Пример #1
0
def test_copy():
    """Test that the copy method works for all classes in `declarative.py`."""
    # Copies of plot objects
    objects = [ImagePlot(), ContourPlot(), FilledContourPlot(), BarbPlot(), PlotObs(),
               PlotGeometry()]

    for obj in objects:
        obj.time = datetime.now()
        copied_obj = obj.copy()
        assert obj is not copied_obj
        assert obj.time == copied_obj.time

    # Copies of MapPanel and PanelContainer
    obj = MapPanel()
    obj.title = 'Sample Text'
    copied_obj = obj.copy()
    assert obj is not copied_obj
    assert obj.title == copied_obj.title

    obj = PanelContainer()
    obj.size = (10, 10)
    copied_obj = obj.copy()
    assert obj is not copied_obj
    assert obj.size == copied_obj.size

    # Copies of plots in MapPanels should not point to same location in memory
    obj = MapPanel()
    obj.plots = [PlotObs(), PlotGeometry(), BarbPlot(), FilledContourPlot(), ContourPlot(),
                 ImagePlot()]
    copied_obj = obj.copy()

    for i in range(len(obj.plots)):
        assert obj.plots[i] is not copied_obj.plots[i]
Пример #2
0
def test_declarative_plot_geometry_points(ccrs):
    """Test that `PlotGeometry` correctly plots Point and MultiPoint objects."""
    from shapely.geometry import MultiPoint, Point

    # Points and MultiPoints to plot
    irma_track = [Point(-74.7, 21.8), Point(-76.0, 22.0), Point(-77.2, 22.1)]
    irma_track_shadow = MultiPoint([
        Point(-64.7, 18.25),
        Point(-66.0, 18.85),
        Point(-67.7, 19.45),
        Point(-69.0, 19.85),
        Point(-70.4, 20.45),
        Point(-71.8, 20.85),
        Point(-73.2, 21.25),
        Point(-74.7, 21.55),
        Point(-76.0, 21.75),
        Point(-77.2, 21.85),
        Point(-78.3, 22.05),
        Point(-79.3, 22.45),
        Point(-80.2, 22.85),
        Point(-80.9, 23.15),
        Point(-81.3, 23.45),
        Point(-81.5, 24.25),
        Point(-81.7, 25.35),
        Point(-81.7, 26.55),
        Point(-82.2, 27.95),
        Point(-82.7, 29.35),
        Point(-83.5, 30.65),
        Point(-84.4, 31.65)
    ])

    # Plot geometry, set colors and labels
    geo = PlotGeometry()
    geo.geometry = irma_track + [irma_track_shadow]
    geo.fill = 'blue'
    geo.stroke = None
    geo.marker = '^'
    geo.labels = ['Point', 'Point', 'Point', 'Irma Track']
    geo.label_edgecolor = None
    geo.label_facecolor = None

    # Place plot in a panel and container
    panel = MapPanel()
    panel.area = [-85, -65, 17, 30]
    panel.projection = ccrs.PlateCarree()
    panel.layers = ['states', 'coastline', 'borders']
    panel.plots = [geo]

    pc = PanelContainer()
    pc.size = (12, 12)
    pc.panels = [panel]
    pc.draw()

    return pc.figure
Пример #3
0
def test_declarative_plot_geometry_polygons():
    """Test that `PlotGeometry` correctly plots MultiPolygon and Polygon objects."""
    from shapely.geometry import MultiPolygon, Polygon

    # MultiPolygons and Polygons to plot
    slgt_risk_polygon = MultiPolygon([Polygon(
        [(-87.43, 41.86), (-91.13, 41.39), (-95.24, 40.99), (-97.47, 40.4), (-98.39, 41.38),
         (-96.54, 42.44), (-94.02, 44.48), (-92.62, 45.48), (-89.49, 45.91), (-86.38, 44.92),
         (-86.26, 43.37), (-86.62, 42.45), (-87.43, 41.86), ]), Polygon(
        [(-74.02, 42.8), (-72.01, 43.08), (-71.42, 42.77), (-71.76, 42.29), (-72.73, 41.89),
         (-73.89, 41.93), (-74.4, 42.28), (-74.02, 42.8), ])])
    enh_risk_polygon = Polygon(
        [(-87.42, 43.67), (-88.44, 42.65), (-90.87, 41.92), (-94.63, 41.84), (-95.13, 42.22),
         (-95.23, 42.54), (-94.79, 43.3), (-92.81, 43.99), (-90.62, 44.55), (-88.51, 44.61),
         (-87.42, 43.67)])

    # Plot geometry, set colors and labels
    geo = PlotGeometry()
    geo.geometry = [slgt_risk_polygon, enh_risk_polygon]
    geo.stroke = ['#DDAA00', '#FF6600']
    geo.fill = None
    geo.labels = ['SLGT', 'ENH']
    geo.label_facecolor = ['#FFE066', '#FFA366']
    geo.label_edgecolor = ['#DDAA00', '#FF6600']
    geo.label_fontsize = 'large'

    # Place plot in a panel and container
    panel = MapPanel()
    panel.area = [-125, -70, 20, 55]
    panel.projection = 'lcc'
    panel.title = ' '
    panel.layers = ['coastline', 'borders', 'usstates']
    panel.plots = [geo]

    pc = PanelContainer()
    pc.size = (12, 12)
    pc.panels = [panel]
    pc.draw()

    return pc.figure
Пример #4
0
def test_declarative_plot_geometry_lines(ccrs):
    """Test that `PlotGeometry` correctly plots MultiLineString and LineString objects."""
    from shapely.geometry import LineString, MultiLineString

    # LineString and MultiLineString to plot
    irma_fcst = LineString([(-52.3, 16.9), (-53.9, 16.7), (-56.2, 16.6),
                            (-58.6, 17.0), (-61.2, 17.8), (-63.9, 18.7),
                            (-66.8, 19.6), (-72.0, 21.0), (-76.5, 22.0)])
    irma_fcst_shadow = MultiLineString([
        LineString([(-52.3, 17.15), (-53.9, 16.95), (-56.2, 16.85),
                    (-58.6, 17.25), (-61.2, 18.05), (-63.9, 18.95),
                    (-66.8, 19.85), (-72.0, 21.25), (-76.5, 22.25)]),
        LineString([(-52.3, 16.65), (-53.9, 16.45), (-56.2, 16.35),
                    (-58.6, 16.75), (-61.2, 17.55), (-63.9, 18.45),
                    (-66.8, 19.35), (-72.0, 20.75), (-76.5, 21.75)])
    ])

    # Plot geometry, set colors and labels
    geo = PlotGeometry()
    geo.geometry = [irma_fcst, irma_fcst_shadow]
    geo.fill = None
    geo.stroke = 'green'
    geo.labels = ['Irma', '+/- 0.25 deg latitude']
    geo.label_facecolor = None

    # Place plot in a panel and container
    panel = MapPanel()
    panel.area = [-85, -45, 12, 25]
    panel.projection = ccrs.PlateCarree()
    panel.layers = ['coastline', 'borders', 'usstates']
    panel.title = 'Hurricane Irma Forecast'
    panel.plots = [geo]

    pc = PanelContainer()
    pc.size = (12, 12)
    pc.panels = [panel]
    pc.draw()

    return pc.figure
Пример #5
0
# Make sure that both GeoDataFrames have the same coordinate reference system (CRS).
cities = cities.to_crs(wind_data.crs)

###########################
# We want to find out what the probability of tropical-storm-force winds is for each of the
# cities we selected above. Geopandas provides a spatial join method, which merges the two
# GeoDataFrames and can tell us which wind speed probability polygon each of our city points
# lies within. That information is stored in the 'PERCENTAGE' column below.
cities = geopandas.sjoin(cities, wind_data, how='left', op='within')
cities

###########################
# Plot the wind speed probability polygons from the 'geometry' column. Use the 'fill' column
# we created above as the fill colors for the polygons, and set the stroke color to 'none' for
# all of the polygons.
wind_geo = PlotGeometry()
wind_geo.geometry = wind_data['geometry']
wind_geo.fill = wind_data['fill']
wind_geo.stroke = 'none'

###########################
# Plot the cities from the 'geometry' column, marked with diamonds ('D'). Label each point
# with the name of the city, and it's probability of tropical-storm-force winds on the line
# below. Points are set to plot in white and the font color is set to black.
city_geo = PlotGeometry()
city_geo.geometry = cities['geometry']
city_geo.marker = 'D'
city_geo.labels = cities['NAME'] + '\n(' + cities['PERCENTAGE'] + ')'
city_geo.fill = 'white'
city_geo.label_facecolor = 'black'
Пример #6
0
from metpy.plots import MapPanel, PanelContainer, PlotGeometry

###########################
# Read in the geoJSON file containing the convective outlook.
day1_outlook = geopandas.read_file(
    get_test_data('spc_day1otlk_20210317_1200_lyr.geojson'))

###########################
# Preview the data.
day1_outlook

###########################
# Plot the shapes from the 'geometry' column. Give the shapes their fill and stroke color by
# providing the 'fill' and 'stroke' columns. Use text from the 'LABEL' column as labels for the
# shapes.
geo = PlotGeometry()
geo.geometry = day1_outlook['geometry']
geo.fill = day1_outlook['fill']
geo.stroke = day1_outlook['stroke']
geo.labels = day1_outlook['LABEL']
geo.label_fontsize = 'large'

###########################
# Add the geometry plot to a panel and container.
panel = MapPanel()
panel.title = 'SPC Day 1 Convective Outlook (Valid 12z Mar 17 2021)'
panel.plots = [geo]
panel.area = [-120, -75, 25, 50]
panel.projection = 'lcc'
panel.layers = ['lakes', 'land', 'ocean', 'states', 'coastline', 'borders']