Пример #1
0
def gbc_class(Xp_train, Xp_test, Yp_train, Yp_test, gbcObject, count):
    if (gbcObject.isUsed == False):
        return
    gbcObject.name = 'GBC'
    gbcObject.folds = count

    from sklearn.ensemble import GradientBoostingClassifier
    gbc = GradientBoostingClassifier(random_state=0, n_estimators=gbcObject.params['n_estimators'], criterion=gbcObject.params['criterion'],\
                                     loss=gbcObject.params['loss'],learning_rate=gbcObject.params['learning_rate'],\
                                     max_depth=gbcObject.params['max_depth'], min_samples_split=gbcObject.params['min_samples_split'],\
                                     min_samples_leaf = gbcObject.params['min_samples_leaf'], min_weight_fraction_leaf= gbcObject.params['min_weight_fraction_leaf'],\
                                     subsample = gbcObject.params['subsample'], max_features=gbcObject.params['max_features'],\
                                     max_leaf_nodes=gbcObject.params['max_leaf_nodes'], min_impurity_decrease=gbcObject.params['min_impurity_decrease'])
    gbc.fit(Xp_train, Yp_train)
    Yp_pred = gbc.predict(Xp_test)
    probabilities = gbc.predict_proba(Xp_test)
    probabilities = probabilities[:,
                                  1]  # to generate AUROC, we only need positive probabilities
    cm = my_confusion_matrix(Yp_test, Yp_pred)

    append_results(Yp_pred, probabilities, Yp_test,
                   roc_auc_score(Yp_test / 4, probabilities), cm, count,
                   gbcObject)
    gbcObject.best_features = rank_feature_importance("GBC",
                                                      gbc.feature_importances_,
                                                      gbcObject.features,
                                                      False)
Пример #2
0
def rfc_class(Xp_train, Xp_test, Yp_train, Yp_test, rfcObject, count):
    if (rfcObject.isUsed == False):
        return
    rfcObject.name = 'RFC'
    rfcObject.folds = count
    from sklearn.ensemble import RandomForestClassifier
    rfc = RandomForestClassifier(n_jobs=-1, criterion=rfcObject.params['criterion'], bootstrap=rfcObject.params['bootstrap'],\
                                 random_state=0, n_estimators=rfcObject.params['n_estimators'], max_features=rfcObject.params['max_features'],\
                                 max_depth=rfcObject.params['max_depth'], min_samples_split=rfcObject.params['min_samples_split'],\
                                 min_samples_leaf=rfcObject.params['min_samples_leaf'], min_weight_fraction_leaf=rfcObject.params['min_weight_fraction_leaf'],\
                                 max_leaf_nodes=rfcObject.params['max_leaf_nodes'], min_impurity_decrease=rfcObject.params['min_impurity_decrease'], oob_score = rfcObject.params['oob_score'])
    rfc.fit(Xp_train, Yp_train)
    Yp_pred = rfc.predict(Xp_test)
    probabilities = rfc.predict_proba(Xp_test)
    probabilities = probabilities[:,
                                  1]  # to generate AUROC, we only need positive probabilities
    cm = my_confusion_matrix(Yp_test, Yp_pred)

    append_results(Yp_pred, probabilities, Yp_test,
                   roc_auc_score(Yp_test / 4, probabilities), cm, count,
                   rfcObject)
    rfcObject.best_features = rank_feature_importance("RFC",
                                                      rfc.feature_importances_,
                                                      rfcObject.features,
                                                      False)
Пример #3
0
def ens_class(s, r, g, l, k, a, b, Yp_test, ensObject, count):
    if (ensObject.isUsed == False):
        return
    ensObject.name = 'ENS'
    ensObject.folds = count
    probabilities = []
    Yp_pred = []

    for i in range(0, np.size(Yp_test)):
        prob_sum = 0
        terms = 0
        if (s.isUsed == True):
            prob_sum += float(str(round(s.probs[count][i], 8)))
            terms += 1
        if (r.isUsed == True):
            prob_sum += r.probs[count][i]
            terms += 1
        if (g.isUsed == True):
            prob_sum += g.probs[count][i]
            terms += 1
        if (l.isUsed == True):
            prob_sum += l.probs[count][i]
            terms += 1
        if (k.isUsed == True):
            prob_sum += k.probs[count][i]
            terms += 1
        if (a.isUsed == True):
            prob_sum += a.probs[count][i]
            terms += 1
        if (b.isUsed == True):
            prob_sum += b.probs[count][i]
            terms += 1
        probabilities.append(prob_sum / terms)
        #        print('Prob sum: ' + str(prob_sum))
        #        print('Terms: ' + str(terms))
        #        print(probabilities[i])
        #        input('Batman')
        if (probabilities[i] >= ensObject.params['threshold']):
            Yp_pred.append(4)
        else:
            Yp_pred.append(0)

    cm = my_confusion_matrix(Yp_test, Yp_pred)

    #    print('Yp_test length: ' + str(len(Yp_test)))
    #    print('Probabilities length: ' + str(len(probabilities)))
    #    input('Enter')

    float_probs = np.zeros(len(probabilities))
    for i in range(0, len(probabilities) - 1):
        float_probs[i] = probabilities[i]

    append_results(Yp_pred, float_probs, Yp_test,
                   roc_auc_score(Yp_test / 4, probabilities), cm, count,
                   ensObject)
Пример #4
0
def gnb_class(Xp_train, Xp_test, Yp_train, Yp_test, gnbObject, count):
    if (gnbObject.isUsed == False):
        return
    gnbObject.name = 'GNB'
    gnbObject.folds = count
    from sklearn.naive_bayes import GaussianNB
    GNB = GaussianNB()
    GNB.fit(Xp_train, Yp_train)
    Yp_pred = GNB.predict(Xp_test)
    probabilities = GNB.predict_proba(Xp_test)
    probabilities = probabilities[:, 1]
    cm = my_confusion_matrix(Yp_test, Yp_pred)

    append_results(Yp_pred, probabilities, Yp_test,
                   roc_auc_score(Yp_test / 4, probabilities), cm, count,
                   gnbObject)
Пример #5
0
def astalt_class(Xp_test, Yp_test, astaltObject, count):
    if (astaltObject.isUsed == False):
        return
    astaltObject.name = 'ASTALT'
    astaltObject.folds = count
    Yp_pred = []
    Yp_prob = []

    astalt_values = []

    for i in range(0, len(Xp_test)):
        astalt_values.append(Xp_test[i, 1] / Xp_test[i, 0])
        Yp_pred.append(4 if (Xp_test[i, 1] / Xp_test[i, 0] >= 1) else 0)
        Yp_prob.append(np.nan)

    auroc_and_auprc_non_prob(astalt_values, Yp_test, astaltObject)
    cm = my_confusion_matrix(Yp_test, Yp_pred)
    append_results(Yp_pred, np.nan, Yp_test, np.nan, cm, count, astaltObject)
Пример #6
0
def apri_class(Xp_test, Yp_test, apriObject, count):
    if (apriObject.isUsed == False):
        return
    apriObject.name = 'APRI'
    apriObject.folds = count

    Yp_pred_new = []
    Yp_test_new = []
    Yp_prob_new = []
    det_indices = []
    apri_values = []

    for i in range(0, len(Xp_test)):
        AST_upper = 31 if Xp_test[
            i,
            0] == 0 else 19  # Upper limit is 31 for men (0) and 19 for women
        AST = Xp_test[i, 1]
        Plt = Xp_test[i, 2]
        APRI = (100 * AST / AST_upper) / (Plt)

        if (APRI >= 2):
            Yp_pred_new.append(4)
            Yp_test_new.append(Yp_test[i])
            Yp_prob_new.append(np.nan)
            det_indices.append([i])
            apri_values.append(APRI)
        elif (APRI <= 0.5):
            Yp_pred_new.append(0)
            Yp_test_new.append(Yp_test[i])
            Yp_prob_new.append(np.nan)
            det_indices.append([i])
            apri_values.append(APRI)
        else:
            apriObject.indeterminate_count += 1

    auroc_and_auprc_non_prob(apri_values, Yp_test_new, apriObject)
    cm = my_confusion_matrix(Yp_test_new, Yp_pred_new)

    # The best threshold is stored in index.
    append_results(Yp_pred_new, Yp_prob_new, Yp_test_new, np.nan, cm, count,
                   apriObject)
    apriObject.determinate_indices.append(det_indices)
Пример #7
0
def knn_class(Xp_train, Xp_test, Yp_train, Yp_test, knnObject, count):
    if (knnObject.isUsed == False):
        return
    knnObject.name = 'KNN'
    knnObject.folds = count

    from sklearn.neighbors import KNeighborsClassifier

    KNN = KNeighborsClassifier(n_neighbors=knnObject.params['n_neighbors'], weights=knnObject.params['weights'],\
                               algorithm=knnObject.params['algorithm'], leaf_size=knnObject.params['leaf_size'],\
                               p=knnObject.params['p'], metric=knnObject.params['metric'])

    KNN.fit(Xp_train, Yp_train)
    Yp_pred = KNN.predict(Xp_test)
    probabilities = KNN.predict_proba(Xp_test)
    probabilities = probabilities[:, 1]
    cm = my_confusion_matrix(Yp_test, Yp_pred)

    append_results(Yp_pred, probabilities, Yp_test,
                   roc_auc_score(Yp_test / 4, probabilities), cm, count,
                   knnObject)
Пример #8
0
def ann_class(Xp_train, Xp_test, Yp_train, Yp_test, annObject, count):
    from sklearn.metrics import roc_auc_score
    if (annObject.isUsed == False):
        return

    annObject.name = 'ANN'
    annObject.folds = count

    # Initialising the ANN
    classifier = Sequential()

    # Adding the input layer and the first hidden layer
    classifier.add(
        Dense(16,
              kernel_initializer='uniform',
              activation='relu',
              input_dim=len(annObj.features)))
    classifier.add(Dense(8, kernel_initializer='uniform', activation='relu'))

    # Adding the output layer
    classifier.add(
        Dense(units=1, kernel_initializer='uniform', activation='sigmoid'))

    # Compiling the ANN
    classifier.compile(optimizer='adam',
                       loss='binary_crossentropy',
                       metrics=['accuracy'])

    # Fitting the ANN to the Training set
    classifier.fit(Xp_train, Yp_train, batch_size=10,
                   epochs=1000)[0, 1, 3, 4, 7, 8, 9, 10, 31, 33]

    probabilities = classifier.predict(Xp_test)
    print(probabilities)
    Yp_pred = (probabilities > 0.5) * 4

    cm = my_confusion_matrix(Yp_test, Yp_pred)
    append_results(Yp_pred, probabilities, Yp_test,
                   roc_auc_score(Yp_test / 4, probabilities), cm, count,
                   annObject)
Пример #9
0
def fib4_class(Xp_test, Yp_test, fib4Object, count):
    if (fib4Object.isUsed == False):
        return
    fib4Object.name = 'FIB4'
    fib4Object.folds = count
    Yp_pred_new = []
    Yp_test_new = []
    Yp_prob_new = []
    det_indices = []
    fib4_values = []

    for i in range(0, len(Xp_test)):
        age = Xp_test[i, 0]
        ALT = Xp_test[i, 1]
        AST = Xp_test[i, 2]
        Plt = Xp_test[i, 3]
        fib4 = age * AST / (Plt * (ALT)**0.5)

        if (fib4 <= 1.45):
            Yp_pred_new.append(0)
            Yp_test_new.append(Yp_test[i])
            Yp_prob_new.append(np.nan)
            det_indices.append([i])
            fib4_values.append(fib4)
        elif (fib4 >= 3.25):
            Yp_pred_new.append(4)
            Yp_test_new.append(Yp_test[i])
            Yp_prob_new.append(np.nan)
            det_indices.append([i])
            fib4_values.append(fib4)
        else:
            fib4Object.indeterminate_count += 1

    auroc_and_auprc_non_prob(fib4_values, Yp_test_new, fib4Object)
    cm = my_confusion_matrix(Yp_test_new, Yp_pred_new)

    # The best threshold is stored in index.
    append_results(Yp_pred_new, Yp_prob_new, Yp_test_new, np.nan, cm, count,
                   fib4Object)
    fib4Object.determinate_indices.append(det_indices)
Пример #10
0
def log_class(Xp_train, Xp_test, Yp_train, Yp_test, logObject, count):
    if (logObject.isUsed == False):
        return
    logObject.name = 'LOG'
    logObject.folds = count
    from sklearn.linear_model import LogisticRegression

    log = LogisticRegression(random_state = 0, max_iter =logObject.params['max_iter'], solver=logObject.params['solver'],\
                             C=logObject.params['C'], tol=logObject.params['tol'], fit_intercept=logObject.params['fit_intercept'],\
                             penalty='l2', intercept_scaling=logObject.params['intercept_scaling'], dual=logObject.params['dual'],\
                             multi_class=logObject.params['multi_class'])

    log.fit(Xp_train, Yp_train / 4)
    Yp_pred = log.predict(Xp_test) * 4
    probabilities = log.predict_proba(Xp_test)
    probabilities = probabilities[:,
                                  1]  # to generate AUROC, we only need positive probabilities
    cm = my_confusion_matrix(Yp_test, Yp_pred)

    append_results(Yp_pred, probabilities, Yp_test,
                   roc_auc_score(Yp_test / 4, probabilities), cm, count,
                   logObject)
Пример #11
0
def svm_class(Xp_train, Xp_test, Yp_train, Yp_test, svmObject, count):
    if (svmObject.isUsed == False):
        return

    svmObject.name = 'SVM'
    svmObject.folds = count

    from sklearn.svm import SVC
    svm = SVC(verbose=False, probability=True, C = svmObject.params['C'],\
              gamma = svmObject.params['gamma'], kernel=svmObject.params['kernel'],\
              degree= svmObject.params['degree'], coef0=svmObject.params['coef0'],\
              shrinking=svmObject.params['shrinking'], tol=svmObject.params['tol'])
    svm.fit(Xp_train, Yp_train)
    Yp_pred = svm.predict(Xp_test)
    probabilities = svm.predict_proba(Xp_test)
    probabilities = probabilities[:, 1]

    if (svmObject.params['method'] == 'prob'):
        Yp_pred = (probabilities > svmObject.params['threshold']) * 4
    cm = my_confusion_matrix(Yp_test, Yp_pred)
    append_results(Yp_pred, probabilities, Yp_test,
                   roc_auc_score(Yp_test / 4, probabilities), cm, count,
                   svmObject)
Пример #12
0
def mlp_class(Xp_train, Xp_test, Yp_train, Yp_test, mlpObject, count):
    if (mlpObject.isUsed == False):
        return
    mlpObject.name = 'MLP'
    mlpObject.folds = count
    from sklearn.neural_network import MLPClassifier

    MLP = MLPClassifier(activation=mlpObject.params['activation'],  solver=mlpObject.params['solver'],\
                        tol= mlpObject.params['tol'], hidden_layer_sizes = mlpObject.params['hidden_layer_sizes'],\
                        max_iter=mlpObject.params['max_iter'], learning_rate=mlpObject.params['learning_rate'],\
                        alpha=mlpObject.params['alpha'], batch_size=mlpObject.params['batch_size'],\
                        power_t = mlpObject.params['power_t'], shuffle=mlpObject.params['shuffle'],\
                        momentum=mlpObject.params['momentum'], nesterovs_momentum=mlpObject.params['nesterovs_momentum'],\
                        early_stopping=mlpObject.params['early_stopping'], validation_fraction = mlpObject.params['validation_fraction'],\
                        beta_1=mlpObject.params['beta_1'], beta_2=mlpObject.params['beta_2'], epsilon=mlpObject.params['epsilon'], random_state = 0)
    MLP.fit(Xp_train, Yp_train)
    Yp_pred = MLP.predict(Xp_test)
    probabilities = MLP.predict_proba(Xp_test)
    probabilities = probabilities[:, 1]
    cm = my_confusion_matrix(Yp_test, Yp_pred)

    append_results(Yp_pred, probabilities, Yp_test,
                   roc_auc_score(Yp_test / 4, probabilities), cm, count,
                   mlpObject)