Пример #1
0
            test_predict = total_image_predict(
                ori_image_path=args.test_image_path,
                input_placeholder=image,
                logits_prob_node=logits_prob,
                is_training_placeholder=model._is_training,
                sess=sess,
                multi_scale=args.multi_scale)

            test_label = cv2.imread(args.test_label_path, cv2.IMREAD_GRAYSCALE)

            # 保存图片
            cv2.imwrite(filename='%spredict_color_%d.png' % (log_path, step),
                        img=color_predicts(img=test_predict))

            result = iou(y_pre=np.reshape(test_predict, -1),
                         y_true=np.reshape(test_label, -1))

            print("======================%d======================" % step)
            for key in result.keys():
                offset = 40 - key.__len__()
                print(key + ' ' * offset + '%.4f' % result[key])

            test_summary = tf.Summary(value=[
                tf.Summary.Value(tag=key, simple_value=result[key])
                for key in result.keys()
            ])

            # 记录summary
            summary_writer.add_summary(test_summary, step)
            summary_writer.flush()
    saver.save(sess, model_path, write_meta_graph=True, global_step=100000)
                              (512, 512)).reshape((512, 512, 1))
     img = np.concatenate((img_rgb, img_thermal), axis=2)
 else:
     img_rgb = cv2.imread(line[0], cv2.IMREAD_COLOR)
     img_rgb = cv2.resize(img_rgb, (512, 512))
     img = img_rgb
 test_predict = multi_scale_predict(
     image=img,
     input_placeholder=image,
     is_training_placeholder=model._is_training,
     logits_prob_node=logits_prob,
     sess=sess,
     multi=False,
     size=512)
 g_truth = cv2.resize(np.array(Image.open(line[2])), (512, 512))
 result = iou(y_pre=np.reshape(test_predict, -1),
              y_true=np.reshape(g_truth, -1))
 label_valid = np.unique(g_truth)
 for key in sorted(result.keys()):
     if key in key_map and not key_map[key] in label_valid:
         continue
     if np.isnan(result[key]) or result[key] != result[key]:
         continue
     if not key in all_tests_result:
         all_tests_result[key] = [result[key]]
     else:
         all_tests_result[key].append(result[key])
 test_label = color_predicts(img=g_truth)
 test_predict = color_predicts(img=test_predict)
 full_image = np.concatenate((img_rgb, test_label, test_predict),
                             axis=1)
 out_name = line[0].split('/')[-1].split('.')[0] + '_predict.jpg'