Пример #1
0
    def tb_log_valid_epoch_vars(engine, logger, event_name):
        log_tag = 'valid_iter'
        # log monitored epoch metrics
        epoch_metrics = engine.state.epoch_metrics
        confusion_matrix = epoch_metrics['confusion_matrix']  # [1:, 1:]
        ious = calculate_iou(confusion_matrix)
        dices = calculate_dice(confusion_matrix)

        mean_ious = np.mean(list(ious.values()))
        mean_dices = np.mean(list(dices.values()))
        logger.writer.add_scalar('mIoU', mean_ious, engine.state.epoch)
        logger.writer.add_scalar('mIoU', mean_dices, engine.state.epoch)
Пример #2
0
    def validator_epoch_comp_callback(engine):

        # log ignite metrics
        # logging_logger.info(engine.state.metrics)
        # ious = engine.state.metrics['iou']
        # msg = 'IoU: '
        # for ins_id, iou in enumerate(ious):
        #     msg += '{:d}: {:.3f}, '.format(ins_id + 1, iou)
        # logging_logger.info(msg)
        # logging_logger.info('nonzero mean IoU for all data: {:.3f}'.format(ious[ious > 0].mean()))

        # log monitored epoch metrics
        epoch_metrics = engine.state.epoch_metrics

        ######### NOTICE: Two metrics are available but different ##########
        ### 1. mean metrics for all data calculated by confusion matrix ####
        '''
        compared with using confusion_matrix[1:, 1:] in original code,
        we use the full confusion matrix and only present non-background result
        '''
        confusion_matrix = epoch_metrics['confusion_matrix']  # [1:, 1:]
        ious = calculate_iou(confusion_matrix)
        dices = calculate_dice(confusion_matrix)

        mean_ious = np.mean(list(ious.values()))
        mean_dices = np.mean(list(dices.values()))
        std_ious = np.std(list(ious.values()))
        std_dices = np.std(list(dices.values()))

        logging_logger.info('mean IoU: %.3f, std: %.3f, for each class: %s' %
                            (mean_ious, std_ious, ious))
        logging_logger.info('mean Dice: %.3f, std: %.3f, for each class: %s' %
                            (mean_dices, std_dices, dices))

        ### 2. mean metrics for all data calculated by definition ###
        iou_data_mean = epoch_metrics['iou'].data_mean()
        dice_data_mean = epoch_metrics['dice'].data_mean()

        logging_logger.info('data (%d) mean IoU: %.3f, std: %.3f' %
                            (len(iou_data_mean['items']),
                             iou_data_mean['mean'], iou_data_mean['std']))
        logging_logger.info('data (%d) mean Dice: %.3f, std: %.3f' %
                            (len(dice_data_mean['items']),
                             dice_data_mean['mean'], dice_data_mean['std']))

        # record metrics in trainer every epoch
        # trainer.state.metrics_records[trainer.state.epoch] = \
        #     {'miou': mean_ious, 'std_miou': std_ious,
        #     'mdice': mean_dices, 'std_mdice': std_dices}

        trainer.state.metrics_records[trainer.state.epoch] = \
            {'miou': iou_data_mean['mean'], 'std_miou': iou_data_mean['std'],
            'mdice': dice_data_mean['mean'], 'std_mdice': dice_data_mean['std']}
Пример #3
0
    def test_model(test_loader, net):

        net.eval()
        device = params['device']
        batch_size = params['batch_size']
        test_loss = 0
        test_acc = 0
        test_iou = {}
        with torch.no_grad():
            for batch_index, (img, target) in enumerate(test_loader):
                img, target = img.to(device), target.to(device)

                if model_version == 'deeplab':
                    output = net(img)['out']
                else:
                    output = net(img)

                target = target.long()
                loss = criterion(output, target).item()
                test_loss += loss

                pred = aux.get_predicted_image(output)

                output, target, pred = output.detach().cpu(), target.detach(
                ).cpu(), pred.detach().cpu()
                # compute number of correct predictions in the batch
                test_accuracy = metrics.calculate_accuracy(output, target)
                test_acc += test_accuracy

                iou_inds = metrics.calculate_iou(pred, target)

                for key in iou_inds:
                    if key not in test_iou:
                        test_iou[key] = iou_inds[key]
                    else:
                        test_iou[key] += iou_inds[key]

        test_loss = test_loss / (len(test_loader.dataset) / batch_size)
        test_acc = 100 * (test_acc / (len(test_loader.dataset) / batch_size))
        test_iou = metrics.convert_batched_iou(
            test_iou, (len(test_loader.dataset) / batch_size))
        mIoU = metrics.get_mIoU(test_iou)

        mIoU_desc = metrics.miou_to_string(test_iou)
        return test_loss, test_acc, mIoU, mIoU_desc
Пример #4
0
    def val_one_epoch(val_loader, net):

        net.eval()
        device = params['device']
        batch_size = params['batch_size']
        val_loss = 0
        val_acc = 0
        val_iou = {}
        pred = 0
        with torch.no_grad():
            for batch_index, (img, target) in enumerate(val_loader):
                img, target = img.to(device), target.to(device)
                output = net(img)
                target = target.long()

                loss = criterion(output, target).item()
                val_loss += loss

                pred = aux.get_predicted_image(output)
                # Desvinculamos el valor de los nuevos targets y los pasamos a CPU para calcular las métricas
                output, target, pred = output.detach().cpu(), target.detach(
                ).cpu(), pred.detach().cpu()

                # compute number of correct predictions in the batch
                val_accuracy = metrics.calculate_accuracy(output, target)
                val_acc += val_accuracy
                iou_inds = metrics.calculate_iou(pred, target)

                for key in iou_inds:
                    if key not in val_iou:
                        val_iou[key] = iou_inds[key]
                    else:
                        val_iou[key] += iou_inds[key]
                    #print('Batch index: {}, loss: {}, accuracy: {:.2f}%'.format(batch_index, loss, val_accuracy * 100))
        # Average acc across all correct predictions batches now
        val_loss = val_loss / (len(val_loader.dataset) / batch_size)
        val_acc = 100 * (val_acc / (len(val_loader.dataset) / batch_size))
        val_iou = metrics.convert_batched_iou(
            val_iou, (len(val_loader.dataset) / batch_size))
        mIoU = metrics.get_mIoU(val_iou)

        #print('\nValidation set: Average loss: {:.4f}, Accuracy: {:.0f}%, mIoU: {:.4f}\n'.format(val_loss,  val_acc, mIoU))
        mIoU_desc = metrics.miou_to_string(val_iou)
        return val_loss, val_acc, mIoU, mIoU_desc
Пример #5
0
def evaluator_epoch_comp_callback(engine):
    # save masks for each batch
    batch_output = engine.state.output
    input_filenames = batch_output['input_filename']
    masks = batch_output['mask']

    for i, input_filename in enumerate(input_filenames):
        mask = cv2.resize(masks[i],
                          dsize=(utils.cropped_width, utils.cropped_height),
                          interpolation=cv2.INTER_AREA)

        # if pad:
        #     h_start, w_start = utils.h_start, utils.w_start
        #     h, w = mask.shape
        #     # recover to original shape
        #     full_mask = np.zeros((original_height, original_width))
        #     full_mask[h_start:h_start + h, w_start:w_start + w] = t_mask
        #     mask = full_mask
        #print("Input Filename-->", input_filename)
        #instrument_folder_name = input_filename.parent.parent.name
        instrument_folder_name = os.path.basename(
            os.path.dirname(os.path.dirname(input_filename)))
        #print("instrument_folder_name-->", instrument_folder_name)

        # mask_folder/instrument_dataset_x/problem_type_masks/framexxx.png
        mask_folder = mask_save_dir / instrument_folder_name / utils.mask_folder[
            args.problem_type]
        mask_folder.mkdir(exist_ok=True, parents=True)
        mask_filename = mask_folder / os.path.basename(input_filename)
        #print("mask_filename-->", mask_filename)
        cv2.imwrite(str(mask_filename), mask)

        if 'TAPNet' in args.model:
            attmap = batch_output['attmap'][i]

            attmap_folder = mask_save_dir / instrument_folder_name / '_'.join(
                args.problem_type, 'attmaps')
            attmap_folder.mkdir(exist_ok=True, parents=True)
            attmap_filename = attmap_folder / input_filename.name

            cv2.imwrite(str(attmap_filename), attmap)

    evaluator.run(eval_loader)

    # validator engine
    validator = engine.Engine(valid_step)

    # monitor loss
    valid_ra_loss = imetrics.RunningAverage(
        output_transform=lambda x: x['loss'], alpha=0.98)
    valid_ra_loss.attach(validator, 'valid_ra_loss')

    # monitor validation loss over epoch
    valid_loss = imetrics.Loss(loss_func,
                               output_transform=lambda x:
                               (x['output'], x['target']))
    valid_loss.attach(validator, 'valid_loss')

    # monitor <data> mean metrics
    valid_data_miou = imetrics.RunningAverage(
        output_transform=lambda x: x['iou'].data_mean()['mean'], alpha=0.98)
    valid_data_miou.attach(validator, 'mIoU')
    valid_data_mdice = imetrics.RunningAverage(
        output_transform=lambda x: x['dice'].data_mean()['mean'], alpha=0.98)
    valid_data_mdice.attach(validator, 'mDice')

    # show metrics on progress bar (after every iteration)
    valid_pbar = c_handlers.ProgressBar(persist=True, dynamic_ncols=True)
    valid_metric_names = ['valid_ra_loss', 'mIoU', 'mDice']
    valid_pbar.attach(validator, metric_names=valid_metric_names)

    # ## monitor ignite IoU (the same as iou we are using) ###
    # cm = imetrics.ConfusionMatrix(num_classes,
    #     output_transform=lambda x: (x['output'], x['target']))
    # imetrics.IoU(cm,
    #     ignore_index=0
    #     ).attach(validator, 'iou')

    # # monitor ignite mean iou (over all classes even not exist in gt)
    # mean_iou = imetrics.mIoU(cm,
    #     ignore_index=0
    #     ).attach(validator, 'mean_iou')

    @validator.on(engine.Events.STARTED)
    def validator_start_callback(engine):
        pass

    @validator.on(engine.Events.EPOCH_STARTED)
    def validator_epoch_start_callback(engine):
        engine.state.epoch_metrics = {
            # directly use definition to calculate
            'iou':
            MetricRecord(),
            'dice':
            MetricRecord(),
            'confusion_matrix':
            np.zeros((num_classes, num_classes), dtype=np.uint32),
        }

    # evaluate after iter finish
    @validator.on(engine.Events.ITERATION_COMPLETED)
    def validator_iter_comp_callback(engine):
        pass

    # evaluate after epoch finish
    @validator.on(engine.Events.EPOCH_COMPLETED)
    def validator_epoch_comp_callback(engine):

        # log ignite metrics
        # logging_logger.info(engine.state.metrics)
        # ious = engine.state.metrics['iou']
        # msg = 'IoU: '
        # for ins_id, iou in enumerate(ious):
        #     msg += '{:d}: {:.3f}, '.format(ins_id + 1, iou)
        # logging_logger.info(msg)
        # logging_logger.info('nonzero mean IoU for all data: {:.3f}'.format(ious[ious > 0].mean()))

        # log monitored epoch metrics
        epoch_metrics = engine.state.epoch_metrics

        ######### NOTICE: Two metrics are available but different ##########
        ### 1. mean metrics for all data calculated by confusion matrix ####
        '''
        compared with using confusion_matrix[1:, 1:] in original code,
        we use the full confusion matrix and only present non-background result
        '''
        confusion_matrix = epoch_metrics['confusion_matrix']  # [1:, 1:]
        ious = calculate_iou(confusion_matrix)
        dices = calculate_dice(confusion_matrix)

        mean_ious = np.mean(list(ious.values()))
        mean_dices = np.mean(list(dices.values()))
        std_ious = np.std(list(ious.values()))
        std_dices = np.std(list(dices.values()))

        logging_logger.info('mean IoU: %.3f, std: %.3f, for each class: %s' %
                            (mean_ious, std_ious, ious))
        logging_logger.info('mean Dice: %.3f, std: %.3f, for each class: %s' %
                            (mean_dices, std_dices, dices))

        ### 2. mean metrics for all data calculated by definition ###
        iou_data_mean = epoch_metrics['iou'].data_mean()
        dice_data_mean = epoch_metrics['dice'].data_mean()

        logging_logger.info('data (%d) mean IoU: %.3f, std: %.3f' %
                            (len(iou_data_mean['items']),
                             iou_data_mean['mean'], iou_data_mean['std']))
        logging_logger.info('data (%d) mean Dice: %.3f, std: %.3f' %
                            (len(dice_data_mean['items']),
                             dice_data_mean['mean'], dice_data_mean['std']))

        # record metrics in trainer every epoch
        # trainer.state.metrics_records[trainer.state.epoch] = \
        #     {'miou': mean_ious, 'std_miou': std_ious,
        #     'mdice': mean_dices, 'std_mdice': std_dices}

        trainer.state.metrics_records[trainer.state.epoch] = \
            {'miou': iou_data_mean['mean'], 'std_miou': iou_data_mean['std'],
            'mdice': dice_data_mean['mean'], 'std_mdice': dice_data_mean['std']}

    # log interal variables(attention maps, outputs, etc.) on validation
    def tb_log_valid_iter_vars(engine, logger, event_name):
        log_tag = 'valid_iter'
        output = engine.state.output
        batch_size = output['output'].shape[0]
        res_grid = tvutils.make_grid(
            torch.cat([
                output['output_argmax'].unsqueeze(1),
                output['target'].unsqueeze(1),
            ]),
            padding=2,
            normalize=False,  # show origin image
            nrow=batch_size).cpu()

        logger.writer.add_image(tag='%s (outputs, targets)' % (log_tag),
                                img_tensor=res_grid)

        if 'TAPNet' in args.model:
            # log attention maps and other internal values
            inter_vals_grid = tvutils.make_grid(torch.cat([
                output['attmap'],
            ]),
                                                padding=2,
                                                normalize=True,
                                                nrow=batch_size).cpu()
            logger.writer.add_image(tag='%s internal vals' % (log_tag),
                                    img_tensor=inter_vals_grid)

    def tb_log_valid_epoch_vars(engine, logger, event_name):
        log_tag = 'valid_iter'
        # log monitored epoch metrics
        epoch_metrics = engine.state.epoch_metrics
        confusion_matrix = epoch_metrics['confusion_matrix']  # [1:, 1:]
        ious = calculate_iou(confusion_matrix)
        dices = calculate_dice(confusion_matrix)

        mean_ious = np.mean(list(ious.values()))
        mean_dices = np.mean(list(dices.values()))
        logger.writer.add_scalar('mIoU', mean_ious, engine.state.epoch)
        logger.writer.add_scalar('mIoU', mean_dices, engine.state.epoch)

    if args.tb_log:
        # log internal values
        tb_logger.attach(validator,
                         log_handler=tb_log_valid_iter_vars,
                         event_name=engine.Events.ITERATION_COMPLETED)
        tb_logger.attach(validator,
                         log_handler=tb_log_valid_epoch_vars,
                         event_name=engine.Events.EPOCH_COMPLETED)
        # tb_logger.attach(validator, log_handler=OutputHandler('valid_iter', valid_metric_names),
        #     event_name=engine.Events.ITERATION_COMPLETED)
        tb_logger.attach(validator,
                         log_handler=OutputHandler('valid_epoch',
                                                   ['valid_loss']),
                         event_name=engine.Events.EPOCH_COMPLETED)

    # score function for model saving
    ckpt_score_function = lambda engine: \
        np.mean(list(calculate_iou(engine.state.epoch_metrics['confusion_matrix']).values()))
    # ckpt_score_function = lambda engine: engine.state.epoch_metrics['iou'].data_mean()['mean']

    ckpt_filename_prefix = 'fold_%d' % fold

    # model saving handler
    model_ckpt_handler = handlers.ModelCheckpoint(
        dirname=args.model_save_dir,
        filename_prefix=ckpt_filename_prefix,
        score_function=ckpt_score_function,
        create_dir=True,
        require_empty=False,
        save_as_state_dict=True,
        atomic=True)

    validator.add_event_handler(event_name=engine.Events.EPOCH_COMPLETED,
                                handler=model_ckpt_handler,
                                to_save={
                                    'model': model,
                                })

    # early stop
    # trainer=trainer, but should be handled by validator
    early_stopping = handlers.EarlyStopping(patience=args.es_patience,
                                            score_function=ckpt_score_function,
                                            trainer=trainer)

    validator.add_event_handler(event_name=engine.Events.EPOCH_COMPLETED,
                                handler=early_stopping)

    # evaluate after epoch finish
    @trainer.on(engine.Events.EPOCH_COMPLETED)
    def trainer_epoch_comp_callback(engine):
        validator.run(valid_loader)

    trainer.run(train_loader, max_epochs=args.max_epochs)

    if args.tb_log:
        # close tb_logger
        tb_logger.close()

    return trainer.state.metrics_records
Пример #6
0
    def valid_step(engine, batch):
        with torch.no_grad():
            model.eval()
            inputs = batch['input'].cuda(non_blocking=True)
            targets = batch['target'].cuda(non_blocking=True)

            # additional arguments
            add_params = {}
            # for TAPNet, add attention maps
            if 'TAPNet' in args.model:
                add_params['attmap'] = batch['attmap'].cuda(non_blocking=True)

            # output logits
            outputs = model(inputs, **add_params)
            # loss
            loss = loss_func(outputs, targets)

            output_softmaxs = torch.softmax(outputs, dim=1)
            output_argmaxs = output_softmaxs.argmax(dim=1)
            # output_classes and target_classes: <b, h, w>
            output_classes = output_argmaxs.cpu().numpy()
            target_classes = targets.cpu().numpy()

            # record current batch metrics
            iou_mRecords = MetricRecord()
            dice_mRecords = MetricRecord()

            cm_b = np.zeros((num_classes, num_classes), dtype=np.uint32)

            for output_class, target_class in zip(output_classes,
                                                  target_classes):
                # calculate metrics for each frame
                # calculate using confusion matrix or dirctly using definition
                cm = calculate_confusion_matrix_from_arrays(
                    output_class, target_class, num_classes)
                iou_mRecords.update_record(calculate_iou(cm))
                dice_mRecords.update_record(calculate_dice(cm))
                cm_b += cm

                ######## calculate directly using definition ##########
                # iou_mRecords.update_record(iou_multi_np(target_class, output_class))
                # dice_mRecords.update_record(dice_multi_np(target_class, output_class))

            # accumulate batch metrics to engine state
            engine.state.epoch_metrics['confusion_matrix'] += cm_b
            engine.state.epoch_metrics['iou'].merge(iou_mRecords)
            engine.state.epoch_metrics['dice'].merge(dice_mRecords)

            return_dict = {
                'loss': loss.item(),
                'output': outputs,
                'output_argmax': output_argmaxs,
                'target': targets,
                # for monitoring
                'iou': iou_mRecords,
                'dice': dice_mRecords,
            }

            if 'TAPNet' in args.model:
                # for TAPNet, update attention maps after each iteration
                valid_loader.dataset.update_attmaps(
                    output_softmaxs.cpu().numpy(), batch['abs_idx'].numpy())
                # for TAPNet, return extra internal values
                return_dict['attmap'] = add_params['attmap']
                # TODO: for TAPNet, return internal self-learned attention maps

            return return_dict
Пример #7
0
def train_fold(fold, args):
    # loggers
    logging_logger = args.logging_logger
    if args.tb_log:
        tb_logger = args.tb_logger

    num_classes = utils.problem_class[args.problem_type]

    # init model
    model = eval(args.model)(in_channels=3, num_classes=num_classes, bn=False)
    model = nn.DataParallel(model, device_ids=args.device_ids).cuda()

    # transform for train/valid data
    train_transform, valid_transform = get_transform(args.model)

    # loss function
    loss_func = LossMulti(num_classes, args.jaccard_weight)
    if args.semi:
        loss_func_semi = LossMultiSemi(num_classes, args.jaccard_weight, args.semi_loss_alpha, args.semi_method)

    # train/valid filenames
    train_filenames, valid_filenames = utils.trainval_split(args.train_dir, fold)

    # DataLoader and Dataset args
    train_shuffle = True
    train_ds_kwargs = {
        'filenames': train_filenames,
        'problem_type': args.problem_type,
        'transform': train_transform,
        'model': args.model,
        'mode': 'train',
        'semi': args.semi,
    }

    valid_num_workers = args.num_workers
    valid_batch_size = args.batch_size
    if 'TAPNet' in args.model:
        # for TAPNet, cancel default shuffle, use self-defined shuffle in torch.Dataset instead
        train_shuffle = False
        train_ds_kwargs['batch_size'] = args.batch_size
        train_ds_kwargs['mf'] = args.mf
    if args.semi == True:
        train_ds_kwargs['semi_method'] = args.semi_method
        train_ds_kwargs['semi_percentage'] = args.semi_percentage

    # additional valid dataset kws
    valid_ds_kwargs = {
        'filenames': valid_filenames,
        'problem_type': args.problem_type,
        'transform': valid_transform,
        'model': args.model,
        'mode': 'valid',
    }

    if 'TAPNet' in args.model:
        # in validation, num_workers should be set to 0 for sequences
        valid_num_workers = 0
        # in validation, batch_size should be set to 1 for sequences
        valid_batch_size = 1
        valid_ds_kwargs['mf'] = args.mf

    # train dataloader
    train_loader = DataLoader(
        dataset=RobotSegDataset(**train_ds_kwargs),
        shuffle=train_shuffle, # set to False to disable pytorch dataset shuffle
        num_workers=args.num_workers,
        batch_size=args.batch_size,
        pin_memory=True
    )
    # valid dataloader
    valid_loader = DataLoader(
        dataset=RobotSegDataset(**valid_ds_kwargs),
        shuffle=False, # in validation, no need to shuffle
        num_workers=valid_num_workers,
        batch_size=valid_batch_size, # in valid time. have to use one image by one
        pin_memory=True
    )

    # optimizer
    optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
    # optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, 
    #     weight_decay=args.weight_decay, nesterov=True)    

    # ignite trainer process function
    def train_step(engine, batch):
        # set model to train
        model.train()
        # clear gradients
        optimizer.zero_grad()
        
        # additional params to feed into model
        add_params = {}
        inputs = batch['input'].cuda(non_blocking=True)
        with torch.no_grad():
            targets = batch['target'].cuda(non_blocking=True)
            # for TAPNet, add attention maps
            if 'TAPNet' in args.model:
                add_params['attmap'] = batch['attmap'].cuda(non_blocking=True)

        outputs = model(inputs, **add_params)

        loss_kwargs = {}

        if args.semi:
            loss_kwargs['labeled'] = batch['labeled']
            if args.semi_method == 'rev_flow':
                loss_kwargs['optflow'] = batch['optflow']
            loss = loss_func_semi(outputs, targets, **loss_kwargs)
        else:
            loss = loss_func(outputs, targets, **loss_kwargs)
        loss.backward()
        optimizer.step()

        return_dict = {
            'output': outputs,
            'target': targets,
            'loss_kwargs': loss_kwargs,
            'loss': loss.item(),
        }

        # for TAPNet, update attention maps after each iteration
        if 'TAPNet' in args.model:
            # output_classes and target_classes: <b, h, w>
            output_softmax_np = torch.softmax(outputs, dim=1).detach().cpu().numpy()
            # update attention maps
            train_loader.dataset.update_attmaps(output_softmax_np, batch['abs_idx'].numpy())
            return_dict['attmap'] = add_params['attmap']

        return return_dict
    
    # init trainer
    trainer = engine.Engine(train_step)

    # lr scheduler and handler
    # cyc_scheduler = optim.lr_scheduler.CyclicLR(optimizer, args.lr / 100, args.lr)
    # lr_scheduler = c_handlers.param_scheduler.LRScheduler(cyc_scheduler)
    # trainer.add_event_handler(engine.Events.ITERATION_COMPLETED, lr_scheduler)

    step_scheduler = optim.lr_scheduler.StepLR(optimizer,
        step_size=args.lr_decay_epochs, gamma=args.lr_decay)
    lr_scheduler = c_handlers.param_scheduler.LRScheduler(step_scheduler)
    trainer.add_event_handler(engine.Events.EPOCH_STARTED, lr_scheduler)


    @trainer.on(engine.Events.STARTED)
    def trainer_start_callback(engine):
        logging_logger.info('training fold {}, {} train / {} valid files'. \
            format(fold, len(train_filenames), len(valid_filenames)))

        # resume training
        if args.resume:
            # ckpt for current fold fold_<fold>_model_<epoch>.pth
            ckpt_dir = Path(args.ckpt_dir)
            ckpt_filename = ckpt_dir.glob('fold_%d_model_[0-9]*.pth' % fold)[0]
            res = re.match(r'fold_%d_model_(\d+).pth' % fold, ckpt_filename)
            # restore epoch
            engine.state.epoch = int(res.groups()[0])
            # load model state dict
            model.load_state_dict(torch.load(str(ckpt_filename)))
            logging_logger.info('restore model [{}] from epoch {}.'.format(args.model, engine.state.epoch))
        else:
            logging_logger.info('train model [{}] from scratch'.format(args.model))

        # record metrics history every epoch
        engine.state.metrics_records = {}


    @trainer.on(engine.Events.EPOCH_STARTED)
    def trainer_epoch_start_callback(engine):
        # log learning rate on pbar
        train_pbar.log_message('model: %s, problem type: %s, fold: %d, lr: %.5f, batch size: %d' % \
            (args.model, args.problem_type, fold, lr_scheduler.get_param(), args.batch_size))
        
        # for TAPNet, change dataset schedule to random after the first epoch
        if 'TAPNet' in args.model and engine.state.epoch > 1:
            train_loader.dataset.set_dataset_schedule("shuffle")


    @trainer.on(engine.Events.ITERATION_COMPLETED)
    def trainer_iter_comp_callback(engine):
        # logging_logger.info(engine.state.metrics)
        pass

    # monitor loss
    # running average loss
    train_ra_loss = imetrics.RunningAverage(output_transform=
        lambda x: x['loss'], alpha=0.98)
    train_ra_loss.attach(trainer, 'train_ra_loss')

    # monitor train loss over epoch
    if args.semi:
        train_loss = imetrics.Loss(loss_func_semi, output_transform=lambda x: (x['output'], x['target'], x['loss_kwargs']))
    else:
        train_loss = imetrics.Loss(loss_func, output_transform=lambda x: (x['output'], x['target']))
    train_loss.attach(trainer, 'train_loss')

    # progress bar
    train_pbar = c_handlers.ProgressBar(persist=True, dynamic_ncols=True)
    train_metric_names = ['train_ra_loss']
    train_pbar.attach(trainer, metric_names=train_metric_names)

    # tensorboardX: log train info
    if args.tb_log:
        tb_logger.attach(trainer, log_handler=OptimizerParamsHandler(optimizer, 'lr'), 
            event_name=engine.Events.EPOCH_STARTED)

        tb_logger.attach(trainer, log_handler=OutputHandler('train_iter', train_metric_names),
            event_name=engine.Events.ITERATION_COMPLETED)

        tb_logger.attach(trainer, log_handler=OutputHandler('train_epoch', ['train_loss']),
            event_name=engine.Events.EPOCH_COMPLETED)

        tb_logger.attach(trainer,
             log_handler=WeightsScalarHandler(model, reduction=torch.norm),
             event_name=engine.Events.ITERATION_COMPLETED)

        # tb_logger.attach(trainer, log_handler=tb_log_train_vars, 
        #     event_name=engine.Events.ITERATION_COMPLETED)


    # ignite validator process function
    def valid_step(engine, batch):
        with torch.no_grad():
            model.eval()
            inputs = batch['input'].cuda(non_blocking=True)
            targets = batch['target'].cuda(non_blocking=True)

            # additional arguments
            add_params = {}
            # for TAPNet, add attention maps
            if 'TAPNet' in args.model:
                add_params['attmap'] = batch['attmap'].cuda(non_blocking=True)

            # output logits
            outputs = model(inputs, **add_params)
            # loss
            loss = loss_func(outputs, targets)

            output_softmaxs = torch.softmax(outputs, dim=1)
            output_argmaxs = output_softmaxs.argmax(dim=1)
            # output_classes and target_classes: <b, h, w>
            output_classes = output_argmaxs.cpu().numpy()
            target_classes = targets.cpu().numpy()

            # record current batch metrics
            iou_mRecords = MetricRecord()
            dice_mRecords = MetricRecord()

            cm_b = np.zeros((num_classes, num_classes), dtype=np.uint32)

            for output_class, target_class in zip(output_classes, target_classes):
                # calculate metrics for each frame
                # calculate using confusion matrix or dirctly using definition
                cm = calculate_confusion_matrix_from_arrays(output_class, target_class, num_classes)
                iou_mRecords.update_record(calculate_iou(cm))
                dice_mRecords.update_record(calculate_dice(cm))
                cm_b += cm

                ######## calculate directly using definition ##########
                # iou_mRecords.update_record(iou_multi_np(target_class, output_class))
                # dice_mRecords.update_record(dice_multi_np(target_class, output_class))

            # accumulate batch metrics to engine state
            engine.state.epoch_metrics['confusion_matrix'] += cm_b
            engine.state.epoch_metrics['iou'].merge(iou_mRecords)
            engine.state.epoch_metrics['dice'].merge(dice_mRecords)


            return_dict = {
                'loss': loss.item(),
                'output': outputs,
                'output_argmax': output_argmaxs,
                'target': targets,
                # for monitoring
                'iou': iou_mRecords,
                'dice': dice_mRecords,
            }

            if 'TAPNet' in args.model:
                # for TAPNet, update attention maps after each iteration
                valid_loader.dataset.update_attmaps(output_softmaxs.cpu().numpy(), batch['abs_idx'].numpy())
                # for TAPNet, return extra internal values
                return_dict['attmap'] = add_params['attmap']
                # TODO: for TAPNet, return internal self-learned attention maps

            return return_dict


    # validator engine
    validator = engine.Engine(valid_step)

    # monitor loss
    valid_ra_loss = imetrics.RunningAverage(output_transform=
        lambda x: x['loss'], alpha=0.98)
    valid_ra_loss.attach(validator, 'valid_ra_loss')

    # monitor validation loss over epoch
    valid_loss = imetrics.Loss(loss_func, output_transform=lambda x: (x['output'], x['target']))
    valid_loss.attach(validator, 'valid_loss')
    
    # monitor <data> mean metrics
    valid_data_miou = imetrics.RunningAverage(output_transform=
        lambda x: x['iou'].data_mean()['mean'], alpha=0.98)
    valid_data_miou.attach(validator, 'mIoU')
    valid_data_mdice = imetrics.RunningAverage(output_transform=
        lambda x: x['dice'].data_mean()['mean'], alpha=0.98)
    valid_data_mdice.attach(validator, 'mDice')

    # show metrics on progress bar (after every iteration)
    valid_pbar = c_handlers.ProgressBar(persist=True, dynamic_ncols=True)
    valid_metric_names = ['valid_ra_loss', 'mIoU', 'mDice']
    valid_pbar.attach(validator, metric_names=valid_metric_names)


    # ## monitor ignite IoU (the same as iou we are using) ###
    # cm = imetrics.ConfusionMatrix(num_classes, 
    #     output_transform=lambda x: (x['output'], x['target']))
    # imetrics.IoU(cm, 
    #     ignore_index=0
    #     ).attach(validator, 'iou')

    # # monitor ignite mean iou (over all classes even not exist in gt)
    # mean_iou = imetrics.mIoU(cm, 
    #     ignore_index=0
    #     ).attach(validator, 'mean_iou')


    @validator.on(engine.Events.STARTED)
    def validator_start_callback(engine):
        pass

    @validator.on(engine.Events.EPOCH_STARTED)
    def validator_epoch_start_callback(engine):
        engine.state.epoch_metrics = {
            # directly use definition to calculate
            'iou': MetricRecord(),
            'dice': MetricRecord(),
            'confusion_matrix': np.zeros((num_classes, num_classes), dtype=np.uint32),
        }


    # evaluate after iter finish
    @validator.on(engine.Events.ITERATION_COMPLETED)
    def validator_iter_comp_callback(engine):
        pass

    # evaluate after epoch finish
    @validator.on(engine.Events.EPOCH_COMPLETED)
    def validator_epoch_comp_callback(engine):

        # log ignite metrics
        # logging_logger.info(engine.state.metrics)
        # ious = engine.state.metrics['iou']
        # msg = 'IoU: '
        # for ins_id, iou in enumerate(ious):
        #     msg += '{:d}: {:.3f}, '.format(ins_id + 1, iou)
        # logging_logger.info(msg)
        # logging_logger.info('nonzero mean IoU for all data: {:.3f}'.format(ious[ious > 0].mean()))

        # log monitored epoch metrics
        epoch_metrics = engine.state.epoch_metrics

        ######### NOTICE: Two metrics are available but different ##########
        ### 1. mean metrics for all data calculated by confusion matrix ####

        '''
        compared with using confusion_matrix[1:, 1:] in original code,
        we use the full confusion matrix and only present non-background result
        '''
        confusion_matrix = epoch_metrics['confusion_matrix']# [1:, 1:]
        ious = calculate_iou(confusion_matrix)
        dices = calculate_dice(confusion_matrix)

        mean_ious = np.mean(list(ious.values()))
        mean_dices = np.mean(list(dices.values()))
        std_ious = np.std(list(ious.values()))
        std_dices = np.std(list(dices.values()))

        logging_logger.info('mean IoU: %.3f, std: %.3f, for each class: %s' % 
            (mean_ious, std_ious, ious))
        logging_logger.info('mean Dice: %.3f, std: %.3f, for each class: %s' % 
            (mean_dices, std_dices, dices))


        ### 2. mean metrics for all data calculated by definition ###
        iou_data_mean = epoch_metrics['iou'].data_mean()
        dice_data_mean = epoch_metrics['dice'].data_mean()

        logging_logger.info('data (%d) mean IoU: %.3f, std: %.3f' %
            (len(iou_data_mean['items']), iou_data_mean['mean'], iou_data_mean['std']))
        logging_logger.info('data (%d) mean Dice: %.3f, std: %.3f' %
            (len(dice_data_mean['items']), dice_data_mean['mean'], dice_data_mean['std']))

        # record metrics in trainer every epoch
        # trainer.state.metrics_records[trainer.state.epoch] = \
        #     {'miou': mean_ious, 'std_miou': std_ious,
        #     'mdice': mean_dices, 'std_mdice': std_dices}
        
        trainer.state.metrics_records[trainer.state.epoch] = \
            {'miou': iou_data_mean['mean'], 'std_miou': iou_data_mean['std'],
            'mdice': dice_data_mean['mean'], 'std_mdice': dice_data_mean['std']}


    # log interal variables(attention maps, outputs, etc.) on validation
    def tb_log_valid_iter_vars(engine, logger, event_name):
        log_tag = 'valid_iter'
        output = engine.state.output
        batch_size = output['output'].shape[0]
        res_grid = tvutils.make_grid(torch.cat([
            output['output_argmax'].unsqueeze(1),
            output['target'].unsqueeze(1),
        ]), padding=2, 
        normalize=False, # show origin image
        nrow=batch_size).cpu()

        logger.writer.add_image(tag='%s (outputs, targets)' % (log_tag), img_tensor=res_grid)

        if 'TAPNet' in args.model:
            # log attention maps and other internal values
            inter_vals_grid = tvutils.make_grid(torch.cat([
                output['attmap'],
            ]), padding=2, normalize=True, nrow=batch_size).cpu()
            logger.writer.add_image(tag='%s internal vals' % (log_tag), img_tensor=inter_vals_grid)

    def tb_log_valid_epoch_vars(engine, logger, event_name):
        log_tag = 'valid_iter'
        # log monitored epoch metrics
        epoch_metrics = engine.state.epoch_metrics
        confusion_matrix = epoch_metrics['confusion_matrix']# [1:, 1:]
        ious = calculate_iou(confusion_matrix)
        dices = calculate_dice(confusion_matrix)

        mean_ious = np.mean(list(ious.values()))
        mean_dices = np.mean(list(dices.values()))
        logger.writer.add_scalar('mIoU', mean_ious, engine.state.epoch)
        logger.writer.add_scalar('mIoU', mean_dices, engine.state.epoch)



    if args.tb_log:
        # log internal values
        tb_logger.attach(validator, log_handler=tb_log_valid_iter_vars, 
            event_name=engine.Events.ITERATION_COMPLETED)
        tb_logger.attach(validator, log_handler=tb_log_valid_epoch_vars,
            event_name=engine.Events.EPOCH_COMPLETED)
        # tb_logger.attach(validator, log_handler=OutputHandler('valid_iter', valid_metric_names),
        #     event_name=engine.Events.ITERATION_COMPLETED)
        tb_logger.attach(validator, log_handler=OutputHandler('valid_epoch', ['valid_loss']),
            event_name=engine.Events.EPOCH_COMPLETED)


    # score function for model saving
    ckpt_score_function = lambda engine: \
        np.mean(list(calculate_iou(engine.state.epoch_metrics['confusion_matrix']).values()))
    # ckpt_score_function = lambda engine: engine.state.epoch_metrics['iou'].data_mean()['mean']
    
    ckpt_filename_prefix = 'fold_%d' % fold

    # model saving handler
    model_ckpt_handler = handlers.ModelCheckpoint(
        dirname=args.model_save_dir,
        filename_prefix=ckpt_filename_prefix, 
        score_function=ckpt_score_function,
        create_dir=True,
        require_empty=False,
        save_as_state_dict=True,
        atomic=True)


    validator.add_event_handler(event_name=engine.Events.EPOCH_COMPLETED, 
        handler=model_ckpt_handler,
        to_save={
            'model': model,
        })

    # early stop
    # trainer=trainer, but should be handled by validator
    early_stopping = handlers.EarlyStopping(patience=args.es_patience, 
        score_function=ckpt_score_function,
        trainer=trainer
        )

    validator.add_event_handler(event_name=engine.Events.EPOCH_COMPLETED,
        handler=early_stopping)


    # evaluate after epoch finish
    @trainer.on(engine.Events.EPOCH_COMPLETED)
    def trainer_epoch_comp_callback(engine):
        validator.run(valid_loader)

    trainer.run(train_loader, max_epochs=args.max_epochs)

    if args.tb_log:
        # close tb_logger
        tb_logger.close()

    return trainer.state.metrics_records
Пример #8
0
    def train_one_epoch(train_loader, net, optimizer, criterion, hparams):

        # Activate the train=True flag inside the model
        net.train()

        device = hparams['device']
        batch_size = hparams['batch_size']
        train_loss, train_accs = 0, 0
        train_iou = {}
        times_per_step_iteration = []
        times_per_metric_iteration = []
        times_per_iteration = []
        for batch_index, (img, target) in enumerate(train_loader):
            #Arrancamos temporizador general
            start_total.record()
            img, target = img.to(device), target.to(device)
            optimizer.zero_grad()

            # Arrancamos temporizador para inferencia
            start.record()
            output = net(img)

            target = target.long()

            loss = criterion(output, target)
            loss.backward()
            optimizer.step()

            pred = aux.get_predicted_image(output)

            #Paramos temporizador de inferencia
            end.record()
            torch.cuda.synchronize()
            times_per_step_iteration.append(start.elapsed_time(end))

            # Accuracy
            #Arrancamos temporizador para métricas
            start.record()

            # Desvinculamos el valor de los nuevos targets y los pasamos a CPU para calcular las métricas
            output, target, pred = output.detach().cpu(), target.detach().cpu(
            ), pred.detach().cpu()
            train_loss += loss.item()
            # Devuelve values, indices. Los indices son el nº de feature map (clase) en la que se encuentra el valor más alto en el pixel
            train_accuracy = metrics.calculate_accuracy(output,
                                                        target)  #, predicted
            train_accs += train_accuracy

            iou_inds = metrics.calculate_iou(pred, target)
            for key in iou_inds:
                if key not in train_iou:
                    train_iou[key] = iou_inds[key]
                else:
                    train_iou[key] += iou_inds[key]

            #Paramos temporizador para métricas
            end.record()
            torch.cuda.synchronize()
            times_per_metric_iteration.append(start.elapsed_time(end))

            #Paramos temporizador general
            end_total.record()
            torch.cuda.synchronize()
            times_per_iteration.append(start_total.elapsed_time(end))

            avg_time_taken = sum(times_per_iteration) / len(
                times_per_iteration)
            avg_time_step_taken = sum(times_per_step_iteration) / len(
                times_per_step_iteration)
            avg_time_metrics_taken = sum(times_per_metric_iteration) / len(
                times_per_metric_iteration)

        print('Average Time spent total: {:.02f}s'.format(avg_time_taken *
                                                          1e-3))
        print('Average Time spent by steps: {:.02f}s'.format(
            avg_time_step_taken * 1e-3))
        print('Average Time spent by metrics: {:.02f}s'.format(
            avg_time_metrics_taken * 1e-3))
        print('Average Time spent by data load: {:.02f}s'.format(
            avg_time_taken * 1e-3 - avg_time_step_taken * 1e-3 -
            avg_time_metrics_taken * 1e-3))

        train_loss = train_loss / (len(train_loader.dataset) / batch_size)
        train_accs = 100 * (train_accs /
                            (len(train_loader.dataset) / batch_size))
        train_iou = metrics.convert_batched_iou(
            train_iou, (len(train_loader.dataset) / batch_size))
        mIoU = metrics.get_mIoU(train_iou)
        mIoU_desc = metrics.miou_to_string(train_iou)
        return train_loss, train_accs, mIoU, mIoU_desc