def evaluate(self, X):
        qid_unique = np.unique(X["qid"])  #去重并排序
        n = len(qid_unique)
        losses = np.zeros(n)
        ndcgs = np.zeros(n)
        ndcgs_all = np.zeros(n)
        errs = np.zeros(n)

        for e, qid in enumerate(qid_unique):
            ind = np.where(X["qid"] == qid)[0]  #提取出的查询编号
            feed_dict = self._get_feed_dict(X, ind, training=False)
            loss, score = self.sess.run((self.loss, self.score),
                                        feed_dict=feed_dict)
            df = pd.DataFrame({
                "label": X["label"][ind].flatten(),
                "score": score.flatten()
            })
            df.sort_values("score", ascending=False, inplace=True)

            losses[e] = loss
            ndcgs[e] = ndcg(df["label"])
            ndcgs_all[e] = ndcg(df["label"], top_ten=False)
            errs[e] = calc_err(df["label"])
        losses_mean = np.mean(losses)
        ndcgs_mean = np.mean(ndcgs)
        ndcgs_all_mean = np.mean(ndcgs_all)
        errs_mean = np.mean(errs)
        return losses_mean, errs_mean, ndcgs_mean, ndcgs_all_mean
Пример #2
0
def evaluate_tile(valset, probs, tiles_per_pos, threshold):
    """tile mode 的验证"""

    val_groups = np.array(valset.tileIDX)

    order = np.lexsort((probs, val_groups))  # 对 tile 按预测概率排序
    val_groups = val_groups[order]
    val_probs = probs[order]

    val_index = np.array([prob > threshold for prob in val_probs])

    # 制作分类用的 label:根据计数标签 = n,前 n * tiles_per_pos 个 tile 为阳性
    labels = np.zeros(len(val_probs))
    for i in range(1, len(val_probs) + 1):
        if i == len(val_probs) or val_groups[i] != val_groups[i - 1]:
            labels[i - valset.labels[val_groups[i - 1]] * tiles_per_pos:i] = [
                1
            ] * valset.labels[val_groups[i - 1]] * tiles_per_pos

    # 计算错误率、FPR、FNR
    err, fpr, fnr = calc_err(val_index, labels)
    return err, fpr, fnr