def add_curves(ax, pressure, temperature, mixing_ratio, altitude, linewidth=1.0, LH_Tdepend=False): """ overlaying new curves of multiple soundings from profiles """ p = pressure * units('mbar') T = temperature * units('degC') q = mixing_ratio * units('kilogram/kilogram') qs = mpcalc.mixing_ratio(mpcalc.saturation_vapor_pressure(T), p) Td = mpcalc.dewpoint(mpcalc.vapor_pressure(p, q)) # dewpoint Tp = mpcalc.parcel_profile(p, T[0], Td[0]).to('degC') # parcel profile # Altitude based on the hydrostatic eq. if len(altitude) == len(pressure): # (1) altitudes for whole levels altitude = altitude * units('meter') elif len(altitude ) == 1: # (2) known altitude where the soundings was launched z_surf = altitude.copy() * units('meter') # given altitude altitude = np.zeros((np.size(T))) * units('meter') for i in range(np.size(T)): altitude[i] = mpcalc.thickness_hydrostatic( p[:i + 1], T[:i + 1]) + z_surf # Hypsometric Eq. for height else: print( '***NOTE***: the altitude at the surface is assumed 0 meter, and altitudes are derived based on the hypsometric equation' ) altitude = np.zeros( (np.size(T))) * units('meter') # surface is 0 meter for i in range(np.size(T)): altitude[i] = mpcalc.thickness_hydrostatic( p[:i + 1], T[:i + 1]) # Hypsometric Eq. for height # specific energies if LH_Tdepend == False: mse = mpcalc.moist_static_energy(altitude, T, q) mse_s = mpcalc.moist_static_energy(altitude, T, qs) dse = mpcalc.dry_static_energy(altitude, T) else: # A short course in cloud physics, Roger and Yau (1989) Lvt = (2500.8 - 2.36 * T.magnitude + 0.0016 * T.magnitude**2 - 0.00006 * T.magnitude**3) * units( 'joule/gram') # latent heat of evaporation #Lf = 2834.1 - 0.29*T - 0.004*T**2 # latent heat of fusion mse = Cp_d * T + g * altitude + Lvt * q mse_s = Cp_d * T + g * altitude + Lvt * qs dse = mpcalc.dry_static_energy(altitude, T) ax.plot(dse, p, '--k', linewidth=linewidth) ax.plot(mse, p, '--b', linewidth=linewidth) ax.plot(mse_s, p, '--r', linewidth=linewidth)
def add_curves_Wyoming(ax, datetime, station, linewidth=1.0, LH_Tdepend=False): """ overlaying new curves of multiple soundings from Wyoming datasets date: using datetime module. ex. datetime(2018,06,06) station: station name. ex. 'MFL' Miami, Florida """ from siphon.simplewebservice.wyoming import WyomingUpperAir date = datetime station = station df = WyomingUpperAir.request_data(date, station) pressure = df['pressure'].values Temp = df['temperature'].values Temp_dew = df['dewpoint'].values altitude = df['height'].values q = mpcalc.mixing_ratio( mpcalc.saturation_vapor_pressure(Temp_dew * units('degC')), pressure * units('mbar')) q = mpcalc.specific_humidity_from_mixing_ratio(q) qs = mpcalc.mixing_ratio( mpcalc.saturation_vapor_pressure(Temp * units('degC')), pressure * units('mbar')) # specific energies if LH_Tdepend == False: mse = mpcalc.moist_static_energy(altitude * units('meter'), Temp * units('degC'), q) mse_s = mpcalc.moist_static_energy(altitude * units('meter'), Temp * units('degC'), qs) dse = mpcalc.dry_static_energy(altitude * units('meter'), Temp * units('degC')) else: # A short course in cloud physics, Roger and Yau (1989) Lvt = (2500.8 - 2.36 * T.magnitude + 0.0016 * T.magnitude**2 - 0.00006 * T.magnitude**3) * units( 'joule/gram') # latent heat of evaporation #Lf = 2834.1 - 0.29*T - 0.004*T**2 # latent heat of fusion mse = Cp_d * T + g * altitude + Lvt * q mse_s = Cp_d * T + g * altitude + Lvt * qs dse = mpcalc.dry_static_energy(altitude, T) # adding curves on the main axes ax.plot(dse.magnitude, pressure, 'k', linewidth=linewidth) ax.plot(mse.magnitude, pressure, 'b', linewidth=linewidth) ax.plot(mse_s.magnitude, pressure, 'r', linewidth=linewidth)
def msed_plots(pressure, temperature, mixing_ratio, h0_std=2000, ensemble_size=20, ent_rate=np.arange(0, 2, 0.05), entrain=False): """ plotting the summarized static energy diagram with annotations and thermodynamic parameters """ p = pressure * units('mbar') T = temperature * units('degC') q = mixing_ratio * units('kilogram/kilogram') qs = mpcalc.mixing_ratio(mpcalc.saturation_vapor_pressure(T), p) Td = mpcalc.dewpoint(mpcalc.vapor_pressure(p, q)) # dewpoint Tp = mpcalc.parcel_profile(p, T[0], Td[0]).to('degC') # parcel profile # Altitude based on the hydrostatic eq. altitude = np.zeros((np.size(T))) * units('meter') # surface is 0 meter for i in range(np.size(T)): altitude[i] = mpcalc.thickness_hydrostatic( p[:i + 1], T[:i + 1]) # Hypsometric Eq. for height # Static energy calculations mse = mpcalc.moist_static_energy(altitude, T, q) mse_s = mpcalc.moist_static_energy(altitude, T, qs) dse = mpcalc.dry_static_energy(altitude, T) # Water vapor calculations p_PWtop = max(200 * units.mbar, min(p) + 1 * units.mbar) # integrating until 200mb cwv = mpcalc.precipitable_water(Td, p, top=p_PWtop) # column water vapor [mm] cwvs = mpcalc.precipitable_water( T, p, top=p_PWtop) # saturated column water vapor [mm] crh = (cwv / cwvs) * 100. # column relative humidity [%] #================================================ # plotting MSE vertical profiles fig = plt.figure(figsize=[12, 8]) ax = fig.add_axes([0.1, 0.1, 0.6, 0.8]) ax.plot(dse, p, '-k', linewidth=2) ax.plot(mse, p, '-b', linewidth=2) ax.plot(mse_s, p, '-r', linewidth=2) # mse based on different percentages of relative humidity qr = np.zeros((9, np.size(qs))) * units('kilogram/kilogram') mse_r = qr * units('joule/kilogram') # container for i in range(9): qr[i, :] = qs * 0.1 * (i + 1) mse_r[i, :] = mpcalc.moist_static_energy(altitude, T, qr[i, :]) for i in range(9): ax.plot(mse_r[i, :], p[:], '-', color='grey', linewidth=0.7) ax.text(mse_r[i, 3].magnitude / 1000 - 1, p[3].magnitude, str((i + 1) * 10)) # drawing LCL and LFC levels [lcl_pressure, lcl_temperature] = mpcalc.lcl(p[0], T[0], Td[0]) lcl_idx = np.argmin(np.abs(p.magnitude - lcl_pressure.magnitude)) [lfc_pressure, lfc_temperature] = mpcalc.lfc(p, T, Td) lfc_idx = np.argmin(np.abs(p.magnitude - lfc_pressure.magnitude)) # conserved mse of air parcel arising from 1000 hpa mse_p = np.squeeze(np.ones((1, np.size(T))) * mse[0].magnitude) # illustration of CAPE el_pressure, el_temperature = mpcalc.el(p, T, Td) # equilibrium level el_idx = np.argmin(np.abs(p.magnitude - el_pressure.magnitude)) ELps = [el_pressure.magnitude ] # Initialize an array of EL pressures for detrainment profile [CAPE, CIN] = mpcalc.cape_cin(p[:el_idx], T[:el_idx], Td[:el_idx], Tp[:el_idx]) plt.plot(mse_p, p, color='green', linewidth=2) ax.fill_betweenx(p[lcl_idx:el_idx + 1], mse_p[lcl_idx:el_idx + 1], mse_s[lcl_idx:el_idx + 1], interpolate=True, color='green', alpha='0.3') ax.fill_betweenx(p, dse, mse, color='deepskyblue', alpha='0.5') ax.set_xlabel('Specific static energies: s, h, hs [kJ kg$^{-1}$]', fontsize=14) ax.set_ylabel('Pressure [hpa]', fontsize=14) ax.set_xticks([280, 300, 320, 340, 360, 380]) ax.set_xlim([280, 390]) ax.set_ylim(1030, 120) if entrain is True: # Depict Entraining parcels # Parcel mass solves dM/dz = eps*M, solution is M = exp(eps*Z) # M=1 at ground without loss of generality # Distribution of surface parcel h offsets H0STDEV = h0_std # J/kg h0offsets = np.sort(np.random.normal( 0, H0STDEV, ensemble_size)) * units('joule/kilogram') # Distribution of entrainment rates entrainment_rates = ent_rate / (units('km')) for h0offset in h0offsets: h4ent = mse.copy() h4ent[0] += h0offset for eps in entrainment_rates: M = np.exp(eps * (altitude - altitude[0])).to('dimensionless') # dM is the mass contribution at each level, with 1 at the origin level. M[0] = 0 dM = np.gradient(M) # parcel mass is a sum of all the dM's at each level # conserved linearly-mixed variables like h are weighted averages hent = np.cumsum(dM * h4ent) / np.cumsum(dM) # Boolean for positive buoyancy, and its topmost altitude (index) where curve is clippes posboy = (hent > mse_s) posboy[0] = True # so there is always a detrainment level ELindex_ent = np.max(np.where(posboy)) # Plot the curve plt.plot(hent[0:ELindex_ent + 2], p[0:ELindex_ent + 2], linewidth=0.25, color='g') # Keep a list for a histogram plot (detrainment profile) if p[ELindex_ent].magnitude < lfc_pressure.magnitude: # buoyant parcels only ELps.append(p[ELindex_ent].magnitude) # Plot a crude histogram of parcel detrainment levels NBINS = 20 pbins = np.linspace(1000, 150, num=NBINS) # pbins for detrainment levels hist = np.zeros((len(pbins) - 1)) for x in ELps: for i in range(len(pbins) - 1): if (x < pbins[i]) & (x >= pbins[i + 1]): hist[i] += 1 break det_per = hist / sum(hist) * 100 # percentages of detrainment ensumbles at levels ax2 = fig.add_axes([0.705, 0.1, 0.1, 0.8], facecolor=None) ax2.barh(pbins[1:], det_per, color='lightgrey', edgecolor='k', height=15 * (20 / NBINS)) ax2.set_xlim([0, max(det_per)]) ax2.set_ylim([1030, 120]) ax2.set_xlabel('Detrainment [%]') ax2.grid() ax2.set_zorder(2) ax.plot([400, 400], [1100, 0]) ax.annotate('Detrainment', xy=(362, 320), color='dimgrey') ax.annotate('ensemble: ' + str(ensemble_size * len(entrainment_rates)), xy=(364, 340), color='dimgrey') ax.annotate('Detrainment', xy=(362, 380), color='dimgrey') ax.annotate(' scale: 0 - 2 km', xy=(365, 400), color='dimgrey') # Overplots on the mess: undilute parcel and CAPE, etc. ax.plot((1, 1) * mse[0], (1, 0) * (p[0]), color='g', linewidth=2) # Replot the sounding on top of all that mess ax.plot(mse_s, p, color='r', linewidth=1.5) ax.plot(mse, p, color='b', linewidth=1.5) # label LCL and LCF ax.plot((mse_s[lcl_idx] + (-2000, 2000) * units('joule/kilogram')), lcl_pressure + (0, 0) * units('mbar'), color='orange', linewidth=3) ax.plot((mse_s[lfc_idx] + (-2000, 2000) * units('joule/kilogram')), lfc_pressure + (0, 0) * units('mbar'), color='magenta', linewidth=3) ### Internal waves (100m adiabatic displacements, assumed adiabatic: conserves s, sv, h). #dZ = 100 *mpunits.units.meter dp = 1000 * units.pascal # depict displacements at sounding levels nearest these target levels targetlevels = [900, 800, 700, 600, 500, 400, 300, 200] * units.hPa for ilev in targetlevels: idx = np.argmin(np.abs(p - ilev)) # dp: hydrostatic rho = (p[idx]) / Rd / (T[idx]) dZ = -dp / rho / g # dT: Dry lapse rate dT/dz_dry is -g/Cp dT = (-g / Cp_d * dZ).to('kelvin') Tdisp = T[idx].to('kelvin') + dT # dhsat dqs = mpcalc.mixing_ratio(mpcalc.saturation_vapor_pressure(Tdisp), p[idx] + dp) - qs[idx] dhs = g * dZ + Cp_d * dT + Lv * dqs # Whiskers on the data plots ax.plot((mse_s[idx] + dhs * (-1, 1)), p[idx] + dp * (-1, 1), linewidth=3, color='r') ax.plot((dse[idx] * (1, 1)), p[idx] + dp * (-1, 1), linewidth=3, color='k') ax.plot((mse[idx] * (1, 1)), p[idx] + dp * (-1, 1), linewidth=3, color='b') # annotation to explain it if ilev == 400 * ilev.units: ax.plot(360 * mse_s.units + dhs * (-1, 1) / 1000, 440 * units('mbar') + dp * (-1, 1), linewidth=3, color='r') ax.annotate('+/- 10mb', xy=(362, 440), fontsize=8) ax.annotate(' adiabatic displacement', xy=(362, 460), fontsize=8) # Plot a crude histogram of parcel detrainment levels # Text parts ax.text(290, pressure[3], 'RH (%)', fontsize=11, color='k') ax.text(285, 200, 'CAPE = ' + str(np.around(CAPE.magnitude, decimals=2)) + ' [J/kg]', fontsize=12, color='green') ax.text(285, 250, 'CIN = ' + str(np.around(CIN.magnitude, decimals=2)) + ' [J/kg]', fontsize=12, color='green') ax.text(285, 300, 'LCL = ' + str(np.around(lcl_pressure.magnitude, decimals=2)) + ' [hpa]', fontsize=12, color='darkorange') ax.text(285, 350, 'LFC = ' + str(np.around(lfc_pressure.magnitude, decimals=2)) + ' [hpa]', fontsize=12, color='magenta') ax.text(285, 400, 'CWV = ' + str(np.around(cwv.magnitude, decimals=2)) + ' [mm]', fontsize=12, color='deepskyblue') ax.text(285, 450, 'CRH = ' + str(np.around(crh.magnitude, decimals=2)) + ' [%]', fontsize=12, color='blue') ax.legend(['DSE', 'MSE', 'SMSE'], fontsize=12, loc=1) ax.set_zorder(3) return (ax)
def test_dry_static_energy(): """Test the dry static energy calculation.""" dse = dry_static_energy(1000 * units.m, 25 * units.degC) assert_almost_equal(dse, 309.4474 * units('kJ/kg'), 6)