Пример #1
0
def optim_step(step, model, x, targets, optimizer, loss_fn, params):
    with tf.GradientTape() as g:
        outputs = model(x, training=True)
        reg_loss = tf.add_n(model.losses)
        loss_dict = loss_fn(targets, outputs, params)
        loss = loss_dict["loss"] + reg_loss

    if params["method"] == "ES-DFM" or params["method"] == "DFM":
        return
    labelloss = None
    if params["method"] == "3class":
        labelprint = np.mean(targets["label"], axis=0)
        pctr = np.mean(tf.nn.softmax(outputs["logits"]), axis=0)

        print "train_label:"
        print labelprint
        print "train_pctr:%f"
        print pctr
    elif params["method"] == "win_time":
        labelprint = np.mean(targets["label"], axis=0)
        pctr = np.mean(tf.nn.sigmoid(outputs["cv_logits"]), axis=0)
        ptime = np.mean(tf.nn.sigmoid(outputs["time_logits"]), axis=0)
        print "train_label:"
        print labelprint
        print "train_pctr:%f"
        print pctr
        print "train_ptime:%f"
        print ptime
        labelloss = np.reshape(targets["label"][:, 0].numpy(), (-1, 1))
        probloss = np.reshape(
            tf.nn.sigmoid(outputs["logits"][:, 0]).numpy(), (-1, 1))
        logitloss = np.reshape(outputs["logits"][:, 0].numpy(), (-1, 1))
    elif params["method"] == "win_time_test":
        labelloss = np.reshape(targets["label"][:, 0].numpy(), (-1, 1))
        probloss = np.reshape(
            tf.nn.sigmoid(outputs["logits"]).numpy(), (-1, 1))
        logitloss = np.reshape(outputs["logits"].numpy(), (-1, 1))
    else:
        labelloss = np.reshape(targets["label"].numpy(), (-1, 1))
        probloss = np.reshape(
            tf.nn.sigmoid(outputs["logits"]).numpy(), (-1, 1))
        logitloss = np.reshape(outputs["logits"].numpy(), (-1, 1))

    llloss = cal_llloss_with_logits(labelloss, logitloss)
    print "step%d test_loss:%f" % (step, llloss)
    auc = cal_auc(labelloss, probloss)
    print "step%d test_auc:%f" % (step, auc)
    print "train_loss:%f" % loss_dict["loss"]
    print "train_reg_loss:%f" % reg_loss
    print "step%d train_all_loss:%f" % (step, loss)
    trainable_variables = model.trainable_variables
    gradients = g.gradient(loss, trainable_variables)
    optimizer.apply_gradients(zip(gradients, trainable_variables))
Пример #2
0
def test(model, test_data, params):
    all_logits = []
    all_probs = []
    all_labels = []
    for step, (batch_x, batch_y) in enumerate(tqdm(test_data), 1):
        logits = model(batch_x, training=False)["logits"]
        all_logits.append(logits.numpy())
        all_labels.append(batch_y.numpy())
        all_probs.append(tf.math.sigmoid(logits))
    all_logits = np.reshape(np.concatenate(all_logits, axis=0), (-1, 1))
    all_labels = np.reshape(np.concatenate(all_labels, axis=0), (-1, 1))
    all_probs = np.reshape(np.concatenate(all_probs, axis=0), (-1, 1))
    llloss = cal_llloss_with_logits(all_labels, all_logits)
    auc = cal_auc(all_labels, all_probs)
    prauc = cal_prauc(all_labels, all_probs)
    batch_size = all_logits.shape[0]
    return auc
Пример #3
0
def test(model, test_data, params):
    all_logits = []
    all_probs = []
    all_labels = []
    for step, (batch_x, batch_y) in enumerate(tqdm(test_data), 1):
        logits = model.predict(batch_x)
        all_logits.append(logits.numpy())
        all_labels.append(batch_y.numpy())
        all_probs.append(tf.sigmoid(logits))
    all_logits = np.reshape(np.concatenate(all_logits, axis=0), (-1,))
    all_labels = np.reshape(np.concatenate(all_labels, axis=0), (-1,))
    all_probs = np.reshape(np.concatenate(all_probs, axis=0), (-1,))
    if params["method"] == "FNC":
        all_probs = all_probs / (1-all_probs+1e-8)
        llloss = cal_llloss_with_prob(all_labels, all_probs)
    else:
        llloss = cal_llloss_with_logits(all_labels, all_logits)
    batch_size = all_logits.shape[0]
    pred = all_probs >= 0.5
    auc = cal_auc(all_labels, all_probs)
    prauc = cal_prauc(all_labels, all_probs)
    return auc, prauc, llloss
Пример #4
0
def test(model, test_data, params, before=False):
    all_logits = []
    all_probs = []
    all_labels = []
    for step, (batch_x, batch_y) in enumerate(tqdm(test_data), 1):
        logits = model(batch_x, training=False)["logits"]
        all_logits.append(logits.numpy())
        all_labels.append(batch_y.numpy())

        if False:  #params["method"] == "3class":
            #prop = tf.nn.softmax(logits)
            #prop_00 = tf.reshape(prop[:, 0], (-1, 1)) #tf.slice(prop, [0, 0],[-1, 1])
            #prop_01 = tf.reshape(prop[:, 1], (-1, 1))
            #prop_11 = tf.reshape(prop[:, 2], (-1, 1))
            #prop_1 = prop_01+prop_11
            all_probs.append(logits)
        else:

            all_probs.append(tf.math.sigmoid(logits))
    llloss = 0
    if params["method"] == "3class":
        all_logits = np.reshape(np.concatenate(all_logits, axis=0), (-1, 3))
        all_labels = np.reshape(np.concatenate(all_labels, axis=0), (-1, 3))
        all_probs = np.reshape(np.concatenate(all_probs, axis=0), (-1, 3))
    elif params["method"] == "win_time" or params["method"] == "test":
        all_logits = np.reshape(np.concatenate(all_logits, axis=0), (-1, 2))
        all_labels = np.reshape(np.concatenate(all_labels, axis=0), (-1, 2))
        all_probs = np.reshape(np.concatenate(all_probs, axis=0), (-1, 2))
    elif params["method"] == "delay_win_adapt":
        #all_logits = np.reshape(np.concatenate(all_logits, axis=0), (-1, 2))
        all_probs = np.reshape(np.concatenate(all_probs, axis=0), (-1, 2))
    elif params["method"] == "win_adapt":  #pre win_adapt
        all_probs = np.reshape(np.concatenate(all_probs, axis=0), (-1, 4))
        all_labels = np.reshape(np.concatenate(all_labels, axis=0), (-1, 4))

    elif (params["method"] == "delay_win_select") and not before:
        #all_logits = np.reshape(np.concatenate(all_logits, axis=0), (-1, 2))
        all_probs = np.reshape(np.concatenate(all_probs, axis=0), (-1, 4))
        all_labels = np.reshape(np.concatenate(all_labels, axis=0), (-1, 11))
    elif (params["method"] == "delay_win_select") and before:
        all_probs = np.reshape(np.concatenate(all_probs, axis=0), (-1, 4))
        all_labels = np.reshape(np.concatenate(all_labels, axis=0), (-1, 1))
    else:
        all_logits = np.reshape(np.concatenate(all_logits, axis=0), (-1, 1))
        all_labels = np.reshape(np.concatenate(all_labels, axis=0), (-1, 1))
        all_probs = np.reshape(np.concatenate(all_probs, axis=0), (-1, 1))

    if params["method"] == "FNC":
        all_probs = all_probs / (1 - all_probs + 1e-8)
        llloss = cal_llloss_with_prob(all_labels, all_probs)
    elif params["method"] == "3class":
        llloss = cal_softmax_cross_entropy_loss(all_labels, all_probs)
    elif params["method"] == "delay_win_adapt":
        cv_prop = tf.reshape(tf.cast(all_probs[:, 0], tf.float32), (-1, 1))
        time_prop = tf.reshape(tf.cast(all_probs[:, 1], tf.float32), (-1, 1))
        time_prop_numpy = np.reshape(time_prop.numpy(), (-1, 1))
        print "pcvr"
        print tf.reduce_mean(cv_prop)
        print "ptime"
        print tf.reduce_mean(time_prop)
        return time_prop_numpy
    elif params["method"] == "win_adapt" or params[
            "method"] == "delay_win_select":
        cv_prop = tf.reshape(tf.cast(all_probs[:, 0], tf.float32), (-1, 1))
        cv_prop_numpy = np.reshape(cv_prop.numpy(), (-1, 1))
        time15_prop = tf.reshape(tf.cast(all_probs[:, 1], tf.float32), (-1, 1))
        time15_prop_numpy = np.reshape(time15_prop.numpy(), (-1, 1))
        time30_prop = tf.reshape(tf.cast(all_probs[:, 2], tf.float32), (-1, 1))
        time30_prop_numpy = np.reshape(time30_prop.numpy(), (-1, 1))
        time60_prop = tf.reshape(tf.cast(all_probs[:, 3], tf.float32), (-1, 1))
        time60_prop_numpy = np.reshape(time60_prop.numpy(), (-1, 1))

        cv_label = tf.reshape(tf.cast(all_labels[:, 0], tf.float32), (-1, 1))
        cv_label_numpy = np.reshape(cv_label.numpy(), (-1, 1))

        if not before:

            time_15_label = tf.reshape(tf.cast(all_labels[:, 1], tf.float32),
                                       (-1, 1))
            time_15_label_numpy = np.reshape(time_15_label.numpy(), (-1, 1))

        print "pcvr"
        print tf.reduce_mean(cv_prop)
        print "ptime15"
        print tf.reduce_mean(time15_prop)
        print "ptime30"
        print tf.reduce_mean(time30_prop)
        print "ptime60"
        print tf.reduce_mean(time60_prop)
        if not before:
            print 'time_15_label_numpy'
            print time_15_label_numpy
            print 'cv_prop_numpy*time15_prop_numpy'
            print cv_prop_numpy * time15_prop_numpy

            win_auc = cal_auc(time_15_label_numpy,
                              cv_prop_numpy * time15_prop_numpy)
            print "win_auc"
            print win_auc

        cv_auc = cal_auc(cv_label_numpy, cv_prop_numpy)
        print "cv_auc"
        print cv_auc

        return all_probs  #, time15_prop_numpy

    elif params["method"] == "win_time" or params["method"] == "test":
        cv_prop = tf.reshape(tf.cast(all_probs[:, 0], tf.float32), (-1, 1))
        time_prop = tf.reshape(tf.cast(all_probs[:, 1], tf.float32), (-1, 1))
        win_label = tf.reshape(tf.cast((all_labels[:, 1]), tf.float32),
                               (-1, 1))
        cv_label = tf.reshape(tf.cast((all_labels[:, 0]), tf.float32), (-1, 1))
        #cv_prop = all_probs[:,0]
        #time_prop = all_probs[:,1]
        #win_label = all_labels[:, 1]
        #cv_label = all_labels[:, 0]

        win_prop_1 = cv_prop * time_prop
        win_prop_0 = (1 - cv_prop) + cv_prop * (1 - time_prop)
        print cv_prop.shape
        print time_prop.shape
        print win_label.shape
        print cv_label.shape
        loss_win = -tf.reduce_mean(
            tf.math.log(win_prop_1) * win_label + tf.math.log(win_prop_0) *
            (1 - win_label))
        loss_cv = -tf.reduce_mean(
            tf.math.log(cv_prop) * cv_label + tf.math.log(1 - cv_prop) *
            (1 - cv_label))

        print "win_label"
        print tf.reduce_mean(win_label)
        print "cv_label"
        print tf.reduce_mean(cv_label)
        print "pcvr"
        print tf.reduce_mean(cv_prop)
        print "pwin"
        print tf.reduce_mean(win_prop_1)
        print "ptime"
        print tf.reduce_mean(time_prop)
        print "test_loss_win"
        print loss_win
        print "test_loss_cv"
        print loss_cv

        win_prop_1_numpy = np.reshape(win_prop_1.numpy(), (-1, 1))
        win_prop_0_numpy = np.reshape(win_prop_0.numpy(), (-1, 1))
        win_label_numpy = np.reshape(win_label.numpy(), (-1, 1))
        cv_label_numpy = np.reshape(cv_label.numpy(), (-1, 1))
        cv_prop_numpy = np.reshape(cv_prop.numpy(), (-1, 1))
        print win_prop_1_numpy.shape, win_prop_0_numpy.shape, win_label_numpy.shape, cv_label_numpy.shape

        win_auc = cal_auc(win_label_numpy, win_prop_1_numpy)
        win2_auc = cal_auc(cv_label_numpy, win_prop_1_numpy)
        cv_auc = cal_auc(cv_label_numpy, cv_prop_numpy)
        print "win_auc"
        print win_auc
        print "win2_auc"
        print win2_auc

        print "cv_auc"
        print cv_auc
        return cv_auc, win_auc, tf.reduce_mean(cv_label), tf.reduce_mean(
            cv_label), time_prop
    elif params["method"] == "win_time_test":
        print 'test win_time_test'
        print all_labels.shape, all_logits.shape
        all_labels = np.reshape(np.reshape(all_labels, (-1, 2))[:, 0], (-1, ))
        all_logits = np.reshape(all_logits, (-1, ))
        all_probs = np.reshape(all_probs, (-1, ))
        print all_labels.shape, all_logits.shape, all_probs.shape
        #cv_label_numpy = np.reshape(cv_label.numpy(), (-1, 1))
        #labelloss = np.reshape(targets["label"][:,0].numpy(),(-1,1))
        #probloss = np.reshape(tf.nn.sigmoid(outputs["logits"]).numpy(),(-1,1))
        #logitloss = np.reshape(outputs["logits"].numpy(),(-1,1))
        #llloss = cal_llloss_with_logits(labelloss, logitloss)
        #print "step%d test_loss:%f" %(step,llloss)
        #auc = cal_auc(labelloss, probloss)

        llloss = cal_llloss_with_logits(all_labels, all_logits)
    else:
        llloss = cal_llloss_with_logits(all_labels, all_logits)

    #llloss = cal_llloss_with_logits(all_labels, all_logits)
    labelprint = np.mean(all_labels, axis=0)
    pctr = np.mean(tf.nn.softmax(all_probs), axis=0)
    print "test_label:"
    print labelprint
    print "test_pctr"
    print pctr
    print "test_loss"
    print llloss
    if params["method"] == "3class":
        auc = 0
        prauc = 0

        batch_size = all_logits.shape[0]
        return auc, labelprint, pctr
    print "test_loss:%f" % llloss
    auc = cal_auc(all_labels, all_probs)
    print "test_auc:%f" % auc
    prauc = cal_prauc(all_labels, all_probs)
    print "test_prauc:%f" % prauc
    batch_size = all_logits.shape[0]
    return auc, labelprint, pctr
Пример #5
0
def test(model, test_data, params):
    all_logits = []
    all_probs = []
    all_labels = []
    all_props = []
    for step, (batch_x, batch_y) in enumerate(tqdm(test_data), 1):
        logits = model.predict(batch_x)

        all_logits.append(logits.numpy())
        all_labels.append(batch_y.numpy())

        if params["method"] == "3class":
            prop = tf.nn.softmax(logits)
            prop_00 = tf.reshape(prop[:, 0],
                                 (-1, 1))  #tf.slice(prop, [0, 0],[-1, 1])
            prop_01 = tf.reshape(prop[:, 1], (-1, 1))
            prop_11 = tf.reshape(prop[:, 2], (-1, 1))
            prop_1 = prop_01 + prop_11
            all_probs.append(prop_1)
            all_props.append(prop)
        elif params["method"] == "delay_win_time" or params["method"] == "likeli" or params["method"] == "test" or params["method"] == "delay_win_time_iw"\
    or params["method"] == "delay_win_time_sep" or params["method"] == "delay_win_adapt" or params["method"] == "" or params["method"] == "ES-DFM-win" or params["method"] == "ES-DFM-wines":
            all_probs.append(tf.sigmoid(logits[:, 0]))
            all_props.append(tf.sigmoid(logits[:, 0]))

        else:
            all_probs.append(tf.sigmoid(logits))
            all_props.append(tf.sigmoid(logits))

    if params["method"] == "3class":
        all_logits = np.reshape(np.concatenate(all_logits, axis=0), (-1, 3))
        all_labels = np.reshape(np.concatenate(all_labels, axis=0), (-1, ))
        all_probs = np.reshape(np.concatenate(all_probs, axis=0), (-1, ))
        all_props = np.reshape(np.concatenate(all_props, axis=0), (-1, 3))
    elif params["method"] == "delay_win_time" or params[
            "method"] == "likeli" or params["method"] == "test" or params[
                "method"] == "delay_win_time_sep" or params[
                    "method"] == "delay_win_adapt" or params[
                        "method"] == "" or params[
                            "method"] == "delay_win_time_iw" or params[
                                "method"] == "ES-DFM-win" or params[
                                    "method"] == "ES-DFM-wines":
        all_logits = np.reshape(np.concatenate(all_logits, axis=0), (-1, 2))
        all_labels = np.reshape(np.concatenate(all_labels, axis=0), (-1, ))
        all_probs = np.reshape(np.concatenate(all_probs, axis=0), (-1, ))
        all_props = np.reshape(np.concatenate(all_props, axis=0), (-1, ))
    elif params["method"] == "delay_win_select":
        all_logits = np.reshape(np.concatenate(all_logits, axis=0), (-1, ))
        all_labels = np.reshape(np.concatenate(all_labels[:, 0], axis=0),
                                (-1, ))
        all_probs = np.reshape(np.concatenate(all_probs, axis=0), (-1, ))
        all_props = np.reshape(np.concatenate(all_props, axis=0), (-1, ))
    else:
        all_logits = np.reshape(np.concatenate(all_logits, axis=0), (-1, ))
        all_labels = np.reshape(np.concatenate(all_labels, axis=0), (-1, ))
        all_probs = np.reshape(np.concatenate(all_probs, axis=0), (-1, ))
        all_props = np.reshape(np.concatenate(all_props, axis=0), (-1, ))

    if params["method"] == "FNC":
        all_probs = all_probs / (1 - all_probs + 1e-8)
        llloss = cal_llloss_with_prob(all_labels, all_probs)

    elif params["method"] == "FNC10":
        all_probs = all_probs * 2
        llloss = cal_llloss_with_prob(all_labels, all_probs)
    elif params["method"] == "3class":
        llloss = cal_llloss_with_prob(all_labels, all_probs)
    elif params["method"] == "delay_win_time" or params[
            "method"] == "likeli" or params["method"] == "test" or params[
                "method"] == "delay_win_time_sep" or params[
                    "method"] == "delay_win_adapt" or params[
                        "method"] == "" or params[
                            "method"] == "delay_win_time_iw" or params[
                                "method"] == "ES-DFM-win" or params[
                                    "method"] == "ES-DFM-wines":
        cv_prop = tf.reshape(tf.cast(all_probs, tf.float32), (-1, 1))
        cv_label = tf.reshape(tf.cast((all_labels), tf.float32), (-1, 1))

        #loss_cv = -tf.reduce_mean(tf.math.log(cv_prop) * cv_label + tf.math.log(1-cv_prop)* (1-cv_label))

        #print "cv_label"
        #print tf.reduce_mean(cv_label)
        #print "pcvr"
        #print tf.reduce_mean(cv_prop)
        #print "test_loss_cv"
        #print loss_cv

        cv_label_numpy = np.reshape(cv_label.numpy(), (-1, 1))
        cv_prop_numpy = np.reshape(cv_prop.numpy(), (-1, 1))
        cv_label_numpy_1 = np.reshape(cv_label.numpy(), (-1))
        cv_prop_numpy_1 = np.reshape(cv_prop.numpy(), (-1))
        llloss = cal_llloss_with_prob(all_labels, all_probs)

        cv_auc = cal_auc(cv_label_numpy, cv_prop_numpy)
        prauc = cal_prauc(all_labels, all_probs)

        ctr = np.mean(cv_label_numpy, axis=0)
        pctr = np.mean(cv_prop_numpy, axis=0)

        ece = ece_score(cv_label_numpy_1, cv_prop_numpy_1)
        #print "cv_auc"
        #print cv_auc
        return cv_auc, prauc, llloss, ctr, pctr, all_labels, all_probs, ece

    else:
        llloss = cal_llloss_with_logits(all_labels, all_logits)
    batch_size = all_logits.shape[0]
    pred = all_probs >= 0.5

    auc = cal_auc(all_labels, all_probs)
    prauc = cal_prauc(all_labels, all_probs)

    ctr = np.mean(all_labels, axis=0)
    pctr = np.mean(all_probs, axis=0)
    prop = np.mean(all_props, axis=0)

    #cv_label_numpy_1 = np.reshape(all_labels.numpy(),(-1))
    #cv_prop_numpy_1 = np.reshape(all_probs.numpy(),(-1))
    ece = ece_score(all_labels, all_probs)
    #ece = ece_score(cv_label_numpy_1,cv_prop_numpy_1)
    #print "test_label:%f"
    #print ctr
    #print "test_prop:"
    #print prop
    #print "test_pctr:"
    #print pctr

    return auc, prauc, llloss, ctr, pctr, all_labels, all_probs, ece