Пример #1
0
def test_e2e(caplog):
    """Run an end-to-end test on documents of the hardware domain."""
    caplog.set_level(logging.INFO)
    # SpaCy on mac has issue on parallel parsing
    if os.name == "posix":
        logger.info("Using single core.")
        PARALLEL = 1
    else:
        PARALLEL = 2  # Travis only gives 2 cores

    max_docs = 12

    session = Meta.init("postgres://localhost:5432/" + DB).Session()

    docs_path = "tests/data/html/"
    pdf_path = "tests/data/pdf/"

    doc_preprocessor = HTMLDocPreprocessor(docs_path, max_docs=max_docs)

    corpus_parser = Parser(
        session,
        parallelism=PARALLEL,
        structural=True,
        lingual=True,
        visual=True,
        pdf_path=pdf_path,
    )
    corpus_parser.apply(doc_preprocessor)
    assert session.query(Document).count() == max_docs

    num_docs = session.query(Document).count()
    logger.info("Docs: {}".format(num_docs))
    assert num_docs == max_docs

    num_sentences = session.query(Sentence).count()
    logger.info("Sentences: {}".format(num_sentences))

    # Divide into test and train
    docs = corpus_parser.get_documents()
    ld = len(docs)
    assert ld == len(corpus_parser.get_last_documents())
    assert len(docs[0].sentences) == 799
    assert len(docs[1].sentences) == 663
    assert len(docs[2].sentences) == 784
    assert len(docs[3].sentences) == 661
    assert len(docs[4].sentences) == 513
    assert len(docs[5].sentences) == 700
    assert len(docs[6].sentences) == 528
    assert len(docs[7].sentences) == 161
    assert len(docs[8].sentences) == 228
    assert len(docs[9].sentences) == 511
    assert len(docs[10].sentences) == 331
    assert len(docs[11].sentences) == 528

    # Check table numbers
    assert len(docs[0].tables) == 9
    assert len(docs[1].tables) == 9
    assert len(docs[2].tables) == 14
    assert len(docs[3].tables) == 11
    assert len(docs[4].tables) == 11
    assert len(docs[5].tables) == 10
    assert len(docs[6].tables) == 10
    assert len(docs[7].tables) == 2
    assert len(docs[8].tables) == 7
    assert len(docs[9].tables) == 10
    assert len(docs[10].tables) == 6
    assert len(docs[11].tables) == 9

    # Check figure numbers
    assert len(docs[0].figures) == 32
    assert len(docs[1].figures) == 11
    assert len(docs[2].figures) == 38
    assert len(docs[3].figures) == 31
    assert len(docs[4].figures) == 7
    assert len(docs[5].figures) == 38
    assert len(docs[6].figures) == 10
    assert len(docs[7].figures) == 31
    assert len(docs[8].figures) == 4
    assert len(docs[9].figures) == 27
    assert len(docs[10].figures) == 5
    assert len(docs[11].figures) == 27

    # Check caption numbers
    assert len(docs[0].captions) == 0
    assert len(docs[1].captions) == 0
    assert len(docs[2].captions) == 0
    assert len(docs[3].captions) == 0
    assert len(docs[4].captions) == 0
    assert len(docs[5].captions) == 0
    assert len(docs[6].captions) == 0
    assert len(docs[7].captions) == 0
    assert len(docs[8].captions) == 0
    assert len(docs[9].captions) == 0
    assert len(docs[10].captions) == 0
    assert len(docs[11].captions) == 0

    train_docs = set()
    dev_docs = set()
    test_docs = set()
    splits = (0.5, 0.75)
    data = [(doc.name, doc) for doc in docs]
    data.sort(key=lambda x: x[0])
    for i, (doc_name, doc) in enumerate(data):
        if i < splits[0] * ld:
            train_docs.add(doc)
        elif i < splits[1] * ld:
            dev_docs.add(doc)
        else:
            test_docs.add(doc)
    logger.info([x.name for x in train_docs])

    # NOTE: With multi-relation support, return values of getting candidates,
    # mentions, or sparse matrices are formatted as a list of lists. This means
    # that with a single relation, we need to index into the list of lists to
    # get the candidates/mentions/sparse matrix for a particular relation or
    # mention.

    # Mention Extraction
    part_ngrams = MentionNgramsPart(parts_by_doc=None, n_max=3)
    temp_ngrams = MentionNgramsTemp(n_max=2)

    Part = mention_subclass("Part")
    Temp = mention_subclass("Temp")

    mention_extractor = MentionExtractor(
        session, [Part, Temp], [part_ngrams, temp_ngrams], [part_matcher, temp_matcher]
    )

    mention_extractor.apply(docs, parallelism=PARALLEL)

    assert session.query(Part).count() == 299
    assert session.query(Temp).count() == 147
    assert len(mention_extractor.get_mentions()) == 2
    assert len(mention_extractor.get_mentions()[0]) == 299
    assert (
        len(
            mention_extractor.get_mentions(
                docs=[session.query(Document).filter(Document.name == "112823").first()]
            )[0]
        )
        == 70
    )

    # Candidate Extraction
    PartTemp = candidate_subclass("PartTemp", [Part, Temp])

    candidate_extractor = CandidateExtractor(
        session, [PartTemp], throttlers=[temp_throttler]
    )

    for i, docs in enumerate([train_docs, dev_docs, test_docs]):
        candidate_extractor.apply(docs, split=i, parallelism=PARALLEL)

    assert session.query(PartTemp).filter(PartTemp.split == 0).count() == 3684
    assert session.query(PartTemp).filter(PartTemp.split == 1).count() == 72
    assert session.query(PartTemp).filter(PartTemp.split == 2).count() == 448

    # Grab candidate lists
    train_cands = candidate_extractor.get_candidates(split=0)
    dev_cands = candidate_extractor.get_candidates(split=1)
    test_cands = candidate_extractor.get_candidates(split=2)
    assert len(train_cands) == 1
    assert len(train_cands[0]) == 3684
    assert (
        len(
            candidate_extractor.get_candidates(
                docs=[session.query(Document).filter(Document.name == "112823").first()]
            )[0]
        )
        == 1496
    )

    # Featurization
    featurizer = Featurizer(session, [PartTemp])

    # Test that FeatureKey is properly reset
    featurizer.apply(split=1, train=True, parallelism=PARALLEL)
    assert session.query(Feature).count() == 72
    assert session.query(FeatureKey).count() == 716

    # Test Dropping FeatureKey
    featurizer.drop_keys(["DDL_e1_W_LEFT_POS_3_[NFP NN NFP]"])
    assert session.query(FeatureKey).count() == 715
    session.query(Feature).delete()

    featurizer.apply(split=0, train=True, parallelism=PARALLEL)
    assert session.query(Feature).count() == 3684
    assert session.query(FeatureKey).count() == 3748
    F_train = featurizer.get_feature_matrices(train_cands)
    assert F_train[0].shape == (3684, 3748)
    assert len(featurizer.get_keys()) == 3748

    featurizer.apply(split=1, parallelism=PARALLEL)
    assert session.query(Feature).count() == 3756
    assert session.query(FeatureKey).count() == 3748
    F_dev = featurizer.get_feature_matrices(dev_cands)
    assert F_dev[0].shape == (72, 3748)

    featurizer.apply(split=2, parallelism=PARALLEL)
    assert session.query(Feature).count() == 4204
    assert session.query(FeatureKey).count() == 3748
    F_test = featurizer.get_feature_matrices(test_cands)
    assert F_test[0].shape == (448, 3748)

    gold_file = "tests/data/hardware_tutorial_gold.csv"
    load_hardware_labels(session, PartTemp, gold_file, ATTRIBUTE, annotator_name="gold")
    assert session.query(GoldLabel).count() == 4204

    stg_temp_lfs = [
        LF_storage_row,
        LF_operating_row,
        LF_temperature_row,
        LF_tstg_row,
        LF_to_left,
        LF_negative_number_left,
    ]

    labeler = Labeler(session, [PartTemp])

    with pytest.raises(ValueError):
        labeler.apply(split=0, lfs=stg_temp_lfs, train=True, parallelism=PARALLEL)

    labeler.apply(split=0, lfs=[stg_temp_lfs], train=True, parallelism=PARALLEL)
    assert session.query(Label).count() == 3684
    assert session.query(LabelKey).count() == 6
    L_train = labeler.get_label_matrices(train_cands)
    assert L_train[0].shape == (3684, 6)
    assert len(labeler.get_keys()) == 6

    L_train_gold = labeler.get_gold_labels(train_cands)
    assert L_train_gold[0].shape == (3684, 1)

    L_train_gold = labeler.get_gold_labels(train_cands, annotator="gold")
    assert L_train_gold[0].shape == (3684, 1)

    gen_model = LabelModel(k=2)
    gen_model.train(L_train[0], n_epochs=500, print_every=100)

    train_marginals = gen_model.predict_proba(L_train[0])[:, 1]

    disc_model = LogisticRegression()
    disc_model.train(
        (train_cands[0], F_train[0]), train_marginals, n_epochs=20, lr=0.001
    )

    test_score = disc_model.predictions((test_cands[0], F_test[0]), b=0.6)
    true_pred = [test_cands[0][_] for _ in np.nditer(np.where(test_score > 0))]

    pickle_file = "tests/data/parts_by_doc_dict.pkl"
    with open(pickle_file, "rb") as f:
        parts_by_doc = pickle.load(f)

    (TP, FP, FN) = entity_level_f1(
        true_pred, gold_file, ATTRIBUTE, test_docs, parts_by_doc=parts_by_doc
    )

    tp_len = len(TP)
    fp_len = len(FP)
    fn_len = len(FN)
    prec = tp_len / (tp_len + fp_len) if tp_len + fp_len > 0 else float("nan")
    rec = tp_len / (tp_len + fn_len) if tp_len + fn_len > 0 else float("nan")
    f1 = 2 * (prec * rec) / (prec + rec) if prec + rec > 0 else float("nan")

    logger.info("prec: {}".format(prec))
    logger.info("rec: {}".format(rec))
    logger.info("f1: {}".format(f1))

    assert f1 < 0.7 and f1 > 0.3

    stg_temp_lfs_2 = [
        LF_to_left,
        LF_test_condition_aligned,
        LF_collector_aligned,
        LF_current_aligned,
        LF_voltage_row_temp,
        LF_voltage_row_part,
        LF_typ_row,
        LF_complement_left_row,
        LF_too_many_numbers_row,
        LF_temp_on_high_page_num,
        LF_temp_outside_table,
        LF_not_temp_relevant,
    ]
    labeler.update(split=0, lfs=[stg_temp_lfs_2], parallelism=PARALLEL)
    assert session.query(Label).count() == 3684
    assert session.query(LabelKey).count() == 13
    L_train = labeler.get_label_matrices(train_cands)
    assert L_train[0].shape == (3684, 13)

    gen_model = LabelModel(k=2)
    gen_model.train(L_train[0], n_epochs=500, print_every=100)

    train_marginals = gen_model.predict_proba(L_train[0])[:, 1]

    disc_model = LogisticRegression()
    disc_model.train(
        (train_cands[0], F_train[0]), train_marginals, n_epochs=20, lr=0.001
    )

    test_score = disc_model.predictions((test_cands[0], F_test[0]), b=0.6)
    true_pred = [test_cands[0][_] for _ in np.nditer(np.where(test_score > 0))]

    (TP, FP, FN) = entity_level_f1(
        true_pred, gold_file, ATTRIBUTE, test_docs, parts_by_doc=parts_by_doc
    )

    tp_len = len(TP)
    fp_len = len(FP)
    fn_len = len(FN)
    prec = tp_len / (tp_len + fp_len) if tp_len + fp_len > 0 else float("nan")
    rec = tp_len / (tp_len + fn_len) if tp_len + fn_len > 0 else float("nan")
    f1 = 2 * (prec * rec) / (prec + rec) if prec + rec > 0 else float("nan")

    logger.info("prec: {}".format(prec))
    logger.info("rec: {}".format(rec))
    logger.info("f1: {}".format(f1))

    assert f1 > 0.7

    # Testing LSTM
    disc_model = LSTM()
    disc_model.train(
        (train_cands[0], F_train[0]), train_marginals, n_epochs=5, lr=0.001
    )

    test_score = disc_model.predictions((test_cands[0], F_test[0]), b=0.6)
    true_pred = [test_cands[0][_] for _ in np.nditer(np.where(test_score > 0))]

    (TP, FP, FN) = entity_level_f1(
        true_pred, gold_file, ATTRIBUTE, test_docs, parts_by_doc=parts_by_doc
    )

    tp_len = len(TP)
    fp_len = len(FP)
    fn_len = len(FN)
    prec = tp_len / (tp_len + fp_len) if tp_len + fp_len > 0 else float("nan")
    rec = tp_len / (tp_len + fn_len) if tp_len + fn_len > 0 else float("nan")
    f1 = 2 * (prec * rec) / (prec + rec) if prec + rec > 0 else float("nan")

    logger.info("prec: {}".format(prec))
    logger.info("rec: {}".format(rec))
    logger.info("f1: {}".format(f1))

    assert f1 > 0.7

    # Testing Sparse Logistic Regression
    disc_model = SparseLogisticRegression()
    disc_model.train(
        (train_cands[0], F_train[0]), train_marginals, n_epochs=20, lr=0.001
    )

    test_score = disc_model.predictions((test_cands[0], F_test[0]), b=0.9)
    true_pred = [test_cands[0][_] for _ in np.nditer(np.where(test_score > 0))]

    (TP, FP, FN) = entity_level_f1(
        true_pred, gold_file, ATTRIBUTE, test_docs, parts_by_doc=parts_by_doc
    )

    tp_len = len(TP)
    fp_len = len(FP)
    fn_len = len(FN)
    prec = tp_len / (tp_len + fp_len) if tp_len + fp_len > 0 else float("nan")
    rec = tp_len / (tp_len + fn_len) if tp_len + fn_len > 0 else float("nan")
    f1 = 2 * (prec * rec) / (prec + rec) if prec + rec > 0 else float("nan")

    logger.info("prec: {}".format(prec))
    logger.info("rec: {}".format(rec))
    logger.info("f1: {}".format(f1))

    assert f1 > 0.7
Пример #2
0
L_dev = label_matricies['dev'].toarray()
L_dev[L_dev < 0] = 2
L_test = label_matricies['test'].toarray()
L_test[L_test < 0] = 2

label_model = LabelModel(k=2, seed=100)

# In[ ]:

reg_param_grid = pd.np.round(pd.np.linspace(1e-1, 1, num=30), 3)
grid_results = defaultdict(dict)
for model in tqdm_notebook(model_dict):
    for reg_param in reg_param_grid:
        label_model.train(L[:, model_dict[model]],
                          n_epochs=1000,
                          verbose=False,
                          lr=0.01,
                          l2=reg_param)
        grid_results[model][str(reg_param)] = label_model.predict_proba(
            L_dev[:, model_dict[model]])[:, 0]

# In[ ]:

for model in grid_results:
    model_aucs = plot_roc_curve(pd.DataFrame.from_dict(grid_results[model]),
                                candidate_dfs['dev'].curated_dsh,
                                figsize=(16, 6),
                                model_type='scatterplot',
                                plot_title=model)

# In[ ]: