def __init__(self, lags=10, mode="abs"): self.lags = lags modes = ["abs", "square"] if mode not in modes: raise ValueError("`mode` must be one of " + str(modes) + ".") self.mode = mode self.mr = MinutelyReturns() super().__init__()
class Autocorrelation(Metric): def __init__(self, lag=1, window=30): self.lag = lag self.window = window self.mr = MinutelyReturns() super().__init__() def compute(self, df): df = pd.Series(self.mr.compute(df)) df = df.rolling(self.window, center=True).apply(lambda x: x.autocorr(lag=self.lag), raw=False) return df.dropna().tolist() def visualize(self, simulated, real, plot_real=True): min_sim = min([len(x) for x in simulated.values()]) min_size = min(min_sim, len(real)) random.shuffle(real) real = real[:min_size] for k, v in simulated.items(): random.shuffle(v) simulated[k] = v[:min_size] self.hist(simulated, real, title="Autocorrelation (lag={}, window={})".format( self.lag, self.window), xlabel="Correlation coefficient", log=False, plot_real=plot_real)
class VolatilityClustering(Metric): def __init__(self, lags=10, mode="abs"): self.lags = lags modes = ["abs", "square"] if mode not in modes: raise ValueError("`mode` must be one of " + str(modes) + ".") self.mode = mode self.mr = MinutelyReturns() super().__init__() def compute(self, df): df = pd.Series(self.mr.compute(df)) if self.mode == "abs": df = abs(df) elif self.mode == "square": df = df**2 return [[df.autocorr(lag) for lag in range(1, self.lags + 1)]] def visualize(self, simulated, real, plot_real=True): self.line(simulated, real, "Volatility Clustering/Long Range Dependence", "Lag", "Correlation coefficient", plot_real=plot_real)
class ReturnsVolatilityCorrelation(Metric): def __init__(self, intervals=4): self.mr = MinutelyReturns() def compute(self, df): returns = np.array(self.mr.compute(df)) volatility = abs(returns) return [np.corrcoef(returns, volatility)[0,1]] def visualize(self, simulated): self.hist(simulated, title="Returns/Volatility Correlation", xlabel="Correlation coefficient", bins=50)
class VolumeVolatilityCorrelation(Metric): def __init__(self, intervals=4): self.mr = MinutelyReturns() def compute(self, df): volatility = abs(np.array(self.mr.compute(df))) volume = df["volume"].iloc[1:].values return [np.corrcoef(volume, volatility)[0, 1]] def visualize(self, simulated): self.hist(simulated, title="Volume/Volatility Correlation", xlabel="Correlation coefficient")
class AggregationNormality(Metric): def __init__(self): self.mr = MinutelyReturns() def compute(self, df): df = df[["close"]].resample("10T").last() return self.mr.compute(df) def visualize(self, simulated): self.hist(simulated, "Aggregation Normality (10 minutes)", "Log Returns", log=True, clip=.05)
class Kurtosis(Metric): def __init__(self, intervals=4): self.intervals = intervals self.mr = MinutelyReturns() def compute(self, df): ks = [] for i in range(1,self.intervals+1): temp = df[["close"]].resample("{}T".format(i)).last() rets = self.mr.compute(temp) ks.append(kurtosis(rets)) return [ks] def visualize(self, simulated): self.line(simulated, title="Kurtosis", xlabel="Time scale (min)", ylabel="Average kurtosis", logy=True)
def __init__(self, intervals=4): self.mr = MinutelyReturns()
def __init__(self, lag=1, window=30): self.lag = lag self.window = window self.mr = MinutelyReturns() super().__init__()
def __init__(self): self.mr = MinutelyReturns()