def test_declarative_gridded_scale(): """Test making a contour plot.""" import numpy as np data = xr.open_dataset(get_test_data('NAM_test.nc', as_file_obj=False)) contour = ContourPlot() contour.data = data contour.field = 'Geopotential_height_isobaric' contour.level = 300 * units.hPa contour.linewidth = 2 contour.contours = np.arange(0, 2000, 12).tolist() contour.scale = 1e-1 contour.clabels = True panel = MapPanel() panel.area = (-124, -72, 20, 53) panel.projection = 'lcc' panel.layers = ['coastline', 'borders', 'usstates'] panel.plots = [contour] pc = PanelContainer() pc.size = (8, 8) pc.panels = [panel] pc.draw() return pc.figure
def test_declarative_sfc_obs_changes(ccrs): """Test making a surface observation plot, changing the field.""" data = pd.read_csv(get_test_data('SFC_obs.csv', as_file_obj=False), infer_datetime_format=True, parse_dates=['valid']) obs = PlotObs() obs.data = data obs.time = datetime(1993, 3, 12, 12) obs.level = None obs.fields = ['tmpf'] obs.colors = ['black'] obs.time_window = timedelta(minutes=15) # Panel for plot with Map features panel = MapPanel() panel.layout = (1, 1, 1) panel.projection = ccrs.PlateCarree() panel.area = 'in' panel.layers = ['states'] panel.plots = [obs] panel.title = f'Surface Observations for {obs.time}' # Bringing it all together pc = PanelContainer() pc.size = (10, 10) pc.panels = [panel] pc.draw() obs.fields = ['dwpf'] obs.colors = ['green'] return pc.figure
def test_declarative_barb_options(): """Test making a contour plot.""" data = xr.open_dataset(get_test_data('narr_example.nc', as_file_obj=False)) barb = BarbPlot() barb.data = data barb.level = 300 * units.hPa barb.field = ['u_wind', 'v_wind'] barb.skip = (10, 10) barb.color = 'blue' barb.pivot = 'tip' barb.barblength = 6.5 panel = MapPanel() panel.area = 'us' panel.projection = 'data' panel.layers = ['coastline', 'borders', 'usstates'] panel.plots = [barb] pc = PanelContainer() pc.size = (8, 8) pc.panels = [panel] pc.draw() return pc.figure
def test_declarative_multiple_sfc_obs_change_units(ccrs): """Test making a surface observation plot.""" data = parse_metar_file(get_test_data('metar_20190701_1200.txt', as_file_obj=False), year=2019, month=7) obs = PlotObs() obs.data = data obs.time = datetime(2019, 7, 1, 12) obs.time_window = timedelta(minutes=15) obs.level = None obs.fields = ['air_temperature', 'dew_point_temperature', 'air_pressure_at_sea_level'] obs.locations = ['NW', 'W', 'NE'] obs.colors = ['red', 'green', 'black'] obs.reduce_points = 0.75 obs.plot_units = ['degF', 'degF', None] # Panel for plot with Map features panel = MapPanel() panel.layout = (1, 1, 1) panel.projection = ccrs.PlateCarree() panel.area = 'in' panel.layers = ['states'] panel.plots = [obs] # Bringing it all together pc = PanelContainer() pc.size = (12, 12) pc.panels = [panel] pc.draw() return pc.figure
def test_declarative_upa_obs(): """Test making a full upperair observation plot.""" data = pd.read_csv(get_test_data('UPA_obs.csv', as_file_obj=False)) obs = PlotObs() obs.data = data obs.time = datetime(1993, 3, 14, 0) obs.level = 500 * units.hPa obs.fields = ['temperature', 'dewpoint', 'height'] obs.locations = ['NW', 'SW', 'NE'] obs.formats = [None, None, lambda v: format(v, '.0f')[:3]] obs.vector_field = ('u_wind', 'v_wind') obs.vector_field_length = 7 obs.reduce_points = 0 # Panel for plot with Map features panel = MapPanel() panel.layout = (1, 1, 1) panel.area = (-124, -72, 20, 53) panel.projection = 'lcc' panel.layers = ['coastline', 'borders', 'states', 'land'] panel.plots = [obs] # Bringing it all together pc = PanelContainer() pc.size = (15, 10) pc.panels = [panel] pc.draw() obs.level = 300 * units.hPa return pc.figure
def test_declarative_colored_barbs(ccrs): """Test making a surface plot with a colored barb (gh-1274).""" data = pd.read_csv(get_test_data('SFC_obs.csv', as_file_obj=False), infer_datetime_format=True, parse_dates=['valid']) obs = PlotObs() obs.data = data obs.time = datetime(1993, 3, 12, 13) obs.level = None obs.vector_field = ('uwind', 'vwind') obs.vector_field_color = 'red' obs.reduce_points = .5 # Panel for plot with Map features panel = MapPanel() panel.layout = (1, 1, 1) panel.projection = ccrs.PlateCarree() panel.area = 'NE' panel.layers = ['states'] panel.plots = [obs] # Bringing it all together pc = PanelContainer() pc.size = (10, 10) pc.panels = [panel] pc.draw() return pc.figure
def test_declarative_sfc_text(): """Test making a surface observation plot with text.""" data = pd.read_csv(get_test_data('SFC_obs.csv', as_file_obj=False), infer_datetime_format=True, parse_dates=['valid']) obs = PlotObs() obs.data = data obs.time = datetime(1993, 3, 12, 12) obs.time_window = timedelta(minutes=15) obs.level = None obs.fields = ['station'] obs.colors = ['black'] obs.formats = ['text'] # Panel for plot with Map features panel = MapPanel() panel.layout = (1, 1, 1) panel.projection = 'lcc' panel.area = 'in' panel.layers = ['states'] panel.plots = [obs] # Bringing it all together pc = PanelContainer() pc.size = (10, 10) pc.panels = [panel] pc.draw() return pc.figure
def test_latlon(): """Test our handling of lat/lon information.""" data = xr.open_dataset(get_test_data('irma_gfs_example.nc', as_file_obj=False)) img = ImagePlot() img.data = data img.field = 'Temperature_isobaric' img.level = 500 * units.hPa img.time = datetime(2017, 9, 5, 15, 0, 0) contour = ContourPlot() contour.data = data contour.field = 'Geopotential_height_isobaric' contour.level = img.level contour.time = img.time panel = MapPanel() panel.projection = 'lcc' panel.area = 'us' panel.plots = [img, contour] pc = PanelContainer() pc.panel = panel pc.draw() return pc.figure
def test_declarative_colorbar_fontsize(): """Test adjusting the font size of a colorbar.""" data = xr.open_dataset(get_test_data('GFS_test.nc', as_file_obj=False)) cfill = FilledContourPlot() cfill.data = data cfill.field = 'Temperature_isobaric' cfill.level = 300 * units.hPa cfill.time = datetime(2010, 10, 26, 12) cfill.contours = list(range(210, 250, 2)) cfill.colormap = 'BuPu' cfill.colorbar = 'horizontal' cfill.colorbar_fontsize = 'x-small' panel = MapPanel() panel.area = (-124, -72, 20, 53) panel.projection = 'lcc' panel.layers = ['coastline', 'borders', 'usstates'] panel.plots = [cfill] pc = PanelContainer() pc.size = (8, 8) pc.panels = [panel] pc.draw() return pc.figure
def test_latlon(): """Test our handling of lat/lon information.""" data = xr.open_dataset( get_test_data('irma_gfs_example.nc', as_file_obj=False)) img = ImagePlot() img.data = data img.field = 'Temperature_isobaric' img.level = 500 * units.hPa img.time = datetime(2017, 9, 5, 15, 0, 0) img.colorbar = None contour = ContourPlot() contour.data = data contour.field = 'Geopotential_height_isobaric' contour.level = img.level contour.time = img.time panel = MapPanel() panel.projection = 'lcc' panel.area = 'us' panel.plots = [img, contour] pc = PanelContainer() pc.panel = panel pc.draw() return pc.figure
def test_declarative_title_fontsize(): """Test adjusting the font size of a MapPanel's title text.""" data = xr.open_dataset(get_test_data('NAM_test.nc', as_file_obj=False)) contour = ContourPlot() contour.data = data contour.field = 'Geopotential_height_isobaric' contour.level = 300 * units.hPa contour.linewidth = 2 contour.contours = list(range(0, 2000, 12)) contour.scale = 1e-1 panel = MapPanel() panel.area = (-124, -72, 20, 53) panel.projection = 'lcc' panel.layers = ['coastline', 'borders', 'usstates'] panel.plots = [contour] panel.title = '300 mb Geopotential Height' panel.title_fontsize = 20 pc = PanelContainer() pc.size = (8, 8) pc.panels = [panel] pc.draw() return pc.figure
def test_plotobs_units_with_formatter(ccrs): """Test using PlotObs with a field that both has units and a custom formatter.""" df = pd.read_csv(get_test_data('SFC_obs.csv', as_file_obj=False), infer_datetime_format=True, parse_dates=['valid']) df.units = {'alti': 'inHg'} # Plot desired data obs = PlotObs() obs.data = df obs.time = datetime(1993, 3, 12, 12) obs.time_window = timedelta(minutes=15) obs.level = None obs.fields = ['alti'] obs.plot_units = ['hPa'] obs.locations = ['NE'] # Set a format for plotting MSLP obs.formats = [lambda v: format(v * 10, '.0f')[-3:]] obs.reduce_points = 0.75 # Panel for plot with Map features panel = MapPanel() panel.layout = (1, 1, 1) panel.projection = 'lcc' panel.area = 'in' panel.plots = [obs] # Bringing it all together pc = PanelContainer() pc.panels = [panel] pc.size = (10, 10) pc.draw() return pc.figure
def test_declarative_contour_convert_units(fix_is_closed_polygon): """Test making a contour plot.""" data = xr.open_dataset(get_test_data('narr_example.nc', as_file_obj=False)) contour = ContourPlot() contour.data = data contour.field = 'Temperature' contour.level = 700 * units.hPa contour.contours = 30 contour.linewidth = 1 contour.linecolor = 'red' contour.linestyle = 'dashed' contour.clabels = True contour.plot_units = 'degC' panel = MapPanel() panel.area = 'us' panel.proj = 'lcc' panel.layers = ['coastline', 'borders', 'usstates'] panel.plots = [contour] pc = PanelContainer() pc.size = (8, 8) pc.panels = [panel] pc.draw() return pc.figure
def test_declarative_global_gfs(): """Test making a global contour plot using GFS.""" data = xr.open_dataset(get_test_data('GFS_global.nc', as_file_obj=False)) cntr = ContourPlot() cntr.data = data cntr.time = datetime(2021, 1, 30, 12) cntr.field = 'Geopotential_height_isobaric' cntr.level = 300 * units.hPa cntr.contours = np.arange(0, 100000, 120).tolist() cntr.linecolor = 'darkblue' cntr.linewidth = 1 panel = MapPanel() panel.area = [-180, 180, 10, 90] panel.projection = 'ps' panel.layers = ['coastline'] panel.plots = [cntr] pc = PanelContainer() pc.size = (8, 8) pc.panels = [panel] pc.draw() return pc.figure
def test_declarative_station_plot_fontsize(): """Test adjusting the font size for station plots in PlotObs.""" data = parse_metar_file(get_test_data('metar_20190701_1200.txt', as_file_obj=False), year=2019, month=7) obs = PlotObs() obs.data = data obs.time = datetime(2019, 7, 1, 12) obs.time_window = timedelta(minutes=15) obs.level = None obs.fields = ['cloud_coverage', 'air_temperature', 'dew_point_temperature', 'air_pressure_at_sea_level', 'current_wx1_symbol'] obs.plot_units = [None, 'degF', 'degF', None, None] obs.locations = ['C', 'NW', 'SW', 'NE', 'W'] obs.formats = ['sky_cover', None, None, lambda v: format(v * 10, '.0f')[-3:], 'current_weather'] obs.reduce_points = 3 obs.vector_field = ['eastward_wind', 'northward_wind'] obs.fontsize = 8 panel = MapPanel() panel.area = 'centus' panel.projection = 'lcc' panel.layers = ['coastline', 'borders', 'usstates'] panel.plots = [obs] pc = PanelContainer() pc.size = (8, 8) pc.panels = [panel] pc.draw() return pc.figure
def test_attribute_error_station(ccrs): """Make sure we get a useful error when the station variable is not found.""" data = pd.read_csv(get_test_data('SFC_obs.csv', as_file_obj=False), infer_datetime_format=True, parse_dates=['valid']) data.rename(columns={'station': 'location'}, inplace=True) obs = PlotObs() obs.data = data obs.time = datetime(1993, 3, 12, 12) obs.level = None obs.fields = ['tmpf'] obs.time_window = timedelta(minutes=15) # Panel for plot with Map features panel = MapPanel() panel.layout = (1, 1, 1) panel.projection = ccrs.PlateCarree() panel.area = 'in' panel.layers = ['states'] panel.plots = [obs] panel.title = f'Surface Observations for {obs.time}' # Bringing it all together pc = PanelContainer() pc.size = (10, 10) pc.panels = [panel] with pytest.raises(AttributeError): pc.draw()
def test_declarative_barb_gfs_knots(): """Test making a contour plot.""" data = xr.open_dataset(get_test_data('GFS_test.nc', as_file_obj=False)) barb = BarbPlot() barb.data = data barb.level = 300 * units.hPa barb.field = [ 'u-component_of_wind_isobaric', 'v-component_of_wind_isobaric' ] barb.skip = (3, 3) barb.earth_relative = False barb.plot_units = 'knot' panel = MapPanel() panel.area = 'us' panel.projection = 'data' panel.layers = ['coastline', 'borders', 'usstates'] panel.plots = [barb] pc = PanelContainer() pc.size = (8, 8) pc.panels = [panel] pc.draw() return pc.figure
def test_declarative_plot_geometry_points(ccrs): """Test that `PlotGeometry` correctly plots Point and MultiPoint objects.""" from shapely.geometry import MultiPoint, Point # Points and MultiPoints to plot irma_track = [Point(-74.7, 21.8), Point(-76.0, 22.0), Point(-77.2, 22.1)] irma_track_shadow = MultiPoint([ Point(-64.7, 18.25), Point(-66.0, 18.85), Point(-67.7, 19.45), Point(-69.0, 19.85), Point(-70.4, 20.45), Point(-71.8, 20.85), Point(-73.2, 21.25), Point(-74.7, 21.55), Point(-76.0, 21.75), Point(-77.2, 21.85), Point(-78.3, 22.05), Point(-79.3, 22.45), Point(-80.2, 22.85), Point(-80.9, 23.15), Point(-81.3, 23.45), Point(-81.5, 24.25), Point(-81.7, 25.35), Point(-81.7, 26.55), Point(-82.2, 27.95), Point(-82.7, 29.35), Point(-83.5, 30.65), Point(-84.4, 31.65) ]) # Plot geometry, set colors and labels geo = PlotGeometry() geo.geometry = irma_track + [irma_track_shadow] geo.fill = 'blue' geo.stroke = None geo.marker = '^' geo.labels = ['Point', 'Point', 'Point', 'Irma Track'] geo.label_edgecolor = None geo.label_facecolor = None # Place plot in a panel and container panel = MapPanel() panel.area = [-85, -65, 17, 30] panel.projection = ccrs.PlateCarree() panel.layers = ['states', 'coastline', 'borders'] panel.plots = [geo] pc = PanelContainer() pc.size = (12, 12) pc.panels = [panel] pc.draw() return pc.figure
def test_declarative_sfc_obs_full(ccrs): """Test making a full surface observation plot.""" data = pd.read_csv(get_test_data('SFC_obs.csv', as_file_obj=False), infer_datetime_format=True, parse_dates=['valid']) obs = PlotObs() obs.data = data obs.time = datetime(1993, 3, 12, 13) obs.time_window = timedelta(minutes=15) obs.level = None obs.fields = ['tmpf', 'dwpf', 'emsl', 'cloud_cover', 'wxsym'] obs.locations = ['NW', 'SW', 'NE', 'C', 'W'] obs.colors = ['red', 'green', 'black', 'black', 'blue'] obs.formats = [ None, None, lambda v: format(10 * v, '.0f')[-3:], 'sky_cover', 'current_weather' ] obs.vector_field = ('uwind', 'vwind') obs.reduce_points = 1 # Panel for plot with Map features panel = MapPanel() panel.layout = (1, 1, 1) panel.area = (-124, -72, 20, 53) panel.area = 'il' panel.projection = ccrs.PlateCarree() panel.layers = ['coastline', 'borders', 'states'] panel.plots = [obs] # Bringing it all together pc = PanelContainer() pc.size = (10, 10) pc.panels = [panel] pc.draw() return pc.figure
def test_global(): """Test that we can set global extent.""" data = xr.open_dataset(GiniFile(get_test_data('NHEM-MULTICOMP_1km_IR_20151208_2100.gini'))) img = ImagePlot() img.data = data img.field = 'IR' panel = MapPanel() panel.area = 'global' panel.plots = [img] pc = PanelContainer() pc.panel = panel pc.draw() return pc.figure
def test_ndim_error_vector(cfeature): """Make sure we get a useful error when the field is not set.""" data = xr.open_dataset(get_test_data('narr_example.nc', as_file_obj=False)) barbs = BarbPlot() barbs.data = data barbs.field = ['u_wind', 'v_wind'] barbs.level = None panel = MapPanel() panel.area = (-110, -60, 25, 55) panel.projection = 'lcc' panel.plots = [barbs] pc = PanelContainer() pc.panel = panel with pytest.raises(ValueError): pc.draw()
def test_ndim_error_scalar(cfeature): """Make sure we get a useful error when the field is not set.""" data = xr.open_dataset(get_test_data('narr_example.nc', as_file_obj=False)) contour = ContourPlot() contour.data = data contour.field = 'Temperature' contour.level = None panel = MapPanel() panel.area = (-110, -60, 25, 55) panel.projection = 'lcc' panel.layers = [cfeature.LAKES] panel.plots = [contour] pc = PanelContainer() pc.panel = panel with pytest.raises(ValueError): pc.draw()
def test_projection_object(): """Test that we can pass a custom map projection.""" data = xr.open_dataset(get_test_data('narr_example.nc', as_file_obj=False)) contour = ContourPlot() contour.data = data contour.level = 700 * units.hPa contour.field = 'Temperature' panel = MapPanel() panel.area = (-110, -60, 25, 55) panel.projection = ccrs.Mercator() panel.layers = [cfeature.LAKES] panel.plots = [contour] pc = PanelContainer() pc.panel = panel pc.draw() return pc.figure
def test_declarative_region_modifier_zoom_out(): """Test that '-' suffix on area string properly expands extent of map.""" data = xr.open_dataset(get_test_data('narr_example.nc', as_file_obj=False)) contour = ContourPlot() contour.data = data contour.field = 'Temperature' contour.level = 700 * units.hPa panel = MapPanel() panel.area = 'sc-' panel.layers = ['coastline', 'borders', 'usstates'] panel.plots = [contour] pc = PanelContainer() pc.size = (8.0, 8) pc.panels = [panel] pc.draw() return pc.figure
def test_projection_object(ccrs, cfeature): """Test that we can pass a custom map projection.""" data = xr.open_dataset(get_test_data('narr_example.nc', as_file_obj=False)) contour = ContourPlot() contour.data = data contour.level = 700 * units.hPa contour.field = 'Temperature' panel = MapPanel() panel.area = (-110, -60, 25, 55) panel.projection = ccrs.Mercator() panel.layers = [cfeature.LAKES] panel.plots = [contour] pc = PanelContainer() pc.panel = panel pc.draw() return pc.figure
def test_declarative_events(): """Test that resetting traitlets properly propagates.""" data = xr.open_dataset(get_test_data('narr_example.nc', as_file_obj=False)) contour = ContourPlot() contour.data = data contour.field = 'Temperature' contour.level = 850 * units.hPa contour.contours = 30 contour.linewidth = 1 contour.linecolor = 'red' img = ImagePlot() img.data = data img.field = 'v_wind' img.level = 700 * units.hPa img.colormap = 'hot' img.image_range = (3000, 5000) panel = MapPanel() panel.area = 'us' panel.projection = 'lcc' panel.layers = ['coastline', 'borders', 'states'] panel.plots = [contour, img] pc = PanelContainer() pc.size = (8, 8.0) pc.panels = [panel] pc.draw() # Update some properties to make sure it regenerates the figure contour.linewidth = 2 contour.linecolor = 'green' contour.level = 700 * units.hPa contour.field = 'Specific_humidity' img.field = 'Geopotential_height' img.colormap = 'plasma' img.colorbar = 'horizontal' return pc.figure
def test_declarative_plot_geometry_polygons(): """Test that `PlotGeometry` correctly plots MultiPolygon and Polygon objects.""" from shapely.geometry import MultiPolygon, Polygon # MultiPolygons and Polygons to plot slgt_risk_polygon = MultiPolygon([Polygon( [(-87.43, 41.86), (-91.13, 41.39), (-95.24, 40.99), (-97.47, 40.4), (-98.39, 41.38), (-96.54, 42.44), (-94.02, 44.48), (-92.62, 45.48), (-89.49, 45.91), (-86.38, 44.92), (-86.26, 43.37), (-86.62, 42.45), (-87.43, 41.86), ]), Polygon( [(-74.02, 42.8), (-72.01, 43.08), (-71.42, 42.77), (-71.76, 42.29), (-72.73, 41.89), (-73.89, 41.93), (-74.4, 42.28), (-74.02, 42.8), ])]) enh_risk_polygon = Polygon( [(-87.42, 43.67), (-88.44, 42.65), (-90.87, 41.92), (-94.63, 41.84), (-95.13, 42.22), (-95.23, 42.54), (-94.79, 43.3), (-92.81, 43.99), (-90.62, 44.55), (-88.51, 44.61), (-87.42, 43.67)]) # Plot geometry, set colors and labels geo = PlotGeometry() geo.geometry = [slgt_risk_polygon, enh_risk_polygon] geo.stroke = ['#DDAA00', '#FF6600'] geo.fill = None geo.labels = ['SLGT', 'ENH'] geo.label_facecolor = ['#FFE066', '#FFA366'] geo.label_edgecolor = ['#DDAA00', '#FF6600'] geo.label_fontsize = 'large' # Place plot in a panel and container panel = MapPanel() panel.area = [-125, -70, 20, 55] panel.projection = 'lcc' panel.title = ' ' panel.layers = ['coastline', 'borders', 'usstates'] panel.plots = [geo] pc = PanelContainer() pc.size = (12, 12) pc.panels = [panel] pc.draw() return pc.figure
def test_declarative_events(): """Test that resetting traitlets properly propagates.""" data = xr.open_dataset(get_test_data('narr_example.nc', as_file_obj=False)) contour = ContourPlot() contour.data = data contour.field = 'Temperature' contour.level = 850 * units.hPa contour.contours = 30 contour.linewidth = 1 contour.linecolor = 'red' img = ImagePlot() img.data = data img.field = 'v_wind' img.level = 700 * units.hPa img.colormap = 'hot' img.image_range = (3000, 5000) panel = MapPanel() panel.area = 'us' panel.proj = 'lcc' panel.layers = ['coastline', 'borders', 'states'] panel.plots = [contour, img] pc = PanelContainer() pc.size = (8, 8) pc.panels = [panel] pc.draw() # Update some properties to make sure it regenerates the figure contour.linewidth = 2 contour.linecolor = 'green' contour.level = 700 * units.hPa contour.field = 'Specific_humidity' img.field = 'Geopotential_height' img.colormap = 'plasma' return pc.figure
def test_declarative_plot_geometry_lines(ccrs): """Test that `PlotGeometry` correctly plots MultiLineString and LineString objects.""" from shapely.geometry import LineString, MultiLineString # LineString and MultiLineString to plot irma_fcst = LineString([(-52.3, 16.9), (-53.9, 16.7), (-56.2, 16.6), (-58.6, 17.0), (-61.2, 17.8), (-63.9, 18.7), (-66.8, 19.6), (-72.0, 21.0), (-76.5, 22.0)]) irma_fcst_shadow = MultiLineString([ LineString([(-52.3, 17.15), (-53.9, 16.95), (-56.2, 16.85), (-58.6, 17.25), (-61.2, 18.05), (-63.9, 18.95), (-66.8, 19.85), (-72.0, 21.25), (-76.5, 22.25)]), LineString([(-52.3, 16.65), (-53.9, 16.45), (-56.2, 16.35), (-58.6, 16.75), (-61.2, 17.55), (-63.9, 18.45), (-66.8, 19.35), (-72.0, 20.75), (-76.5, 21.75)]) ]) # Plot geometry, set colors and labels geo = PlotGeometry() geo.geometry = [irma_fcst, irma_fcst_shadow] geo.fill = None geo.stroke = 'green' geo.labels = ['Irma', '+/- 0.25 deg latitude'] geo.label_facecolor = None # Place plot in a panel and container panel = MapPanel() panel.area = [-85, -45, 12, 25] panel.projection = ccrs.PlateCarree() panel.layers = ['coastline', 'borders', 'usstates'] panel.title = 'Hurricane Irma Forecast' panel.plots = [geo] pc = PanelContainer() pc.size = (12, 12) pc.panels = [panel] pc.draw() return pc.figure
def test_colorfill_no_colorbar(cfeature): """Test that we can use ContourFillPlot.""" data = xr.open_dataset(get_test_data('narr_example.nc', as_file_obj=False)) contour = FilledContourPlot() contour.data = data contour.level = 700 * units.hPa contour.field = 'Temperature' contour.colormap = 'coolwarm' contour.colorbar = None panel = MapPanel() panel.area = (-110, -60, 25, 55) panel.layers = [cfeature.STATES] panel.plots = [contour] pc = PanelContainer() pc.panel = panel pc.size = (8, 8) pc.draw() return pc.figure
def test_declarative_barb_earth_relative(): """Test making a contour plot.""" import numpy as np data = xr.open_dataset(get_test_data('NAM_test.nc', as_file_obj=False)) contour = ContourPlot() contour.data = data contour.field = 'Geopotential_height_isobaric' contour.level = 300 * units.hPa contour.linecolor = 'red' contour.linestyle = '-' contour.linewidth = 2 contour.contours = np.arange(0, 20000, 120).tolist() barb = BarbPlot() barb.data = data barb.level = 300 * units.hPa barb.time = datetime(2016, 10, 31, 12) barb.field = [ 'u-component_of_wind_isobaric', 'v-component_of_wind_isobaric' ] barb.skip = (5, 5) barb.color = 'black' barb.barblength = 6.5 barb.earth_relative = False panel = MapPanel() panel.area = (-124, -72, 20, 53) panel.projection = 'lcc' panel.layers = ['coastline', 'borders', 'usstates'] panel.plots = [contour, barb] pc = PanelContainer() pc.size = (8, 8) pc.panels = [panel] pc.draw() return pc.figure
def test_declarative_contour(): """Test making a contour plot.""" data = xr.open_dataset(get_test_data('narr_example.nc', as_file_obj=False)) contour = ContourPlot() contour.data = data contour.field = 'Temperature' contour.level = 700 * units.hPa contour.contours = 30 contour.linewidth = 1 contour.linecolor = 'red' panel = MapPanel() panel.area = 'us' panel.projection = 'lcc' panel.layers = ['coastline', 'borders', 'usstates'] panel.plots = [contour] pc = PanelContainer() pc.size = (8.0, 8) pc.panels = [panel] pc.draw() return pc.figure
def test_declarative_contour(): """Test making a contour plot.""" data = xr.open_dataset(get_test_data('narr_example.nc', as_file_obj=False)) contour = ContourPlot() contour.data = data contour.field = 'Temperature' contour.level = 700 * units.hPa contour.contours = 30 contour.linewidth = 1 contour.linecolor = 'red' panel = MapPanel() panel.area = 'us' panel.proj = 'lcc' panel.layers = ['coastline', 'borders', 'usstates'] panel.plots = [contour] pc = PanelContainer() pc.size = (8, 8) pc.panels = [panel] pc.draw() return pc.figure
########################### # Create a contour plot of temperature contour = ContourPlot() contour.data = narr contour.field = 'Temperature' contour.level = 850 * units.hPa contour.linecolor = 'red' contour.contours = 15 ########################### # Create an image plot of Geopotential height img = ImagePlot() img.data = narr img.field = 'Geopotential_height' img.level = 850 * units.hPa ########################### # Plot the data on a map panel = MapPanel() panel.area = 'us' panel.layers = ['coastline', 'borders', 'states', 'rivers', 'ocean', 'land'] panel.title = 'NARR Example' panel.plots = [contour, img] pc = PanelContainer() pc.size = (10, 8) pc.panels = [panel] pc.show()
wind_geo = PlotGeometry() wind_geo.geometry = wind_data['geometry'] wind_geo.fill = wind_data['fill'] wind_geo.stroke = 'none' ########################### # Plot the cities from the 'geometry' column, marked with diamonds ('D'). Label each point # with the name of the city, and it's probability of tropical-storm-force winds on the line # below. Points are set to plot in white and the font color is set to black. city_geo = PlotGeometry() city_geo.geometry = cities['geometry'] city_geo.marker = 'D' city_geo.labels = cities['NAME'] + '\n(' + cities['PERCENTAGE'] + ')' city_geo.fill = 'white' city_geo.label_facecolor = 'black' ########################### # Add the geometry plots to a panel and container. Finally, we are left with a complete plot of # wind speed probabilities, along with some select cities and their specific probabilities. panel = MapPanel() panel.title = 'NHC 5-Day Tropical-Storm-Force Wind Probabilities (Valid 12z Aug 20 2021)' panel.plots = [wind_geo, city_geo] panel.area = [-90, -52, 27, 48] panel.projection = 'mer' panel.layers = ['lakes', 'land', 'ocean', 'states', 'coastline', 'borders'] pc = PanelContainer() pc.size = (12, 10) pc.panels = [panel] pc.show()