 'value': "'OLFR2','GPI1'"}, {'label': 'GPI1 vs. OLFR2', 'value': "'GPI1','OLFR2'"}], options=[{ 'label': 'Ungrid', 'value': 'Ungrid' }], value="Ungrid" #value=["test"] ) dropdown_analysis = dcc.Dropdown( id='my-dropdown', #options=[{'label':'OLFR2 vs. GPI1', 'value': "'OLFR2','GPI1'"}, {'label': 'GPI1 vs. OLFR2', 'value': "'GPI1','OLFR2'"}], options=dropdown_list, #value=["test"] ) table = html.Div(id='output-data-upload') hidden_div = html.Div(id='intermediate-value', style={'display': 'none'}) volcano_graph = html.Div(id='volcano_graph') heatmap_graph = html.Div(id='heatmap_graph') pca_graph = html.Div(id='pca_graph') #graph = html.Div(id='graph') # def layout(): layout = html.Div([ navbar, jumbotron, tabs, dropdown_processing, dropdown_analysis, button, hidden_div, volcano_graph, heatmap_graph, pca_graph, table ]) return (layout)