def predict_model_cold_users(self):
     res = []
     for user in self.rg.testColdUserSet_u.keys():
         for item in self.rg.testColdUserSet_u[user].keys():
             rating = self.rg.testColdUserSet_u[user][item]
             pred = self.predict(user, item)
             # denormalize
             pred = denormalize(pred, self.config.min_val, self.config.max_val)
             pred = self.checkRatingBoundary(pred)
             res.append([user, item, rating, pred])
     rmse = Metric.RMSE(res)
     return rmse
    def valid_model(self):
        res = []
        for ind, entry in enumerate(self.rg.validSet()):
            user, item, rating = entry
            # predict
            prediction = self.predict(user, item)
            # denormalize
            prediction = denormalize(prediction, self.config.min_val, self.config.max_val)

            pred = self.checkRatingBoundary(prediction)
            # add prediction in order to measure
            # self.dao.testData[ind].append(pred)
            res.append([user, item, rating, pred])
        rmse = Metric.RMSE(res)
        mae = Metric.MAE(res)
        self.iter_rmse.append(rmse)  # for plot
        self.iter_mae.append(mae)
        return rmse, mae
Пример #3
0
 def predict_model(self):
     '''为测试集中的用户预测'''
     res = []
     for ind, entry in enumerate(self.rg.testSet()):
         user, item, rating = entry
         rating_length = len(self.rg.trainSet_u[user])
         #冷启动用户不进行预测评分
         if rating_length <= self.config.coldUserRating:
             continue
         to = time.time()
         prediction = self.predict(user, item)
         ti = time.time()
         pre_time = to - ti
         if self.config.verbose:
             print(user, item, rating, prediction, pre_time)
         res.append([user, item, rating, prediction])
     rmse = Metric.RMSE(res)
     mae = Metric.MAE(res)
     return rmse, mae
Пример #4
0
    def predict_model(self):
        res = []
        for ind, entry in enumerate(self.rg.testSet()):
            user, item, rating = entry
            rating_length = len(self.rg.trainSet_u[user]) # remove cold start users for test
            if rating_length <= self.config.coldUserRating:
                continue

            prediction = self.predict(user, item)
            # denormalize
            prediction = denormalize(prediction, self.config.min_val, self.config.max_val)

            pred = self.checkRatingBoundary(prediction)
            # add prediction in order to measure
            res.append([user, item, rating, pred])
        rmse = Metric.RMSE(res)
        mae = Metric.MAE(res)
        self.iter_rmse.append(rmse)  # for plot
        self.iter_mae.append(mae)
        return rmse, mae
Пример #5
0
 def predict_model(self):
     '''为测试集中的用户预测'''
     res = []
     for ind, entry in enumerate(self.rg.testSet()):
         user, item, rating = entry
         rating_length = len(self.rg.trainSet_u[user])
         #冷启动用户不进行预测评分
         if rating_length <= self.config.coldUserRating:
             continue
         to = time.time()
         prediction = self.predict(user, item)
         ti = time.time()
         pre_time = to-ti
         if self.config.verbose:
             print(user, item, rating, prediction, pre_time)
         res.append([user, item, rating, prediction])
     ##################################################333
     #0304更新推荐结果
     userList = list(set([i[0] for i in res]))
     preDict = {}
     for i in res:
         if i[0] not in preDict.keys():
             preDict[i[0]] = []
         preDict[i[0]].append(i[1:])
     finalRes = {}
     for i in userList:
         finalRes[i] = []
         dic = {}
         for j in preDict[i]:
             dic[j[0]] = preDict[i][-1]
         #z = sorted(dic)[:10]
         list1= sorted(dic.items(),key=lambda x:x[1])
         z = [i[0] for i in list1][:5]
         finalRes[i] = z 
     ####################################################33
     rmse = Metric.RMSE(res)
     mae = Metric.MAE(res)
     return rmse, mae, finalRes