Пример #1
0
def test2():
    dataset_names = [
        # "/TT_TuneCUETP8M2T4_13TeV-powheg-pythia8/RunIISummer17MiniAOD-92X_upgrade2017_realistic_v10_ext1-v1/MINIAODSIM",
        "/Dummy_test_StopBabyMaker_v25/CMS4",
    ]

    # Make a base directory
    basedir = "/hadoop/cms/store/user/{0}/metis_test/example/".format(os.getenv("USER"))
    MutableFile(basedir).touch()

    # Make a directory sample, giving it the location and a dataset name for bookkeeping purposes
    # The globber must be customized (by default, it is *.root) in order to pick up the text files
    ds = DirectorySample(location=basedir, dataset="/TEST/Examplev1/TEST", globber="*.txt")

    # Make a CondorTask (3 in total, one for each input)
    task = CondorTask(
            sample = ds,
            files_per_output = 1,
            tag = "v0",
            output_name = "ttbar_powheg_pythia8_92X.root",
            executable = "condor_executable.sh",
            cmssw_version = "CMSSW_9_3_1",
            scram_arch = "slc6_amd64_gcc700",
            arguments = "testarg1",
            tarfile = "input.tar.gz",
            condor_submit_params = {"sites": "UAF,T2_US_UCSD,UCSB"},
            no_load_from_backup = True, # for the purpose of the example, don't use a backup
    )
    # do_cmd("rm -rf {0}".format(task.get_outputdir()))

    # Process and sleep until complete
    is_complete = False
    for t in [5.0, 5.0, 10.0, 15.0, 20.0]:
        task.process()
        print("Sleeping for {0} seconds".format(int(t)))
        time.sleep(t)
        is_complete = task.complete()
        if is_complete: break

    # If it's complete, make a dummy sample out of the output directory
    # in order to pick up the files. Then cat out the contents and sum
    # them up. This should be 3*2*10 = 100
    if is_complete:
        print("Job completed! Checking outputs...")
        outsamp = DirectorySample(location=task.get_outputdir(), dataset="/Blah/blah/BLAH", globber="*.txt")
        tot = 0
        for f in outsamp.get_files():
            mf = MutableFile(f.get_name())
            tot += int(mf.cat())
        print("It looks like we found 3*2*10 = {0}".format(tot))
Пример #2
0
    def setUpClass(cls):
        super(CondorTaskTest, cls).setUpClass()

        # make a test directory and touch some root files and executable there
        basedir = "/tmp/{0}/metis/condortask_test/".format(os.getenv("USER"))
        Utils.do_cmd("mkdir -p {0}".format(basedir))
        for i in range(1, cls.nfiles + 1):
            Utils.do_cmd("touch {0}/input_{1}.root".format(basedir, i))
        Utils.do_cmd("echo hello > {0}/executable.sh".format(basedir))

        # make dummy CondorTask with the files we
        # touched in the basedir, and chunk
        # the outputs
        logging.getLogger("logger_metis").disabled = True
        cls.dummy = CondorTask(sample=DirectorySample(
            location=basedir,
            globber="*.root",
            dataset="/test/test/TEST",
        ),
                               open_dataset=False,
                               files_per_output=cls.files_per_job,
                               cmssw_version=cls.cmssw,
                               tag=cls.tag,
                               executable="{0}/executable.sh".format(basedir))

        # prepare inputs and run,
        # but pretend like outputs exist and don't submit
        cls.dummy.prepare_inputs()
        # run once to "submit to condor" and "create outputs" (set_fake)
        cls.dummy.run(fake=True)
        # run again to recognize that all outputs are there and
        # we can then declare completion
        cls.dummy.run(fake=True)
Пример #3
0
def get_data_tasks(info):
    tasks = []
    for reqname, tag, extra_args in info:
        task = CondorTask(
            sample=DirectorySample(
                location=
                "/hadoop/cms/store/user/namin/ScoutingCaloMuon/crab_{}/*/*/".
                format(reqname),
                dataset="/ScoutingCaloMuon/Run2018{}/RAW".format(reqname)),
            output_name="output.root",
            executable="executables/scouting_exe.sh",
            tarfile="package.tar.gz",
            MB_per_output=4000,
            condor_submit_params={
                "sites":
                "T2_US_UCSD",
                "classads": [
                    ["metis_extraargs", extra_args],
                    ["JobBatchName", reqname],
                ],
                "requirements_line":
                'Requirements = ((HAS_SINGULARITY=?=True) && (HAS_CVMFS_cms_cern_ch =?= true) && {extra_requirements})'
                .format(extra_requirements=extra_requirements),
            },
            cmssw_version="CMSSW_10_2_5",
            scram_arch="slc6_amd64_gcc700",
            tag=tag,
        )
        tasks.append(task)
    return tasks
Пример #4
0
 def test_completion_fraction(self):
     # Make dummy task with no inputs
     # and require min completion fraction to be 0
     logging.getLogger("logger_metis").disabled = True
     dummy = CondorTask(
         sample=DirectorySample(
             location=".",
             globber="*.fake",
             dataset="/testprocess/testprocess/TEST",
         ),
         open_dataset=False,
         files_per_output=1,
         cmssw_version="CMSSW_8_0_20",
         tag="vtest",
         no_load_from_backup=True,
         min_completion_fraction=0.,
     )
     dummy.process()
     self.assertEqual(dummy.complete(), True)
Пример #5
0
def test1():
    dataset_names = [
        # "/TT_TuneCUETP8M2T4_13TeV-powheg-pythia8/RunIISummer17MiniAOD-92X_upgrade2017_realistic_v10_ext1-v1/MINIAODSIM",
        "/Dummy_test_StopBabyMaker_v25/CMS4",
    ]
    basedir = "/hadoop/cms/store/user/{0}/metis_test/example/".format(
        os.getenv("USER"))

    for i in range(10000):

        total_summary = {}
        for dsname in dataset_names:

            try:
                task = CondorTask(
                    sample=DirectorySample(
                        location=basedir,
                        dataset=dsname,
                    ),
                    files_per_output=1,
                    output_name="merged_ntuple.root",
                    tag="v25",
                    scram_arch="slc6_amd64_gcc700",
                    executable="condor_executable.sh",
                    arguments="testarg1",
                    tarfile="input.tar.gz",
                    condor_submit_params={"sites": "UAF,T2_US_UCSD,UCSB"},
                    no_load_from_backup=
                    True,  # for the purpose of the example, don't use a backup
                )

                task.process()
            except:
                traceback_string = traceback.format_exc()
                print("Runtime error:\n{0}".format(traceback_string))
                # send_email(subject="metis error", body=traceback_string)

            total_summary[dsname] = task.get_task_summary()

        StatsParser(data=total_summary,
                    webdir="~/public_html/dump/metis/").do()

        time.sleep(5)
Пример #6
0
def test1():
    dataset_names = [
        # "/TT_TuneCUETP8M2T4_13TeV-powheg-pythia8/RunIISummer17MiniAOD-92X_upgrade2017_realistic_v10_ext1-v1/MINIAODSIM",
        "/Dummy_test_StopBabyMaker_v25/CMS4",
    ]
    basedir = "/hadoop/cms/store/user/{0}/metis_test/example/".format(os.getenv("USER"))

    for i in range(10000):

        total_summary = {}
        for dsname in dataset_names:

            try:
                task = CondorTask(
                    sample = DirectorySample(
                        location=basedir,
                        dataset=dsname,
                    ),
                    files_per_output = 1,
                    output_name = "merged_ntuple.root",
                    tag = "v25",
                    scram_arch = "slc6_amd64_gcc700",
                    executable = "condor_executable.sh",
                    arguments = "testarg1",
                    tarfile = "input.tar.gz",
                    condor_submit_params = {"sites": "UAF,T2_US_UCSD,UCSB"},
                    no_load_from_backup = True, # for the purpose of the example, don't use a backup
                )

                task.process()
            except:
                traceback_string = traceback.format_exc()
                print("Runtime error:\n{0}".format(traceback_string))
                # send_email(subject="metis error", body=traceback_string)

            total_summary[dsname] = task.get_task_summary()

        StatsParser(data=total_summary, webdir="~/public_html/dump/metis/").do()

        time.sleep(5)
Пример #7
0
def submit_jobs(output_directory, tag, samples, events_total,
                events_per_output, tarfile):
    # Long loop to monitor jobs and resubmit failed jobs
    for i in range(10000):
        total_summary = {}

        # Loop through samples
        for sample in samples:
            config_info = samples_config[sample]

            executable = create_executable(tag, sample, config_info)

            task = CondorTask(sample=DummySample(
                N=int(float(events_total) / float(events_per_output)),
                nevents=events_total,
                dataset="/" + sample + "_NANO"),
                              tag=tag,
                              special_dir=output_directory,
                              events_per_output=events_per_output,
                              total_nevents=events_total,
                              split_within_files=True,
                              executable=executable,
                              open_dataset=False,
                              tarfile=tarfile,
                              condor_submit_params=CONDOR_SUBMIT_PARAMS)

            task.process()
            total_summary[
                task.get_sample().get_datasetname()] = task.get_task_summary()

        StatsParser(data=total_summary,
                    webdir="~/public_html/dump/Hgg-MC-Production/").do()

        time.sleep(300)  # power nap
Пример #8
0
    def test_flush(self):
        basedir = "/tmp/{0}/metis/condortask_testflush/".format(
            os.getenv("USER"))
        Utils.do_cmd("mkdir -p {0}".format(basedir))
        tag = "vflush"
        for i in range(1, self.nfiles + 1):
            Utils.do_cmd("touch {0}/input_{1}.root".format(basedir, i))

        dummy = CondorTask(
            sample=DirectorySample(
                location=basedir,
                globber="*.root",
                dataset="/test/test/TEST",
            ),
            open_dataset=True,
            files_per_output=self.files_per_job,
            cmssw_version=self.cmssw,
            tag=tag,
        )

        self.assertEqual(len(dummy.get_outputs()),
                         (self.nfiles // self.files_per_job))
        dummy.flush()
        self.assertEqual(len(dummy.get_outputs()),
                         (self.nfiles // self.files_per_job + 1))
Пример #9
0
def submit(which):
    total_summary = {}

    extra_requirements = "true"

    tag = "v0_noFilter"
    pdname = "HVNoFilter"
    events_per_point = int(1E4)
    events_per_job = int(100)
    cfgsDir = "psets_gensim_noFilter/"
    modelsFile = cfgsDir + "/models.txt"
    df = pd.read_csv(modelsFile)
    for year in ["2016", "2017", "2018"]:
        for iterr, row in df.iterrows():

            # fmass = float(mass)
            # mass = str(mass).replace(".","p")

            epp = int(events_per_point)

            reqname = "noFilter_m{}{}_ctau{}_xi_{}_{}_{}".format(
                row.portal, row.mass, row.ctau, row.xi, tag, year)
            njobs = epp // events_per_job
            sample = DummySample(
                dataset="/{}/params_{}_m_{}_ctau_{}mm_xi_{}_{}/LLPNTUPLE".
                format(pdname, row.portal, row.mass, row.ctau * 10, row.xi,
                       year),
                N=njobs,
                nevents=epp)
            task = CondorTask(
                sample=sample,
                output_name="output.root",
                executable="executables/condor_executable_{}.sh".format(which),
                tarfile="package_{}.tar.xz".format(year),
                open_dataset=True,
                files_per_output=1,
                condor_submit_params={
                    "classads": [
                        ["param_mass", row.mass],
                        ["param_ctau", row.ctau],
                        ["param_xi", str(row.xi).replace(".", "p")],
                        ["param_portal", row.portal],
                        ["param_year", year],
                        ["param_nevents", events_per_job],
                        ["metis_extraargs", ""],
                        ["JobBatchName", reqname],
                    ],
                    "requirements_line":
                    'Requirements = ((HAS_SINGULARITY=?=True) && (HAS_CVMFS_cms_cern_ch =?= true) && {extra_requirements})'
                    .format(extra_requirements=extra_requirements),
                },
                tag=tag,
                recopy_inputs=True)
            task.process()
            total_summary[
                task.get_sample().get_datasetname()] = task.get_task_summary()

    StatsParser(data=total_summary,
                webdir="~/public_html/dump/metis_test/").do()
Пример #10
0
def test2():
    dataset_names = [
        # "/TT_TuneCUETP8M2T4_13TeV-powheg-pythia8/RunIISummer17MiniAOD-92X_upgrade2017_realistic_v10_ext1-v1/MINIAODSIM",
        "/Dummy_test_StopBabyMaker_v25/CMS4",
    ]

    # Make a base directory
    basedir = "/hadoop/cms/store/user/{0}/metis_test/example/".format(
        os.getenv("USER"))
    MutableFile(basedir).touch()

    # Make a directory sample, giving it the location and a dataset name for bookkeeping purposes
    # The globber must be customized (by default, it is *.root) in order to pick up the text files
    ds = DirectorySample(location=basedir,
                         dataset="/TEST/Examplev1/TEST",
                         globber="*.txt")

    # Make a CondorTask (3 in total, one for each input)
    task = CondorTask(
        sample=ds,
        files_per_output=1,
        tag="v0",
        output_name="ttbar_powheg_pythia8_92X.root",
        executable="condor_executable.sh",
        cmssw_version="CMSSW_9_3_1",
        scram_arch="slc6_amd64_gcc700",
        arguments="testarg1",
        tarfile="input.tar.gz",
        condor_submit_params={"sites": "UAF,T2_US_UCSD,UCSB"},
        no_load_from_backup=
        True,  # for the purpose of the example, don't use a backup
    )
    # do_cmd("rm -rf {0}".format(task.get_outputdir()))

    # Process and sleep until complete
    is_complete = False
    for t in [5.0, 5.0, 10.0, 15.0, 20.0]:
        task.process()
        print("Sleeping for {0} seconds".format(int(t)))
        time.sleep(t)
        is_complete = task.complete()
        if is_complete: break

    # If it's complete, make a dummy sample out of the output directory
    # in order to pick up the files. Then cat out the contents and sum
    # them up. This should be 3*2*10 = 100
    if is_complete:
        print("Job completed! Checking outputs...")
        outsamp = DirectorySample(location=task.get_outputdir(),
                                  dataset="/Blah/blah/BLAH",
                                  globber="*.txt")
        tot = 0
        for f in outsamp.get_files():
            mf = MutableFile(f.get_name())
            tot += int(mf.cat())
        print("It looks like we found 3*2*10 = {0}".format(tot))
Пример #11
0
def submit():

    requests = {
        #'TTWJetsToLNuEWK_5f_NLO':       '/hadoop/cms/store/user/dspitzba/tW_scattering/gridpacks/TTWJetsToLNuEWK_5f_NLO_slc6_amd64_gcc630_CMSSW_9_3_16_tarball_retired.tar.xz', # that's the SM point, but using the SMEFT model. No lepton filtering, so name is actually confusing
        #'TTWJetsToLNuEWK_5f_NLO_v2':    '/hadoop/cms/store/user/dspitzba/tW_scattering/gridpacks/TTWJetsToLNuEWK_5f_NLO_slc7_amd64_gcc730_CMSSW_9_3_16_tarball.tar.xz', # that's the actual SM
        #'TTWplusJetsToLNuEWK_5f_NLO_v2':    '/hadoop/cms/store/user/dspitzba/tW_scattering/gridpacks/TTWplusJetsToLNuEWK_5f_NLO_slc7_amd64_gcc730_CMSSW_9_3_16_tarball.tar.xz', # that's the actual SM
        #'TTWminusJetsToLNuEWK_5f_NLO_v2':    '/hadoop/cms/store/user/dspitzba/tW_scattering/gridpacks/TTWminusJetsToLNuEWK_5f_NLO_slc7_amd64_gcc730_CMSSW_9_3_16_tarball.tar.xz', # that's the actual SM
        #'TTWJetsToLNuEWK_5f_EFT_myNLO_full':    '/hadoop/cms/store/user/dspitzba/tW_scattering/gridpacks/TTWJetsToLNuEWK_5f_EFT_myNLO_cpt8_slc6_amd64_gcc630_CMSSW_9_3_16_tarball.tar.xz', # one of the BSM points
        #'TTWJetsToLNuEWK_5f_EFT_mix_myNLO_full':    '/hadoop/cms/store/user/dspitzba/tW_scattering/gridpacks/TTWJetsToLNuEWK_5f_EFT_myNLO_slc6_amd64_gcc630_CMSSW_9_3_16_tarball.tar.xz',  # EFT mix
        'TTWJetsToLNuEWK_5f_EFT_cpq3_4_myNLO_full':    '/hadoop/cms/store/user/dspitzba/tW_scattering/gridpacks//TTWJetsToLNuEWK_5f_EFT_myNLO_cpq3_4_slc7_amd64_gcc730_CMSSW_9_3_16_tarball.tar.xz',  # C_pq3 = 4
    }

    total_summary = {}

    extra_requirements = "true"

    tag = "v4"
    events_per_point = 500000 # produced 500k events before
    events_per_job = 2000 # up to 2000 works
    #events_per_point = 50
    #events_per_job = 10
    njobs = int(events_per_point)//events_per_job

    for reqname in requests:
        gridpack = requests[reqname]

        #reqname = "TTWJetsToLNuEWK_5f_EFT_myNLO"
        #gridpack = '/hadoop/cms/store/user/dspitzba/tW_scattering/gridpacks/TTWJetsToLNuEWK_5f_EFT_myNLO_slc6_amd64_gcc630_CMSSW_9_3_16_tarball.tar.xz'

        task = CondorTask(
                sample = DummySample(dataset="/%s/RunIIAutumn18/NANO"%reqname,N=njobs,nevents=int(events_per_point)),
                output_name = "nanoAOD.root",
                executable = "executables/condor_executable_Autumn18.sh",
                tarfile = "package.tar.gz",
                #scram_arch = "slc7_amd64_gcc630",
                open_dataset = False,
                files_per_output = 1,
                arguments = gridpack,
                condor_submit_params = {
                    "sites":"T2_US_UCSD", # 
                    "classads": [
                        ["param_nevents",events_per_job],
                        ["metis_extraargs",""],
                        ["JobBatchName",reqname],
                        #["SingularityImage", "/cvmfs/singularity.opensciencegrid.org/cmssw/cms:rhel6-m202006"],
                        ],
                    "requirements_line": 'Requirements = (HAS_SINGULARITY=?=True)'  # && (HAS_CVMFS_cms_cern_ch =?= true) && {extra_requirements})'.format(extra_requirements=extra_requirements),
                    },
                tag = tag,
                min_completion_fraction = 0.90,
                )

        task.process()
        total_summary[task.get_sample().get_datasetname()] = task.get_task_summary()

        StatsParser(data=total_summary, webdir="~/public_html/dump/tW_gen/").do()
Пример #12
0
def get_tasks(infos):
    tasks = []
    for info in infos:
        location = info["location"]
        dataset = info["dataset"]
        isdata = info["isdata"]
        open_dataset = info.get("open_dataset", False)
        tag = info["tag"]
        extra_args = info.get("extra_args", "")
        kwargs = {}
        if isdata:
            kwargs["MB_per_output"] = (4000
                                       if "skim1cm" in extra_args else 1000)
            batchname = dataset.split("_", 1)[-1].split("/")[0] + "_" + tag
        else:
            kwargs["files_per_output"] = 200
            batchname = "_".join(
                dataset.split("params_", 1)[1].split("/", 1)[0].split("_")[:2]
                + [tag])
        task = CondorTask(
            sample=DirectorySample(location=location, dataset=dataset),
            open_dataset=open_dataset,
            flush=True,
            output_name="output.root",
            executable="executables/scouting_exe.sh",
            tarfile="package.tar.gz",
            condor_submit_params={
                "container":
                "/cvmfs/singularity.opensciencegrid.org/cmssw/cms:rhel6-m202006",
                "sites":
                "T2_US_UCSD",
                "classads": [
                    ["metis_extraargs", extra_args],
                    ["JobBatchName", batchname],
                ],
                "requirements_line":
                'Requirements = ((HAS_SINGULARITY=?=True) && {extra_requirements})'
                .format(extra_requirements=extra_requirements),
            },
            cmssw_version="CMSSW_10_2_5",
            scram_arch="slc6_amd64_gcc700",
            tag=tag,
            **kwargs)
        tasks.append(task)
    return tasks
Пример #13
0
    def test_full(self):
        """
        Touch a root file ("input")
        Submit condor jobs to touch output files for each input file
        and copy them to hadoop
        Jobs get submitted to local universe for speed reasons
        Check output to make sure job completed
        """

        njobs = 2
        cmssw = "CMSSW_8_0_21"
        basedir = "/tmp/{0}/metis/condortask_testfull/".format(
            os.getenv("USER"))
        Utils.do_cmd("mkdir -p {0}".format(basedir))
        tag = "vfull"
        for i in range(1, njobs + 1):
            Utils.do_cmd("touch {0}/input_{1}.root".format(basedir, i))

        logging.getLogger("logger_metis").disabled = True
        dummy = CondorTask(
            sample=DirectorySample(
                location=basedir,
                globber="*.root",
                dataset="/test/test/TEST",
            ),
            open_dataset=False,
            files_per_output=1,
            cmssw_version=cmssw,
            executable=Utils.metis_base() +
            "metis/executables/condor_test_exe.sh",
            tag=tag,
            condor_submit_params={"universe": "local"},
            no_load_from_backup=True,
        )

        # clean up previous directory
        Utils.do_cmd("rm -rf {0}".format(dummy.get_outputdir()))

        is_complete = False
        for t in [1.0, 1.0, 2.0, 3.0, 5.0, 10.0, 20.0]:
            dummy.process()
            time.sleep(t)
            is_complete = dummy.complete()
            if is_complete: break

        self.assertEquals(is_complete, True)
        self.assertEqual(njobs, len(glob.glob(dummy.get_outputdir() + "/*")))
Пример #14
0
def submit():

    requests = {
        'TTWJetsToLNuEWK_5f_EFT_myNLO': '/hadoop/cms/store/user/dspitzba/tW_scattering/gridpacks/TTWJetsToLNuEWK_5f_EFT_myNLO_slc6_amd64_gcc630_CMSSW_9_3_16_tarball.tar.xz', # that's EFT
        'TTWJetsToLNuEWK_5f_EFT_myNLO_cpt8': '/hadoop/cms/store/user/dspitzba/tW_scattering/gridpacks/TTWJetsToLNuEWK_5f_EFT_myNLO_cpt8_slc6_amd64_gcc630_CMSSW_9_3_16_tarball.tar.xz', # that's EFT
        'TTWJetsToLNuEWK_5f_NLO':       '/hadoop/cms/store/user/dspitzba/tW_scattering/gridpacks/TTWJetsToLNuEWK_5f_NLO_slc6_amd64_gcc630_CMSSW_9_3_16_tarball.tar.xz', # that's the SM
    }

    total_summary = {}

    extra_requirements = "true"

    tag = "v1"
    events_per_point = 500000
    events_per_job = 10000
    #events_per_point = 500
    #events_per_job = 100
    njobs = int(events_per_point)//events_per_job

    for reqname in requests:
        gridpack = requests[reqname]

        #reqname = "TTWJetsToLNuEWK_5f_EFT_myNLO"
        #gridpack = '/hadoop/cms/store/user/dspitzba/tW_scattering/gridpacks/TTWJetsToLNuEWK_5f_EFT_myNLO_slc6_amd64_gcc630_CMSSW_9_3_16_tarball.tar.xz'

        task = CondorTask(
                sample = DummySample(dataset="/%s/RunIIAutumn18/NANOGEN"%reqname,N=njobs,nevents=int(events_per_point)),
                output_name = "output.root",
                executable = "executables/condor_executable.sh",
                tarfile = "package.tar.gz",
                open_dataset = False,
                files_per_output = 1,
                arguments = gridpack,
                condor_submit_params = {
                    "sites":"T2_US_UCSD", # 
                    "classads": [
                        ["param_nevents",events_per_job],
                        ["metis_extraargs",""],
                        ["JobBatchName",reqname],
                        ],
                    "requirements_line": 'Requirements = ((HAS_SINGULARITY=?=True) && (HAS_CVMFS_cms_cern_ch =?= true) && {extra_requirements})'.format(extra_requirements=extra_requirements),
                    },
                tag = tag,
                )

        task.process()
        total_summary[task.get_sample().get_datasetname()] = task.get_task_summary()

        StatsParser(data=total_summary, webdir="~/public_html/dump/tW_gen/").do()
Пример #15
0
def get_signal_tasks(pattern, tag, extra_args="", func_dataset=None):
    samples = []
    for location in glob.glob(pattern):
        if func_dataset is not None:
            dataset = func_dataset(location)
        else:
            taskname = location.rstrip("/").rsplit("/")[-1]
            dataset = "/{}/{}/BABY".format(
                taskname.split("_", 1)[0],
                taskname.split("_", 1)[1].split("_RAWSIM")[0],
            )
        samples.append(DirectorySample(location=location, dataset=dataset))
    tasks = []
    for sample in samples:
        task = CondorTask(
            sample=sample,
            output_name="output.root",
            executable="executables/scouting_exe.sh",
            tarfile="package.tar.gz",
            files_per_output=int(1e5),
            condor_submit_params={
                "sites":
                "T2_US_UCSD",
                "classads": [
                    ["metis_extraargs", extra_args],
                    [
                        "JobBatchName",
                        sample.get_datasetname().split("/")[2].replace(
                            "params_", "")
                    ],
                ],
                "requirements_line":
                'Requirements = ((HAS_SINGULARITY=?=True) && (HAS_CVMFS_cms_cern_ch =?= true) && {extra_requirements})'
                .format(extra_requirements=extra_requirements),
            },
            cmssw_version="CMSSW_10_2_5",
            scram_arch="slc6_amd64_gcc700",
            tag=tag,
        )
        tasks.append(task)
    return tasks
Пример #16
0
def get_bg_tasks(tag, extra_args=""):
    samples = [
        # DBSSample(dataset="/JpsiToMuMu_JpsiPt8_TuneCP5_13TeV-pythia8/RunIIAutumn18DRPremix-102X_upgrade2018_realistic_v15-v1/AODSIM")
        DBSSample(
            dataset=
            "/BuToKJpsi_ToMuMu_MuFilter_SoftQCDnonD_TuneCP5_13TeV-pythia8-evtgen/RunIIAutumn18DR-PUPoissonAve20_102X_upgrade2018_realistic_v15-v2/AODSIM"
        )
    ]
    tasks = []
    for sample in samples:
        task = CondorTask(
            sample=sample,
            output_name="output.root",
            executable="executables/scouting_exe.sh",
            tarfile="package.tar.gz",
            events_per_output=500e3,
            condor_submit_params={
                "sites":
                "T2_US_UCSD",
                "classads": [
                    ["metis_extraargs", extra_args],
                    [
                        "JobBatchName",
                        sample.get_datasetname().split("/")[1].split("_")[0] +
                        "_" + tag
                    ],
                ],
                "requirements_line":
                'Requirements = ((HAS_SINGULARITY=?=True) && (HAS_CVMFS_cms_cern_ch =?= true) && {extra_requirements})'
                .format(extra_requirements=extra_requirements),
            },
            cmssw_version="CMSSW_10_2_5",
            scram_arch="slc6_amd64_gcc700",
            tag=tag,
        )
        tasks.append(task)
    return tasks
            "/TTWJetsToLNu_TuneCP5_PSweights_13TeV-amcatnloFXFX-madspin-pythia8/RunIISummer16NanoAODv6-PUMoriond17_Nano25Oct2019_102X_mcRun2_asymptotic_v7-v1/NANOAODSIM" : "ttwlv",
            "/TTZToLLNuNu_M-10_TuneCP5_PSweights_13TeV-amcatnlo-pythia8/RunIISummer16NanoAODv6-PUMoriond17_Nano25Oct2019_102X_mcRun2_asymptotic_v7-v1/NANOAODSIM"         : "ttzllvv",
            "/ttHTobb_ttToSemiLep_M125_TuneCP5_13TeV-powheg-pythia8/RunIISummer16NanoAODv6-PUMoriond17_Nano25Oct2019_102X_mcRun2_asymptotic_v7-v1/NANOAODSIM"             : "tthbb",
            "/WpWpJJ_EWK-QCD_TuneCUETP8M1_13TeV-madgraph-pythia8/RunIISummer16NanoAODv6-PUMoriond17_Nano25Oct2019_102X_mcRun2_asymptotic_v7-v1/NANOAODSIM"                : "ssww",
            "/WZTo3LNu_TuneCUETP8M1_13TeV-powheg-pythia8/RunIISummer16NanoAODv6-PUMoriond17_Nano25Oct2019_102X_mcRun2_asymptotic_v7-v1/NANOAODSIM"                        : "wz3lv",

            }

    # submission tag
    tag = "v8"

    for dsname, shortname in sample_map.items():
        task = CondorTask(
                sample = DBSSample(
                    dataset=dsname,
                    # tag="CMS4_V09-04-13", # if not specified, get latest CMS4 tag
                    ),
                files_per_output = 1,
                output_name = "output.root",
                tag = tag,
                condor_submit_params = {"sites": "T2_US_UCSD", "use_xrootd":True},
                cmssw_version = "CMSSW_10_5_0",
                input_executable = "condor_executable_metis.sh", # your condor executable here
                tarfile = "/nfs-7/userdata/phchang/VBSHWWNanoSkimmer_v1.package.tar.gz", # your tarfile with assorted goodies here
                special_dir = "VBSHWWNanoSkim/{}".format(tag), # output files into /hadoop/cms/store/<user>/<special_dir>
        )
        # Straightforward logic
        if not task.complete():
            task.process()
        break
Пример #18
0
    # submission tag
    tag = "fcnc_v10_SRonly_11june2021"

    task_list = []
    for sample in samples:
        task = CondorTask(
            sample=sample,
            files_per_output=1,
            output_name="output.root",
            tag=tag,
            condor_submit_params={
                "sites": "T2_US_UCSD",
                "use_xrootd": True
            },
            cmssw_version="CMSSW_10_2_9",
            input_executable=
            "condor_executable_metis.sh",  # your condor executable here
            # tarfile = "/hadoop/cms/store/user/ksalyer/FCNC_NanoSkimmer_v2.package.tar.gz", # your tarfile with assorted goodies here
            tarfile=
            "/hadoop/cms/store/user/dspitzba/FCNC/FCNC_NanoSkimmer_v10_SROnly.package.tar.gz",
            # tarfile = "/nfs-7/userdata/phchang/VBSHWWNanoSkimmer_v1.package.tar.gz",
            special_dir="FCNC_NanoSkim/{}".format(
                tag
            ),  # output files into /hadoop/cms/store/<user>/<special_dir>
            # special_dir = "VBSHWWNanoSkim/{}".format(tag), # output files into /hadoop/cms/store/<user>/<special_dir>
        )
        task_list.append(task)
        # Straightforward logic
        # if not task.complete():
        # task.process()
    for i in range(100):
Пример #19
0
    # Loop through central samples
    for ds, fpo, args in dsdefs[:]:
        if (job_filter != "") and (args not in job_filter): continue
        sample = DBSSample(dataset=ds)
        print(ds, args)

        task = CondorTask(
            sample=sample,
            open_dataset=False,
            files_per_output=fpo,
            output_name="test_rawreco.root",
            tag=job_tag,
            cmssw_version=cmssw_ver,
            executable=exec_path,
            tarfile="./package.tar.gz",
            condor_submit_params={
                "sites":
                "T2_US_UCSD",
                "container":
                "/cvmfs/singularity.opensciencegrid.org/cmssw/cms:rhel7-m20201010"
            },
            #condor_submit_params = {"sites" : "T2_US_UCSD,T2_US_CALTECH,T2_US_MIT,T2_US_WISCONSIN,T2_US_Nebraska,T2_US_Purdue,T2_US_Vanderbilt,T2_US_Florida"},
            special_dir=hadoop_path,
            arguments=args.replace(" ", "|"))
        task.process()
        allcomplete = allcomplete and task.complete()
        # save some information for the dashboard
        total_summary[ds] = task.get_task_summary()
        with open("summary.json", "w") as f_out:
            json.dump(total_summary, f_out, indent=4, sort_keys=True)
Пример #20
0
total_summary = {}
while True:
    allcomplete = True
    for ds,loc,fpo in dslocs:
	print(loc)
        sample = DirectorySample( dataset=ds, location=loc )
        files = [f.name for f in sample.get_files()]
        sample.set_files([f.name for f in sample.get_files() if "/cms/store/user/bemarsh/flashgg/MicroAOD/forHualin_2017/GJet_Pt-40toInf_DoubleEMEnriched_MGG-80toInf_TuneCP5_13TeV_Pythia8_RunIIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14-v2_MINIAODSIM_forHualin_2017/test_skim_630.root" not in f.name])
        #print [f.name for f in sample.get_files()]
        task = CondorTask(
                sample = sample,
                open_dataset = False,
                flush = True,
                files_per_output = fpo,
                output_name = "merged_ntuple.root",
                tag = job_tag,
                cmssw_version = cmssw_ver, # doesn't do anything
                executable = exec_path,
                tarfile = tar_path,
                condor_submit_params = {"sites" : "T2_US_UCSD"},
                special_dir = hadoop_path
                )
        task.process()
	if not task.complete():
          allcomplete = False
        # save some information for the dashboard
        total_summary[ds] = task.get_task_summary()
    # parse the total summary and write out the dashboard
    #StatsParser(data=total_summary, webdir="~/public_html/dump/ttH_BabyMaker/").do()
    os.system("chmod -R 755 ~/public_html/dump/ttH_BabyMaker")
    if allcomplete:
Пример #21
0
        fpo = jobs["processes"][pid]["filesPerOutput"]
        for ds in jobs["processes"][pid]["datasets"]:
            args = getArgs(pid, ds)
            dsdefs.append((ds, fpo, args))

total_summary = {}
while True:
    allcomplete = True
    for ds, fpo, args in dsdefs[:]:
        sample = DBSSample(dataset=ds)
        task = CondorTask(sample=sample,
                          open_dataset=False,
                          files_per_output=fpo,
                          output_name="test_skim.root"
                          if DOSKIM else "myMicroAODOutputFile.root",
                          tag=job_tag,
                          executable=exec_path,
                          tarfile=tar_path,
                          condor_submit_params={"sites": "T2_US_UCSD"},
                          special_dir=hadoop_path,
                          arguments=args.replace(" ", "|"))
        task.process()
        allcomplete = allcomplete and task.complete()
        # save some information for the dashboard
        total_summary[ds] = task.get_task_summary()
    # parse the total summary and write out the dashboard
    StatsParser(data=total_summary,
                webdir="~/public_html/dump/metis_microaod_80x/").do()
    os.system("chmod -R 755 ~/public_html/dump/metis_microaod_80x")
    if allcomplete:
        print ""
Пример #22
0
    tag = "v15"
    tarfile = "/nfs-7/userdata/phchang/VBSHWWNanoSkimmer_v8_CMSSW_10_2_13_slc7_amd64_gcc700.package.tar.gz"  # >= 2 leptons of any charge (35 GeV each) + njets_20 >= 4

    task_summary = {}

    for sample in samples:
        task = CondorTask(
            sample=sample,
            files_per_output=1,
            output_name="output.root",
            tag=tag,
            # condor_submit_params = {"sites": "T2_US_UCSD", "use_xrootd":True, "classads": [ ["metis_extraargs", "fetch_nano"] ]},
            condor_submit_params={
                "sites": "T2_US_UCSD",
                "use_xrootd": True
            },
            cmssw_version="CMSSW_10_2_13",
            scram_arch="slc7_amd64_gcc700",
            input_executable=
            "condor_executable_metis.sh",  # your condor executable here
            tarfile=tarfile,  # your tarfile with assorted goodies here
            special_dir="VBSHWWNanoSkim/{}".format(
                tag
            ),  # output files into /hadoop/cms/store/<user>/<special_dir>
        )
        # Straightforward logic
        if not task.complete():
            task.process()

        # Set task summary
        task_summary[
Пример #23
0
    # submission tag
    tag = "v1_PMtest"

    merged_dir = "/nfs-7/userdata/{}/tupler_babies/merged/FT/{}/output/".format(
        os.getenv("USER"), tag)
    for dsname, shortname in sample_map.items():
        task = CondorTask(
            sample=SNTSample(
                dataset=dsname,
                # tag="CMS4_V09-04-13", # if not specified, get latest CMS4 tag
            ),
            files_per_output=split_func(dsname),
            output_name="output.root",
            tag=tag,
            condor_submit_params={"use_xrootd": True},
            cmssw_version="CMSSW_9_2_8",
            input_executable=
            "inputs/condor_executable_metis.sh",  # your condor executable here
            tarfile=
            "inputs/package.tar.xz",  # your tarfile with assorted goodies here
            special_dir=
            "FTbabies/",  # output files into /hadoop/cms/store/<user>/<special_dir>
        )
        # When babymaking task finishes, fire off a task that takes outputs and merges them locally (hadd)
        # into a file that ends up on nfs (specified by `merged_dir` above)
        merge_task = LocalMergeTask(input_filenames=task.get_outputs(),
                                    output_filename="{}/{}.root".format(
                                        merged_dir, shortname))
        # Straightforward logic
        if not task.complete():
Пример #24
0
total_summary = {}
first_run = False
while True:
    allcomplete = True
    for sample, info in local_samples.items():
        dataset = sample
        year = info["year"]
        metis_sample = DirectorySample(dataset = dataset, location = info["location"]) 

        task = CondorTask(
                sample = metis_sample,
                open_dataset = False,
                flush = True,
                files_per_output = info["fpo"],
                output_name = "merged_ntuple.root",
                tag = job_tag,
                cmssw_version = cmssw_ver,
                executable = "condor_exe_%s.sh" % job_tag if (args.use_xrdcp or args.use_gridftp or args.use_wget) else "condor_exe.sh",
                tarfile = "empty" if (args.use_xrdcp or args.use_gridftp or args.use_wget) else tar_path,
                condor_submit_params = {"sites" : "T2_US_UCSD"},
                special_dir = hadoop_path,
                arguments = conds_dict[year]
        )
        task.process()
        if not task.complete():
            allcomplete = False
        total_summary[dataset] = task.get_task_summary()

    if not args.local_only:
        for sample in samples.keys():
            if skip(sample):
                continue
Пример #25
0
 skip_tail = "/SMS" in dsname
 # skip_tail = False
 task = CondorTask(
     sample=sample,
     files_per_output=split_func(dsname),
     output_name="output.root",
     tag=tag,
     min_completion_fraction=0.90 if skip_tail else 1.0,
     condor_submit_params={
         # "sites":"T2_US_UCSD,UCSB",  # I/O is hella faster
         "sites":
         "T2_US_UCSD",  # I/O is hella faster
         # "sites":"UAF",  # I/O is hella faster
         "classads": [
             ["metis_extraargs", extra_args],
             [
                 "JobBatchName",
                 "FT_{}_{}".format(year, shortname)
             ],
         ],
         # "classads": [ ["metis_extraargs","--ignorebadfiles"], ],
     },
     cmssw_version="CMSSW_9_4_9",
     scram_arch="slc6_amd64_gcc630",
     input_executable="inputs/condor_executable_metis.sh",
     tarfile="inputs/package.tar.xz",
     special_dir="FTbabies/{}/".format(tag),
     recopy_inputs=False,
 )
 merge_task = LocalMergeTask(
     input_filenames=task.get_outputs(),
Пример #26
0
 excltag = "CMS4_V09*"
 samptyp = "1" if "SMS" in babyname else "2" if (
     "GJets" in dsname or "Photon" in dsname
     or "Gamma" in dsname) else "0"
 extrarg = ""
 # extrarg = " topcandTree=topcands" if "TTJets" in dsname else ""
 maker_task = CondorTask(
     sample=SNTSample(dataset=dsname,
                      tag=cms3tag,
                      exclude_tag_pattern=excltag),
     files_per_output=20
     if "data" in babyname else 1 if "SMS" in babyname else 2,
     tag=tag,
     outdir_name="stopBaby_" + babyname,
     output_name="stopbaby.root",
     executable="condor_executable.sh",
     cmssw_version=cmsswver,
     scram_arch=scramarch,
     arguments=samptyp + extrarg,
     tarfile=tarfile,
     # condor_submit_params = {"sites": "T2_US_UCSD"},
     # condor_submit_params = {"sites": "UAF"},
     condor_submit_params={"use_xrootd": True},
     # max_jobs = 1,      # temporary for submission test
     no_load_from_backup=True,
 )
 merge_task = CondorTask(
     sample=DirectorySample(
         dataset="merge_" + babyname,
         location=maker_task.get_outputdir(),
     ),
     # open_dataset = True, flush = True,
Пример #27
0
    lumiWeightString = 1 if (
        isData or samples[s]['name'].count('TChiWH')
    ) else 1000 * samples[s]['xsec'] / samples[s]['sumWeight']
    print("- found sumWeight %s and x-sec %s" %
          (samples[s]['sumWeight'], samples[s]['xsec']))

    maker_task = CondorTask(
        sample=sample,
        executable="executable.sh",
        arguments=" ".join([
            str(x) for x in [
                tag, lumiWeightString, 1 if isData else 0, year, era,
                1 if isFastSim else 0, args.skim, args.user
            ]
        ]),
        files_per_output=int(mergeFactor),
        output_dir=os.path.join(outDir, samples[s]['name']),
        output_name="nanoSkim.root",
        output_is_tree=True,
        tag=tag,
        condor_submit_params={"sites": "T2_US_UCSD,UAF"},
        cmssw_version="CMSSW_10_2_9",
        scram_arch="slc6_amd64_gcc700",
        min_completion_fraction=1.00,
    )

    maker_tasks.append(maker_task)

if not args.dryRun:
    for i in range(100):
        total_summary = {}
Пример #28
0
    mt2home = os.path.dirname(os.path.realpath(__file__))

    # submission tag
    tag = "V00-10-05_2016fullYear_17July2018"
    merged_dir = "/nfs-6/userdata/mt2/{}/".format(tag)
    tasks = {}
    merge_tasks = {}
    for dsname,shortname in sample_map.items():
        task = CondorTask(
            sample = SNTSample(
                dataset=dsname,
                # tag="CMS4_V09-04-13", # uncomment this and set it to the desired tag, otherwise Metis will run on the most recent version
                ),
            files_per_output = 1,
            output_name = "output.root",
            tag = tag,
            condor_submit_params = {"use_xrootd":True},
            cmssw_version = "CMSSW_9_4_9",
            input_executable = mt2home+"/metis_executable.sh", # your condor executable here
            tarfile = mt2home+"/job_input/input.tar.xz", # your tarfile with assorted goodies here
            special_dir = "mt2babies/{}".format(tag), # output files into /hadoop/cms/store/<user>/<special_dir>
            )
        tasks[dsname] = task
    # When babymaking task finishes, fire off a task that takes outputs and merges them locally (hadd)
    # into a file that ends up on nfs (specified by `merged_dir` above)
    for dsname,shortname in merge_map.items():
        merge_task = LocalMergeTask(
            input_filenames=task.get_outputs(),
            output_filename="{}/{}.root".format(merged_dir,shortname)
            )
        merge_tasks[dsname] = merge_task
Пример #29
0
    for dsname, samploc in cms4_samples.items():
        cmsswver = "CMSSW_10_1_0"
        scramarch = "slc6_amd64_gcc700"
        tarfile = "tarfiles/input_v29_10.tar.gz"
        tag = "v29_10"
        maker_task = CondorTask(
            sample = DirectorySample(
                dataset=dsname,
                location=samploc,
            ),
            # open_dataset = True,
            files_per_output = 1,
            tag = tag,
            cmssw_version = cmsswver,
            scram_arch = scramarch,
            tarfile = tarfile,
            executable = "condor_executable.sh",
            outdir_name = "stopBaby_" + dsname,
            output_name = "stopbaby.root",
            arguments = "1" if "SMS" in dsname else "0", # isFastsim
            # condor_submit_params = {"sites": "UAF,T2_US_UCSD,UCSB"},
            condor_submit_params = {"sites": "T2_US_UCSD,UCSB"},
            # condor_submit_params = {"use_xrootd": True},
            # no_load_from_backup = True,
        )
        merge_task = CondorTask(
            sample = DirectorySample(
                dataset="merge_"+dsname,
                location=maker_task.get_outputdir(),
            ),
            # open_dataset = True, flush = True,
Пример #30
0
    # Make a CondorTask (3 in total, one for each input)
    maker_tasks = []
    merge_tasks = []

    for dsname in dataset_names:
        cmsswver = "CMSSW_9_4_0_pre2"
        scramarch = "slc6_amd64_gcc700"
        tarfile = "input.tar.gz"
        tag = "v24_3"
        maker_task = CondorTask(
                sample = SNTSample(dataset=dsname),
                files_per_output = 1,
                tag = tag,
                outdir_name = "stopBaby_" + dsname[5:34].strip("_"),
                output_name = "stopbaby.root",
                executable = "condor_executable.sh",
                cmssw_version = cmsswver,
                scram_arch = scramarch,
                arguments = "1", # isFastsim
                tarfile = tarfile,
                condor_submit_params = {"sites": "UAF,T2_US_UCSD"},
        )
        merge_task = CondorTask(
                sample = DirectorySample(
                    dataset=dsname.replace("MINIAODSIM","MERGE"),
                    location=maker_task.get_outputdir(),
                ),
                executable = "ProjectMetis/metis/executables/condor_hadd.sh",
                open_dataset = False,
                files_per_output = 12,
                outdir_name = "merged_stopBaby_" + dsname[5:34].strip("_"),
Пример #31
0
def main():

    main_dir = os.path.dirname(os.path.abspath(__file__))
    metis_path = os.path.dirname(os.path.dirname(metis.__file__))
    exec_path = main_dir + "/metis.sh"
    hadoop_path = "metis/"
    metis_dashboard_path = os.path.join(metis_path, "dashboard")
    job_tag = ""

    total_summary = {}

    os.chdir(metis_path)

    while True:

        masspoints = [125]

        tasks = []

        for mass in masspoints:

            miniaod = CondorTask(
                    ## Dummy sample as no input is needed in generating the events
                    #sample = DummySample(
                    #    N=3000,
                    #    dataset="/VHToNonbb_M125_13TeV_amcatnloFXFX_madspin_pythia8/PRIVATE-RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6_ext1-v1/MINIAODSIM"
                    #    ),
                    # Dummy sample as no input is needed in generating the events
                    sample = DummySample(
                        N=3500,
                        dataset="/WWW_4F_TuneCP5_13TeV-amcatnlo-pythia8/PRIVATE-RunIIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14-v1/MINIAODSIM"
                        ),
                    tag                  = job_tag,
                    executable           = exec_path,
                    special_dir          = hadoop_path + "/private_miniaod",
                    output_name          = "output.root",
                    files_per_output     = 1,
                    condor_submit_params = {"sites" : "T2_US_UCSD"},
                    open_dataset         = True,
                    flush                = True,
                    #no_load_from_backup  = True,
                    )

            tasks.extend([miniaod])

        all_tasks_complete = True
        for task in tasks:
            task.process()
            summary = task.get_task_summary()
            total_summary[task.get_sample().get_datasetname()] = summary
            all_tasks_complete = all_tasks_complete and task.complete()

        # parse the total summary and write out the dashboard
        StatsParser(data=total_summary, webdir=metis_dashboard_path).do()

        # Print msummary table so I don't have to load up website
        os.system("msummary -v0 -p ext2 | tee summary.txt")
        os.system("chmod -R 755 {}".format(metis_dashboard_path))

        # If all done exit the loop
        if all_tasks_complete:
            print ""
            print "Job={} finished".format(job_tag)
            print ""
            break

        # Neat trick to not exit the script for force updating
        print 'Press Ctrl-C to force update, otherwise will sleep for 300 seconds'
        try:
            for i in range(0,300):
                sleep(1) # could use a backward counter to be preeety :)
        except KeyboardInterrupt:
            raw_input("Press Enter to force update, or Ctrl-C to quit.")
            print "Force updating..."
Пример #32
0
 child_tasks = []
 for srf in srlst:
     fname = srf.split('/')[-1]
     fdir = '/'.join(srf.split('/')[:-1])
     print(fdir, fname)
     ifile = fname.split('.')[0].split('_')[-1]
     maker_task = CondorTask(
         sample = DirectorySample(
             dataset=dsname+'_'+ifile,
             location=fdir,
             globber=fname,
         ),
         # open_dataset = True,
         files_per_output = 1,
         tag = tag,
         cmssw_version = cmsswver,
         scram_arch = scramarch,
         tarfile = tarfile,
         executable = "condor_executable.sh",
         outdir_name = "resub_"+dsname,
         output_name = "stopbaby_"+ifile+".root",
         arguments = "1" if "SMS" in dsname else "0", # isFastsim
         condor_submit_params = {"sites": "UAF,T2_US_UCSD"},
         # no_load_from_backup = True,
     )
     # print(maker_task.get_sample().get_datasetname())
     # print(maker_task.get_sample().get_files())
     # print(maker_task.get_outputdir())
     # print(maker_task.get_io_mapping())
     child_tasks.append(maker_task)
 
Пример #33
0
    #raise NotImplementedError
    isData = 1 if isData else 0
    isFast = 1 if isFast else 0

    if not dryRun:
        maker_task = CondorTask(
            sample=sample,
            #'/hadoop/cms/store/user/dspitzba/nanoAOD/TTWJetsToLNu_TuneCP5_13TeV-amcatnloFXFX-madspin-pythia8__RunIIAutumn18NanoAODv6-Nano25Oct2019_102X_upgrade2018_realistic_v20_ext1-v1/',
            # open_dataset = True, flush = True,
            executable="executable.sh",
            arguments="WHv1p2 %s %s %s" % (year, isData, isFast),
            #tarfile = "merge_scripts.tar.gz",
            files_per_output=1,
            #output_dir = os.path.join(outDir, sample.get_datasetname()),
            outdir_name="stopNano_" + s,
            output_name="stopNano.root",
            output_is_tree=True,
            # check_expectedevents = True,
            tag=tag,
            condor_submit_params={"sites": "T2_US_UCSD,UAF"},
            cmssw_version="CMSSW_10_2_9",
            scram_arch="slc6_amd64_gcc700",
            # recopy_inputs = True,
            # no_load_from_backup = True,
            min_completion_fraction=0.99,
        )

        maker_tasks.append(maker_task)

    if not dryRun:
        merge_task = CondorTask(
Пример #34
0
def submit_metis(job_tag, samples_map, sample_list=[], arguments_map="", exec_script="metis.sh", tar_files=[], hadoop_dirname="testjobs", files_per_output=1, globber="*.root", sites="T2_US_UCSD"):

    import time
    import json
    import metis

    from time import sleep

    from metis.Sample import DirectorySample
    from metis.CondorTask import CondorTask

    from metis.StatsParser import StatsParser

    import os
    import glob
    import subprocess


    # file/dir paths
    main_dir             = os.getcwd()
    metis_path           = os.path.dirname(os.path.dirname(metis.__file__))
    tar_path             = os.path.join(metis_path, "package.tar")
    tar_gz_path          = tar_path + ".gz"
    metis_dashboard_path = os.path.join(metis_path, "dashboard")
    exec_path            = os.path.join(main_dir, exec_script)
    hadoop_path          = "metis/{}/{}".format(hadoop_dirname, job_tag) # The output goes to /hadoop/cms/store/user/$USER/"hadoop_path"

    # Create tarball
    os.chdir(main_dir)
    print os.getcwd()
    print "tar -chzf {} {}".format(tar_gz_path, " ".join(tar_files))
    os.system("tar -chzf {} {}".format(tar_gz_path, " ".join(tar_files)))

    # Change directory to metis
    os.chdir(metis_path)

    total_summary = {}

    # if no sample_list is provided then we form it via the keys of the samples_map
    if len(sample_list) == 0:
        for key in samples_map:
            sample_list.append(key)

    samples_to_run = []
    for key in sample_list:
        samples_to_run.append(
                DirectorySample(
                    dataset=key,
                    location=samples_map[key],
                    globber=globber,
                    )
                )

    files_per_output_config_list = []
    if isinstance(files_per_output, dict):
        for key in sample_list:
            files_per_output_config_list.append(files_per_output[key])
    else:
        for key in sample_list:
            files_per_output_config_list.append(files_per_output)

    # Loop over datasets to submit
    while True:

        all_tasks_complete = True

        #for sample in sorted(samples):
        for index, sample in enumerate(samples_to_run):

            # define the task
            maker_task = CondorTask(
                    sample               = sample,
                    tag                  = job_tag,
                    arguments            = arguments_map[sample.get_datasetname()] if arguments_map else "",
                    executable           = exec_path,
                    tarfile              = tar_gz_path,
                    special_dir          = hadoop_path,
                    output_name          = "output.root",
                    files_per_output     = files_per_output_config_list[index],
                    condor_submit_params = {"sites" : sites},
                    open_dataset         = False,
                    flush                = True,
                    #no_load_from_backup  = True,
                    )

            # process the job (either submits, checks for resubmit, or finishes etc.)
            maker_task.process()

            # save some information for the dashboard
            total_summary["["+job_tag+"] "+maker_task.get_sample().get_datasetname()] = maker_task.get_task_summary()

            # Aggregate whether all tasks are complete
            all_tasks_complete = all_tasks_complete and maker_task.complete()


        # parse the total summary and write out the dashboard
        StatsParser(data=total_summary, webdir=metis_dashboard_path).do()

        # Print msummary table so I don't have to load up website
        os.system("msummary -r -p {} | tee summary.txt".format(job_tag))
        os.system("chmod -R 755 {}".format(metis_dashboard_path))
        os.system("chmod 644 {}/images/*".format(metis_dashboard_path))

        # If all done exit the loop
        if all_tasks_complete:
            print ""
            print "Job={} finished".format(job_tag)
            print ""
            break

        # Neat trick to not exit the script for force updating
        print 'Press Ctrl-C to force update, otherwise will sleep for 300 seconds'
        try:
            for i in range(0,60):
                sleep(1) # could use a backward counter to be preeety :)
        except KeyboardInterrupt:
            raw_input("Press Enter to force update, or Ctrl-C to quit.")
            print "Force updating..."

    os.chdir(main_dir)
Пример #35
0
     if "VHToGG" in dataset:
         print "Skipping VH for now"
         continue
     #if not ("Run2016" in dataset or "Run2017" in dataset or "Run2018" in dataset):
     #  continue
     if "ttHiggs" in dataset:
         print("Submitting jobs for: ", dataset)
     sample = DirectorySample(dataset=dataset, location=info["input_loc"])
     files = [f.name for f in sample.get_files()]
     print(len(files))
     task = CondorTask(sample=sample,
                       open_dataset=False,
                       flush=True,
                       files_per_output=info["fpo"],
                       output_name="merged_ntuple.root",
                       tag=job_tag,
                       cmssw_version=cmssw_ver,
                       executable=exec_path,
                       tarfile=tar_path,
                       condor_submit_params={"sites": "T2_US_UCSD"},
                       special_dir=hadoop_path,
                       arguments=info["meta_conditions"])
     task.process()
     if not task.complete():
         allcomplete = False
     # save some information for the dashboard
     total_summary[dataset] = task.get_task_summary()
 # parse the total summary and write out the dashboard
 StatsParser(data=total_summary,
             webdir="~/public_html/dump/ttH_BabyMaker/").do()
 os.system("chmod -R 755 ~/public_html/dump/ttH_BabyMaker")
 if allcomplete:
Пример #36
0
import os
import time

from metis.CondorTask import CondorTask
from metis.Sample import DBSSample
from metis.StatsParser import StatsParser

if not os.path.exists("inputs.tar.gz"):
    os.system("tar cvzf inputs.tar.gz looper.py")

for i in range(100):
    total_summary = {}
    for dataset in [
            "/DYJetsToLL_M-4to50_HT-100to200_TuneCP5_PSweights_13TeV-madgraphMLM-pythia8/RunIIAutumn18NanoAODv7-Nano02Apr2020_102X_upgrade2018_realistic_v21-v1/NANOAODSIM",
            ]:
        task = CondorTask(
                sample = DBSSample(dataset=dataset),
                events_per_output = 1e6,
                output_name = "output.root",
                tag = "nanotestv1",
                cmssw_version = "CMSSW_10_2_5",
                scram_arch = "slc6_amd64_gcc700",
                tarfile = "inputs.tar.gz",
                executable = "condor_nano_exe.sh",
                )
        task.process()
        total_summary[task.get_sample().get_datasetname()] = task.get_task_summary()

    StatsParser(data=total_summary, webdir="~/public_html/dump/metis_nanotest/").do()
    time.sleep(30*60)