model.set_input(data) # unpack data from data loader model.test() # run inference visuals = model.get_current_visuals() # get image results img_path = model.get_image_paths() # get image paths if i % 5 == 0: # save images to an HTML file print('processing (%04d)-th image... %s' % (i, img_path)) save_images(webpage, visuals, img_path, aspect_ratio=opt.aspect_ratio, width=opt.display_winsize) image_list.append(visuals) fid.append(get_FIDScore(image_list)) del image_list #import pdb;pdb.set_trace() # evaluate by fid score (target -> source) ## Your Implementation Here ## fid_scoreA = fid[0] # evaluate by fid score (source -> target) ## Your Implementation Here ## fid_scoreB = fid[1] print('source-like target / source fid score = %d \n' % (fid_scoreA)) print('target-like source / target fid score = %d \n' % (fid_scoreB)) webpage.save() # save the HTML
model.set_input(data) # unpack data from data loader model.test() # run inference visuals = model.get_current_visuals() # get image results img_path = model.get_image_paths() # get image paths if i % 5 == 0: # save images to an HTML file print('processing (%04d)-th image... %s' % (i, img_path)) save_images(webpage, visuals, img_path, aspect_ratio=opt.aspect_ratio, width=opt.display_winsize) real_list.append(visuals['real']) fake_list.append(visuals['fake']) #fid.append(get_FIDScore(real_list, fake_list)) fake.append(fake_list) real.append(real_list) #import pdb;pdb.set_trace() # evaluate by fid score (target -> source) ## Your Implementation Here ## #fid_scoreA = fid[0] fid_scoreA = get_FIDScore(real[1], fake[0]) # evaluate by fid score (source -> target) ## Your Implementation Here ## #fid_scoreB = fid[1] fid_scoreB = get_FIDScore(real[0], fake[1]) print('source-like target / source fid score = %d \n' % (fid_scoreA)) print('target-like source / target fid score = %d \n' % (fid_scoreB)) webpage.save() # save the HTML