Пример #1
0
def test_iterator():
    """This test repeats main_RepeatsNcov.c and validates that the
       various stages report the same results as the original C code
       for ncov, when using a custom integrator that just calls
       iterate_weekday
    """
    prompt = None

    # user input parameters
    seed = 15324
    inputfile = ncovparams_csv
    line_num = 0
    UV = 1.0

    # load all of the parameters
    try:
        params = Parameters.load(parameters="march29")
    except Exception as e:
        print(f"Unable to load parameter files. Make sure that you have "
              f"cloned the MetaWardsData repository and have set the "
              f"environment variable METAWARDSDATA to point to the "
              f"local directory containing the repository, e.g. the "
              f"default is $HOME/GitHub/MetaWardsData")
        raise e

    # load the disease and starting-point input files
    params.set_disease("ncov")
    params.set_input_files("2011Data")
    params.add_seeds("ExtraSeedsBrighton.dat")

    # start from the parameters in the specified line number of the
    # provided input file
    variables = params.read_variables(inputfile, line_num)

    # extra parameters that are set
    params.UV = UV
    params.static_play_at_home = 0
    params.play_to_work = 0
    params.work_to_play = 0
    params.daily_imports = 0.0

    # the size of the starting population
    population = Population(initial=57104043)

    profiler = Profiler()

    print("Building the network...")
    network = Network.build(params=params, profiler=profiler)

    params = params.set_variables(variables[0])
    network.update(params, profiler=profiler)

    # Here is a custom integrator function that just calls
    # iterate_weekday after 'print_hello'
    def print_hello(**kwargs):
        print(f"Hello")

    def my_iterator(**kwargs):
        from metawards.iterators import iterate_weekday
        return [print_hello] + iterate_weekday(**kwargs)

    from metawards.iterators import build_custom_iterator

    iterator = build_custom_iterator(my_iterator, __name__)

    print("Run the model...")
    outdir = os.path.join(script_dir, "test_integrator_output")

    with OutputFiles(outdir, force_empty=True, prompt=prompt) as output_dir:
        trajectory = network.run(population=population,
                                 seed=seed,
                                 output_dir=output_dir,
                                 nsteps=29,
                                 profiler=profiler,
                                 iterator=iterator,
                                 nthreads=1)

    OutputFiles.remove(outdir, prompt=None)

    print("End of the run")

    print(f"Model output: {trajectory}")

    print(profiler)

    # The original C code has this expected population after 47 steps
    expected = Population(initial=57104043,
                          susceptibles=56081730,
                          latent=134,
                          total=48,
                          recovereds=165,
                          n_inf_wards=28,
                          day=29)

    print(f"Expect output: {expected}")

    assert trajectory[-1] == expected
Пример #2
0
def test_too_small(prompt=None):
    """This test repeats main_RepeatsNcov.c and validates that the
       various stages report the same results as the original C code
       for ncov
    """

    # user input parameters
    seed = 15324
    inputfile = ncovparams_csv
    line_num = 0
    UV = 0.0

    # load all of the parameters
    try:
        params = Parameters.load(parameters="march29")
    except Exception as e:
        print(f"Unable to load parameter files. Make sure that you have "
              f"cloned the MetaWardsData repository and have set the "
              f"environment variable METAWARDSDATA to point to the "
              f"local directory containing the repository, e.g. the "
              f"default is $HOME/GitHub/MetaWardsData")
        raise e

    # load the disease and starting-point input files
    params.set_disease(os.path.join(script_dir, "data", "ncov.json"))
    params.set_input_files("2011Data")
    params.add_seeds("ExtraSeedsBrighton.dat")

    # start from the parameters in the specified line number of the
    # provided input file
    variables = params.read_variables(inputfile, line_num)

    # extra parameters that are set
    params.UV = UV
    params.static_play_at_home = 0
    params.play_to_work = 0
    params.work_to_play = 0
    params.daily_imports = 0.0

    # the size of the starting population
    population = Population(initial=57104043)

    profiler = Profiler()
    profiler2 = Profiler()

    print("Building the network...")
    network = Network.build(params=params,
                            profiler=profiler,
                            max_nodes=100,
                            max_links=100)

    print("Building it again... (should be cached)")
    network = Network.build(params=params,
                            profiler=profiler2,
                            max_nodes=100,
                            max_links=100)

    params = params.set_variables(variables[0])
    network.update(params, profiler=None)

    print("Run the model...")
    outdir = os.path.join(script_dir, "test_integration_output")

    with OutputFiles(outdir, force_empty=True, prompt=prompt) as output_dir:
        trajectory = network.run(population=population,
                                 seed=seed,
                                 output_dir=output_dir,
                                 nsteps=30,
                                 profiler=None,
                                 nthreads=1)

    OutputFiles.remove(outdir, prompt=None)

    print("End of the run")

    print(profiler)

    print(f"Model output: {trajectory}")

    expected = Population(initial=57104043,
                          susceptibles=56081610,
                          latent=167,
                          total=60,
                          recovereds=240,
                          n_inf_wards=56,
                          day=30)

    print(f"Expect output: {expected}")

    assert trajectory[-1] == expected
Пример #3
0
def test_local():
    prompt = None

    # user input parameters
    seed = 15324
    UV = 1.0

    # load all of the parameters
    try:
        params = Parameters.load(parameters="march29")
    except Exception as e:
        print(f"Unable to load parameter files. Make sure that you have "
              f"cloned the MetaWardsData repository and have set the "
              f"environment variable METAWARDSDATA to point to the "
              f"local directory containing the repository, e.g. the "
              f"default is $HOME/GitHub/MetaWardsData")
        raise e

    # load the disease and starting-point input files
    params.set_disease("ncov")
    params.set_input_files("2011Data")
    params.add_seeds("1 5 2124")  #  seeding 5 into ward 2124

    # extra parameters that are set
    params.UV = UV
    params.static_play_at_home = 0
    params.play_to_work = 0
    params.work_to_play = 0
    params.daily_imports = 0.0

    # the size of the starting population
    population = Population(initial=57104043)

    print("Building the network...")
    network = Network.build(params=params)

    outdir = os.path.join(script_dir, "test_local_output")

    # First check that setting the local cutoff has the same effect
    # as setting the global cutoff

    with OutputFiles(outdir, force_empty=True, prompt=prompt) as output_dir:
        trajectory = network.copy().run(population=population,
                                        seed=seed,
                                        output_dir=output_dir,
                                        nsteps=50,
                                        iterator=iterate_cutoff,
                                        extractor=extract_cutoff,
                                        nthreads=1)

    OutputFiles.remove(outdir, prompt=None)

    # run setting the global dyn_dist_cutoff to zero
    with OutputFiles(outdir, force_empty=True, prompt=prompt) as output_dir:
        net2 = network.copy()
        net2.params.dyn_dist_cutoff = 0.0
        trajectory2 = net2.run(population=population,
                               seed=seed,
                               output_dir=output_dir,
                               nsteps=50,
                               extractor=extract_cutoff,
                               nthreads=1)

    OutputFiles.remove(outdir, prompt=None)

    print(f"Model output: {trajectory}")
    print(f"Model output: {trajectory2}")

    assert trajectory == trajectory2

    # now test that setting the scale_uv has the same effect as
    # setting the global scale_uv

    with OutputFiles(outdir, force_empty=True, prompt=prompt) as output_dir:
        trajectory = network.copy().run(population=population,
                                        seed=seed,
                                        output_dir=output_dir,
                                        nsteps=50,
                                        iterator=iterate_scale,
                                        extractor=extract_scale,
                                        nthreads=1)

    OutputFiles.remove(outdir, prompt=None)

    # run setting the global dyn_dist_cutoff to zero
    with OutputFiles(outdir, force_empty=True, prompt=prompt) as output_dir:
        net2 = network.copy()
        pop2 = deepcopy(population)
        pop2.scale_uv = 0.0

        trajectory2 = net2.run(population=pop2,
                               seed=seed,
                               output_dir=output_dir,
                               nsteps=50,
                               extractor=extract_scale,
                               nthreads=1)

    OutputFiles.remove(outdir, prompt=None)

    print(f"Model output: {trajectory}")
    print(f"Model output: {trajectory2}")

    p = trajectory[-1]
    p2 = trajectory2[-1]

    # won't be identical as different scale_uv causes different order
    # of random numbers - but should still have 0 infections
    assert p.has_equal_SEIR(p2)

    # now test that setting both to non-zero values has the same effect

    with OutputFiles(outdir, force_empty=True, prompt=prompt) as output_dir:
        trajectory = network.copy().run(population=population,
                                        seed=seed,
                                        output_dir=output_dir,
                                        nsteps=50,
                                        iterator=iterate_both,
                                        nthreads=1)

    OutputFiles.remove(outdir, prompt=None)

    # run setting the global dyn_dist_cutoff to zero
    with OutputFiles(outdir, force_empty=True, prompt=prompt) as output_dir:
        net2 = network.copy()
        net2.params.dyn_dist_cutoff = 42.0
        pop2 = deepcopy(population)
        pop2.scale_uv = 0.5

        trajectory2 = net2.run(population=pop2,
                               seed=seed,
                               output_dir=output_dir,
                               nsteps=50,
                               nthreads=1)

    OutputFiles.remove(outdir, prompt=None)

    print(f"Model output: {trajectory}")
    print(f"Model output: {trajectory2}")

    p = trajectory[-1]
    p2 = trajectory2[-1]
    p2.scale_uv = 1
    assert p == p2
Пример #4
0
def test_openfiles(prompt=None):
    outdir = os.path.join(script_dir, "test_openfiles_output")

    if os.path.exists(outdir):
        OutputFiles.remove(outdir, prompt=prompt)

    of = OutputFiles(outdir)

    assert of.is_open()
    assert not of.is_closed()

    with pytest.raises(ValueError):
        of.open("../test.txt")

    with pytest.raises(ValueError):
        of.open("/test.txt")

    FILE = of.open("test.txt")

    assert of.is_open()

    FILE.write("hello\n")

    of.close()

    assert of.is_closed()

    assert open(os.path.join(outdir, "test.txt")).readline() == "hello\n"

    with pytest.raises(FileExistsError):
        OutputFiles(outdir, prompt=None)

    with OutputFiles(outdir, force_empty=True, prompt=None) as of:
        FILE = of.open("test.txt")
        assert of.is_open()

        assert of.get_filename("test.txt").endswith("test.txt")

        FILE.write("goodbye\n")

        FILE = of.open("test2.txt", auto_bzip=True)
        FILE.write("hello ")

        assert of.get_filename("test2.txt").endswith("test2.txt.bz2")

        FILE = of.open("test2.txt")
        FILE.write("world\n")

    assert open(os.path.join(outdir, "test.txt")).readline() == "goodbye\n"

    import bz2
    line = bz2.open(os.path.join(outdir, "test2.txt.bz2"), "rt").readline()
    assert line == "hello world\n"

    OutputFiles.remove(outdir, prompt=None)
Пример #5
0
def test_network_copy(prompt=None, nthreads=1):

    # user input parameters
    import random
    seed = random.randint(100000, 1000000)
    UV = 0.0

    # load all of the parameters
    try:
        params = Parameters.load(parameters="march29")
    except Exception as e:
        print(f"Unable to load parameter files. Make sure that you have "
              f"cloned the MetaWardsData repository and have set the "
              f"environment variable METAWARDSDATA to point to the "
              f"local directory containing the repository, e.g. the "
              f"default is $HOME/GitHub/MetaWardsData")
        raise e

    # load the disease and starting-point input files
    params.set_disease(os.path.join(script_dir, "data", "ncov.json"))
    params.set_input_files("2011Data")
    params.add_seeds("ExtraSeedsBrighton.dat")

    # extra parameters that are set
    params.UV = UV
    params.static_play_at_home = 0
    params.play_to_work = 0
    params.work_to_play = 0
    params.daily_imports = 0.0

    # the size of the starting population
    population = Population(initial=57104043)

    nsteps = 20

    print("Building the network...")
    network = Network.build(params=params)

    outdir = os.path.join(script_dir, "test_network_copy")

    print("Run 1")
    with OutputFiles(outdir, force_empty=True, prompt=prompt) as output_dir:
        t1 = network.copy().run(population=population,
                                seed=seed,
                                output_dir=output_dir,
                                nsteps=nsteps,
                                extractor=extract_none,
                                nthreads=nthreads)

    OutputFiles.remove(outdir, prompt=None)

    print("Run 2")
    with OutputFiles(outdir, force_empty=True, prompt=prompt) as output_dir:
        t2 = network.copy().run(population=population,
                                seed=seed,
                                output_dir=output_dir,
                                nsteps=nsteps,
                                extractor=extract_none,
                                nthreads=nthreads)

    print("Run 3")
    with OutputFiles(outdir, force_empty=True, prompt=prompt) as output_dir:
        t3 = network.copy().run(population=population,
                                seed=seed,
                                output_dir=output_dir,
                                nsteps=nsteps,
                                extractor=extract_none,
                                nthreads=nthreads)

    OutputFiles.remove(outdir, prompt=None)

    print(t1)
    print(t2)
    print(t3)
    assert t1 == t2
    assert t1 == t3
Пример #6
0
def test_pathway():
    demographics = Demographics.load(demographics_json)
    assert len(demographics) == 2

    disease_home = Disease.load(filename=home_json)
    disease_super = Disease.load(filename=super_json)

    assert demographics[1].disease is None
    assert demographics[0].disease == disease_super

    params = Parameters.load()
    params.set_disease(disease_home)
    params.set_input_files("single")
    params.add_seeds("ExtraSeedsOne.dat")

    network = Network.build(params)

    print(network.params.disease_params)
    print(disease_home)

    assert network.params.disease_params == disease_home

    network = network.specialise(demographics)

    print(network.params.disease_params)
    print(disease_home)

    assert network.params.disease_params == disease_home

    print(network.subnets[1].params.disease_params)
    print(disease_home)

    assert network.subnets[1].params.disease_params == disease_home

    print(network.subnets[0].params.disease_params)
    print(disease_super)

    assert network.subnets[0].params.disease_params == disease_super

    infections = network.initialise_infections()

    assert infections.N_INF_CLASSES == disease_home.N_INF_CLASSES()

    assert \
        infections.subinfs[1].N_INF_CLASSES == disease_home.N_INF_CLASSES()

    assert \
        infections.subinfs[0].N_INF_CLASSES == disease_super.N_INF_CLASSES()

    assert disease_super.N_INF_CLASSES() != disease_home.N_INF_CLASSES()

    outdir = os.path.join(script_dir, "test_pathway")

    with OutputFiles(outdir, force_empty=True, prompt=None) as output_dir:
        results = network.copy().run(population=Population(),
                                     output_dir=output_dir,
                                     mixer=mix_evenly,
                                     nthreads=1,
                                     seed=36538943)

    # using one thread, but if use 2 then have a system crash after
    # any other test that uses the big network. This is because we
    # have intialised some global data that assumes a large network,
    # which then fails for the small network

    OutputFiles.remove(outdir, prompt=None)

    print(results[-1])
    print(results[-1].initial)

    expected = Population(susceptibles=68,
                          latent=0,
                          total=0,
                          recovereds=932,
                          n_inf_wards=0,
                          day=72)

    print(expected)

    assert results[-1].has_equal_SEIR(expected)
    assert results[-1].day == expected.day

    with OutputFiles(outdir, force_empty=True, prompt=None) as output_dir:
        results = network.copy().run(population=Population(),
                                     output_dir=output_dir,
                                     mixer=mix_evenly,
                                     nthreads=1,
                                     seed=36538943)

    OutputFiles.remove(outdir, prompt=None)

    print(results[-1])
    print(results[-1].initial)

    print(expected)

    assert results[-1].has_equal_SEIR(expected)
    assert results[-1].day == expected.day

    variables = VariableSet()

    print("\nUpdate with null variables")
    oldparams = network.params
    params = network.params.set_variables(variables)
    network.update(params)

    assert oldparams == network.params

    print(network.params.disease_params)
    print(disease_home)

    assert network.params.disease_params == disease_home

    print(network.subnets[1].params.disease_params)
    print(disease_home)

    assert network.subnets[1].params.disease_params == disease_home

    print(network.subnets[0].params.disease_params)
    print(disease_super)

    assert network.subnets[0].params.disease_params == disease_super

    infections = network.initialise_infections()

    assert infections.N_INF_CLASSES == disease_home.N_INF_CLASSES()

    assert \
        infections.subinfs[1].N_INF_CLASSES == disease_home.N_INF_CLASSES()

    assert \
        infections.subinfs[0].N_INF_CLASSES == disease_super.N_INF_CLASSES()

    assert disease_super.N_INF_CLASSES() != disease_home.N_INF_CLASSES()

    outdir = os.path.join(script_dir, "test_pathway")

    with OutputFiles(outdir, force_empty=True, prompt=None) as output_dir:
        results = network.copy().run(population=Population(),
                                     output_dir=output_dir,
                                     mixer=mix_evenly,
                                     nthreads=1,
                                     seed=36538943)

    OutputFiles.remove(outdir, prompt=None)

    print(results[-1])
    print(expected)

    assert results[-1].has_equal_SEIR(expected)
    assert results[-1].day == expected.day
Пример #7
0
def test_go_to(prompt=None, nthreads=1):
    seed = 797747

    # load all of the parameters
    try:
        params = Parameters.load(parameters="march29")
    except Exception as e:
        print(f"Unable to load parameter files. Make sure that you have "
              f"cloned the MetaWardsData repository and have set the "
              f"environment variable METAWARDSDATA to point to the "
              f"local directory containing the repository, e.g. the "
              f"default is $HOME/GitHub/MetaWardsData")
        raise e

    # load the disease and starting-point input files
    params.set_disease(os.path.join(script_dir, "data", "ncov.json"))
    params.set_input_files("2011Data")
    params.add_seeds("ExtraSeedsBrighton.dat")

    # the size of the starting population
    population = Population(initial=57104043)

    nsteps = 20

    demographics = Demographics.load(redblue_json)

    print("Building the network...")
    network = Network.build(params=params)

    network = network.specialise(demographics, nthreads=nthreads)

    outdir = os.path.join(script_dir, "test_go_to")

    with OutputFiles(outdir, force_empty=True, prompt=prompt) as output_dir:
        trajectory = network.copy().run(population=population, seed=seed,
                                        output_dir=output_dir,
                                        nsteps=nsteps,
                                        mixer=mix_evenly,
                                        mover=move_red_to_blue,
                                        nthreads=nthreads)

    OutputFiles.remove(outdir, prompt=None)

    # red demographic was seeded, but all moved to blue, so should have
    # no outbreak
    pop = trajectory[-1]
    print(pop)
    assert pop.susceptibles == pop.population
    assert pop.subpops[0].population == 0
    assert pop.subpops[1].population == pop.population

    with OutputFiles(outdir, force_empty=True, prompt=prompt) as output_dir:
        trajectory = network.copy().run(population=population, seed=seed,
                                        output_dir=output_dir,
                                        nsteps=nsteps,
                                        mixer=mix_evenly,
                                        mover=move_blue_to_red,
                                        nthreads=nthreads)

    OutputFiles.remove(outdir, prompt=None)

    # red demographic was seeded so should all be affected
    final_pop = trajectory[-1]
    print(final_pop)
    assert final_pop.susceptibles != final_pop.population
    assert final_pop.subpops[0].population == final_pop.population
    assert final_pop.subpops[1].population == 0

    with OutputFiles(outdir, force_empty=True, prompt=prompt) as output_dir:
        trajectory = network.copy().run(population=population, seed=seed,
                                        output_dir=output_dir,
                                        nsteps=nsteps,
                                        mixer=mix_evenly,
                                        mover=move_red_to_blue_2,
                                        nthreads=nthreads)

    OutputFiles.remove(outdir, prompt=None)

    # red seeded, but all moved to blue. Should have the same outbreak
    pop = trajectory[-1]
    print(final_pop)
    print(pop)
    assert pop.susceptibles == final_pop.susceptibles
    assert pop.total == final_pop.total
    assert pop.latent == final_pop.latent
    assert pop.recovereds == final_pop.recovereds

    with OutputFiles(outdir, force_empty=True, prompt=prompt) as output_dir:
        trajectory = network.copy().run(population=population, seed=seed,
                                        output_dir=output_dir,
                                        nsteps=nsteps,
                                        mixer=mix_evenly,
                                        mover=move_even_odd,
                                        nthreads=nthreads)

    OutputFiles.remove(outdir, prompt=None)

    # red seeded, but moved back and forth - should all be the same
    pop = trajectory[-1]
    print(final_pop)
    print(pop)
    assert pop.susceptibles == final_pop.susceptibles
    assert pop.total == final_pop.total
    assert pop.latent == final_pop.latent
    assert pop.recovereds == final_pop.recovereds
def output_db(population: Population, network: Networks, workspace: Workspace,
              output_dir: OutputFiles, **kwargs):
    Console.print(f"Calling output_db for a {network.__class__} object")
    conn3 = output_dir.open_db("stages.db", initialise=create_tables(network))
    c3 = conn3.cursor()

    ## setup marker for previous daya
    for i, subnet in enumerate(network.subnets):
        ## if first day, then create a copy of the ward data
        ## these should all be zero at day 0 and so not affect incidence
        if not hasattr(workspace.subspaces[i], "output_previous"):
            workspace.subspaces[i].output_previous = deepcopy(
                workspace.subspaces[i].ward_inf_tot)
            for j, sub in enumerate(workspace.subspaces[i].output_previous):
                for k, sub1 in enumerate(
                        workspace.subspaces[i].output_previous[j]):
                    workspace.subspaces[i].output_previous[j][k] = 0

    ## extract Rprime and Dprime in each demographic
    Rprime = [[] for _ in range(4)]
    Dprime = [[] for _ in range(4)]
    for i, subnet in enumerate(network.subnets):

        ## get yesterday's data
        ward_inf_previous = workspace.subspaces[i].output_previous
        ## get today's data
        ward_inf_tot = workspace.subspaces[i].ward_inf_tot

        ## new deaths across wards
        if subnet.name != "asymp":
            for old, new in zip(ward_inf_previous[3], ward_inf_tot[3]):
                Dprime[i].append(new - old)

        ## new removals across wards
        for old, new in zip(ward_inf_previous[2], ward_inf_tot[2]):
            Rprime[i].append(new - old)

    ## calculate Iprime in each demographic
    Iprime = [[] for _ in range(4)]

    ## NEED TO DO FOLLOWING CALCULATIONS IN ORDER

    ## extract subnets names
    sub_names = [network.subnets[i].name for i in range(4)]

    ## ASYMPTOMATICS
    ia = sub_names.index("asymp")
    ## get data
    ward_inf_previous = workspace.subspaces[ia].output_previous
    ward_inf_tot = workspace.subspaces[ia].ward_inf_tot
    ## calculate incidence
    for old, new, Rinc in zip(ward_inf_previous[1], ward_inf_tot[1],
                              Rprime[ia]):
        Iprime[ia].append(new - old + Rinc)

    ## CRITICAL
    ic = sub_names.index("critical")
    ## get data
    ward_inf_previous = workspace.subspaces[ic].output_previous
    ward_inf_tot = workspace.subspaces[ic].ward_inf_tot
    ## calculate incidence
    for old, new, Rinc, Dinc in zip(ward_inf_previous[1], ward_inf_tot[1],
                                    Rprime[ic], Dprime[ic]):
        Iprime[ic].append(new - old + Rinc + Dinc)

    ## HOSPITAL
    ih = sub_names.index("hospital")
    ## get data
    ward_inf_previous = workspace.subspaces[ih].output_previous
    ward_inf_tot = workspace.subspaces[ih].ward_inf_tot
    ## calculate incidence
    for old, new, Rinc, Dinc, Cinc in zip(ward_inf_previous[1],
                                          ward_inf_tot[1], Rprime[ih],
                                          Dprime[ih], Iprime[ic]):
        Iprime[ih].append(new - old + Rinc + Dinc + Cinc)

    ## GENPOP
    ig = sub_names.index("genpop")
    ## get data
    ward_inf_previous = workspace.subspaces[ig].output_previous
    ward_inf_tot = workspace.subspaces[ig].ward_inf_tot
    ## calculate incidence
    for old, new, Rinc, Dinc, Hinc in zip(ward_inf_previous[1],
                                          ward_inf_tot[1], Rprime[ig],
                                          Dprime[ig], Iprime[ih]):
        Iprime[ig].append(new - old + Rinc + Dinc + Hinc)

    ## calculate Eprime in GENPOP demographic
    Eprime = []
    for old, new, Iinc, Ainc in zip(ward_inf_previous[0], ward_inf_tot[0],
                                    Iprime[ig], Iprime[ia]):
        Eprime.append(new - old + Iinc + Ainc)

    ## loop over wards and write to file
    wards = range(0, workspace.subspaces[0].nnodes + 1)
    day = [population.day] * len(wards)
    # print(workspace.subspaces[0].nnodes)
    # print(len(day))
    # print(len(wards))
    # print(len(Eprime))

    ## set column names
    col_names = ["day", "ward", "Einc", "E", "Iinc", "I", "RI", "DI", "Ainc", "A", "RA", "Hinc", "H",\
        "RH", "DH", "Cinc", "C", "RC", "DC"]
    col_str = ','.join(col_names)

    ## extract demographics
    asymp_ward = workspace.subspaces[ia].ward_inf_tot
    genpop_ward = workspace.subspaces[ig].ward_inf_tot
    hospital_ward = workspace.subspaces[ih].ward_inf_tot
    critical_ward = workspace.subspaces[ic].ward_inf_tot

    ## write to file
    for day, ward, Einc, E, Iinc, I, RI, DI, Ainc, A, RA, Hinc, H, RH, RD, Cinc, C, RC, DC in\
    zip(day, wards, Eprime, genpop_ward[0], Iprime[ig], genpop_ward[1], genpop_ward[2], genpop_ward[3],\
    Iprime[ia], asymp_ward[1], asymp_ward[2], Iprime[ih], hospital_ward[1], hospital_ward[2],\
    hospital_ward[3], Iprime[ic], critical_ward[1], critical_ward[2], critical_ward[3]):
        if ward not in _zero_crossings:
            _zero_crossings[ward] = False

        ## try to fudge a marker for first infections
        if Einc != 0 and _zero_crossings[ward] is False and ward != 0:
            _zero_crossings[ward] = True
            Console.print(f"Got first infection in ward {ward}")

        val = [
            day, ward, Einc, E, Iinc, I, RI, DI, Ainc, A, RA, Hinc, H, RH, RD,
            Cinc, C, RC, DC
        ]
        keeps_str = ",".join([str(v) for v in val])
        qstring = f"insert into compact ({col_str}) values ({keeps_str}) "
        if _zero_crossings[ward] is True:
            c3.execute(qstring)

    conn3.commit()

    ## save today's data so that it can be used tomorrow
    for i, subnet in enumerate(network.subnets):
        workspace.subspaces[i].output_previous = deepcopy(
            workspace.subspaces[i].ward_inf_tot)