def train(model):
    dataGen = DataGenerator("train", 169728, BATCH_SIZE, True)
    dataGenval = DataGenerator("val", 42432, BATCH_SIZE, False)
    dataGentest = DataGenerator("test", 48832, 64, False)

    filepath = "BioElmoTextModel-{epoch:02d}-{val_loss:.2f}.hdf5"
    modelckp = ModelCheckpoint(filepath,
                               monitor='val_loss',
                               verbose=1,
                               save_best_only=False,
                               mode='min')
    clr = CyclicLR(base_lr=0.0001, max_lr=0.0006, step_size=2000.)
    es = EarlyStopping(monitor="val_loss", mode=min, verbose=1)
    callbacks_list = [
        modelckp, checkpoint, clr, es,
        roc_callback(dataGentest, np.array(dataGentest.labels))
    ]
    model.fit_generator(dataGen,
                        callbacks_list=callbacks_list,
                        validation_data=dataGenval,
                        use_multiprocessing=False,
                        verbose=1,
                        epochs=EPOCHS,
                        callbacks=call_list,
                        workers=4)

    model.save_weights("BioElmoTextModel.h5")
Пример #2
0
def train(model):

    train_df = pd.read_csv(open("./train.csv", 'rU'),
                           usecols=range(16),
                           encoding='utf-8',
                           engine='c',
                           dtype={'Report': str})
    val_df = pd.read_csv(open("./validate.csv", 'rU'),
                         usecols=range(16),
                         encoding='utf-8',
                         engine='c',
                         dtype={'Report': str})
    test_df = pd.read_csv(open("./test.csv", 'rU'),
                          usecols=range(16),
                          encoding='utf-8',
                          engine='c',
                          dtype={'Report': str})

    x1_train, x2_train, y_train, x1_val, x2_val, y_val, x1_test, x2_test, y_test = getData(
        train_df, val_df, test_df)

    print("Prepare Generators")
    trainGen = ChestXRaySequence(x1_train,
                                 x2_train,
                                 y_train,
                                 batch_size=BATCH_SIZE)
    valGen = ChestXRaySequence(x1_val, x2_val, y_val, batch_size=BATCH_SIZE)
    testGen = ChestXRaySequence(x1_test,
                                x2_test,
                                y_test,
                                batch_size=BATCH_SIZE)

    print("Start training")

    filepath = "weights-improvement-MERGED-{epoch:02d}-{val_loss:.2f}.hdf5"
    checkpoint = ModelCheckpoint(filepath,
                                 monitor='val_loss',
                                 verbose=1,
                                 save_best_only=False,
                                 mode='min')
    clr = CyclicLR(base_lr=0.0001, max_lr=0.0006, step_size=2000.)
    callbacks_list = [
        checkpoint, clr,
        roc_callback(testGen, np.array(testGen.labels))
    ]

    model.fit_generator(generator=trainGen,
                        validation_data=valGen,
                        use_multiprocessing=False,
                        verbose=1,
                        epochs=EPOCHS,
                        callbacks=callbacks_list,
                        workers=6)

    model.save("merged.h5")
def train(model,x_train, y_train, x_val, y_val,x_test, y_test):
    filepath = "BioFastTextModel-{epoch:02d}-{val_loss:.2f}.hdf5"
    modelckp = ModelCheckpoint(filepath, monitor='val_loss', verbose=1, save_best_only=False,
                               mode='min')

    metrics=roc_callback(x_test,y_test)
    clr = CyclicLR(base_lr=0.0001, max_lr=0.0006, step_size=2000.)
    es = EarlyStopping(monitor="val_loss", mode=min, verbose=1)
    callbacks_list = [modelckp, checkpoint, clr, es, metrics]

    print("Begining training")
    model.fit(x_train, y_train, epochs=EPOCHS, batch_size=BATCH_SIZE,
             shuffle=True, validation_data=(x_val, y_val), verbose=1, callbacks=callbacks_list)
Пример #4
0
def trainGrayscale(model):

    labels = ['No Finding','Enlarged Cardiomediastinum',
              'Cardiomegaly','Lung Opacity','Lung Lesion',
              'Edema','Consolidation','Pneumonia','Atelectasis',
              'Pneumothorax','Pleural Effusion','Pleural Other','Fracture','Support Devices']
    datagen = image.ImageDataGenerator(rescale=1. / 255)

    traindf = pd.read_csv(TRAIN)
    validatedf = pd.read_csv(VAL)
    testdf = pd.read_csv(TEST)


    traingenerator = datagen.flow_from_dataframe(traindf,
                                                 directory=None,
                                                 color_mode='grayscale',
                                                 target_size=(256, 256),
                                                 x_col='Path',
                                                 y_col=labels,
                                                 class_mode="other",
                                                 shuffle=True,
                                                 batch_size=BATCH,
                                                 drop_duplicates=False)

    validategenerator = datagen.flow_from_dataframe(validatedf,
                                                    directory=None,
                                                    color_mode='grayscale',
                                                    target_size=(256, 256),
                                                    x_col='Path',
                                                    y_col=labels,
                                                    class_mode="other",
                                                    shuffle=False,
                                                    batch_size=BATCH,
                                                    drop_duplicates=False)

    testgenerator = datagen.flow_from_dataframe(testdf,
                                                    directory=None,
                                                    color_mode='grayscale',
                                                    target_size=(256, 256),
                                                    x_col='Path',
                                                    y_col=labels,
                                                    class_mode="other",
                                                    shuffle=False,
                                                    batch_size=BATCH,
                                                    drop_duplicates=False)

    print(traingenerator.n)
    print(validategenerator.n)
    print(testgenerator.n)

    filepath = "DenseNet-grayscale-{epoch:02d}-{val_loss:.2f}.hdf5"
    checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1, save_best_only=False,
                                 mode='min')
    clr = CyclicLR(base_lr=0.0001, max_lr=0.0006, step_size=2000.)
    es = EarlyStopping(monitor="val_loss",mode=min, verbose=1)
    callbacks_list = [checkpoint,clr,es,roc_callback(testgenerator,np.array(testgenerator.labels))]

    model.fit_generator(generator=traingenerator,
                        validation_data=validategenerator,
                        epochs=EPOCHS,
                        steps_per_epoch=traingenerator.n / BATCH,
                        validation_steps=validategenerator.n / BATCH,
                        callbacks=callbacks_list,
                        workers=THREAD,
                        verbose=1)

    model.save_weights("DenseNet.h5")
    model.save('DenseNet.h5')