Пример #1
0
    def addBlinkAttributes(self):

        # Adding and connecting attributes for the blinks

        self.blink_att      = self.addAnimParam("blink",       "Blink",            "float", 0,           minValue=0, maxValue=1)
        self.blinkUpper_att = self.addAnimParam("upperBlink",  "Upper Blink",      "float", 0,           minValue=0, maxValue=1)
        self.blinkLower_att = self.addAnimParam("lowerBlink",  "Lower Blink",      "float", 0,           minValue=0, maxValue=1)
        self.blinkMult_att  = self.addAnimParam("blinkMult",   "Blink Multiplyer", "float", 1,           minValue=1, maxValue=2)
        self.midBlinkH_att  = self.addAnimParam("blinkHeight", "Blink Height",     "float", self.blinkH, minValue=0, maxValue=1)

        # Add blink + upper and blink + lower so animator can use both.
        # But also clamp them so using both doesn't exceed 1.0
        blinkAdd = pm.createNode('plusMinusAverage')
        blinkClamp = pm.createNode('clamp')
        blinkClamp.maxR.set(1.0)
        blinkClamp.maxG.set(1.0)
        self.blink_att.connect(blinkAdd.input2D[0].input2Dx)
        self.blink_att.connect(blinkAdd.input2D[0].input2Dy)
        self.blinkUpper_att.connect(blinkAdd.input2D[1].input2Dx)
        self.blinkLower_att.connect(blinkAdd.input2D[1].input2Dy)
        addOutput = blinkAdd.output2D
        addOutput.output2Dx.connect(blinkClamp.inputR)
        addOutput.output2Dy.connect(blinkClamp.inputG)

        # Drive the clamped blinks through blinkMult, then to the blendshapes
        mult_node = node.createMulNode(blinkClamp.outputR, self.blinkMult_att)
        mult_nodeLower = node.createMulNode(blinkClamp.outputG, self.blinkMult_att)
        pm.connectAttr(mult_node + ".outputX", self.bs_upBlink[0].attr(self.midTarget.name()))
        pm.connectAttr(mult_nodeLower + ".outputX", self.bs_lowBlink[0].attr(self.midTargetLower.name()))
        pm.connectAttr(self.midBlinkH_att, self.bs_mid[0].attr(self.upTarget.name()))
        pm.connectAttr(self.midBlinkH_att, self.bs_midLower[0].attr(self.upTarget.name()))
Пример #2
0
    def addEyeTrackingAttributes(self):

        up_ctl = self.upControls[2]
        low_ctl = self.lowControls[3]

        # Adding channels for eye tracking
        upVTracking_att  = attribute.addAttribute(up_ctl,  "vTracking", "float", self.upperVTrack, minValue=0, keyable=False, channelBox=True)
        upHTracking_att  = attribute.addAttribute(up_ctl,  "hTracking", "float", self.upperHTrack, minValue=0, keyable=False, channelBox=True)

        lowVTracking_att = attribute.addAttribute(low_ctl, "vTracking", "float", self.lowerVTrack, minValue=0, keyable=False, channelBox=True)
        lowHTracking_att = attribute.addAttribute(low_ctl, "hTracking", "float", self.lowerHTrack, minValue=0, keyable=False, channelBox=True)

        mult_node = node.createMulNode(upVTracking_att, self.aimTrigger_ref.attr("ty"))
        pm.connectAttr(mult_node + ".outputX", self.trackLvl[0].attr("ty"))
        mult_node = node.createMulNode(upHTracking_att, self.aimTrigger_ref.attr("tx"))

        # Correct right side horizontal tracking
        if self.negate:
            pass
            # mult_node = node.createMulNode(mult_node.attr("outputX"), -1)

        pm.connectAttr(mult_node + ".outputX", self.trackLvl[0].attr("tx"))

        mult_node = node.createMulNode(lowVTracking_att, self.aimTrigger_ref.attr("ty"))
        pm.connectAttr(mult_node + ".outputX", self.trackLvl[1].attr("ty"))
        mult_node = node.createMulNode(lowHTracking_att, self.aimTrigger_ref.attr("tx"))

        # Correct right side horizontal tracking
        if self.negate:
            pass
            # mult_node = node.createMulNode(mult_node.attr("outputX"), -1)

        pm.connectAttr(mult_node + ".outputX", self.trackLvl[1].attr("tx"))
Пример #3
0
    def add_ref_joint(self, loc, vis_attr=None, width=.5):
        """Add a visual reference joint to a locator or root of the guide

        Args:
            loc (dagNode): locator or guide root
            vis_attr (attr list, optional): attribute to activate or deactivate
                the visual ref. Should be a list [attr1, attr2]
            width (float, optional): icon width
        """
        add_ref_joint = icon.sphere(loc,
                                    self.getName("joint"),
                                    width=width,
                                    color=[0, 1, 0],
                                    m=loc.getMatrix(worldSpace=True))
        pm.parent(add_ref_joint, world=True)
        pm.makeIdentity(add_ref_joint, apply=True,
                        t=False, r=False, s=True, n=0)

        for shp in add_ref_joint.getShapes():
            if vis_attr:
                node.createMulNode(vis_attr[0],
                                   vis_attr[1],
                                   shp.attr("visibility"))
            shp.isHistoricallyInteresting.set(False)

            loc.addChild(shp, add=True, shape=True)
        pm.delete(add_ref_joint)
Пример #4
0
def inverseTranslateParent(obj):
    """Invert the parent transformation

    Args:
        obj (dagNode): The source dagNode to inver parent transformation.
    """
    if not isinstance(obj, list):
        obj = [obj]
    for x in obj:
        node.createMulNode([x.attr("tx"), x.attr("ty"), x.attr("tz")],
                           [-1, -1, -1],
                           [x.getParent().attr("tx"),
                            x.getParent().attr("ty"),
                            x.getParent().attr("tz")])
    def connect_master(self, mstr_out, slave_in, idx, offset, rev_bias=False):
        """Connect master and slave chain

        Args:
            mstr_out (list): List of master outputs
            slave_in (list): List of slave inputs
            idx (int): Input index
            offset (int): Offset for the mastr ouput index
            rev_bias (bool): reverse bias value from 0 to 1
        """
        # we need to check if  master have enought sections
        # if  connection is out of index, will fallback to the latest
        # section in the master
        if (idx + offset) > len(mstr_out) - 1:
            mstr_e = len(mstr_out) - 1
        else:
            mstr_e = idx + offset
        m_out = mstr_out[mstr_e]
        s_in = slave_in[idx]
        if rev_bias:
            bias = node.createReverseNode(self.bias_att).outputX
        else:
            bias = self.bias_att
        for srt in ["rotate", "translate"]:
            m_node = node.createMulNode([m_out.attr(srt + "X"),
                                         m_out.attr(srt + "Y"),
                                         m_out.attr(srt + "Z")],
                                        [bias, bias, bias],
                                        [s_in.attr(srt + "X"),
                                         s_in.attr(srt + "Y"),
                                         s_in.attr(srt + "Z")])
Пример #6
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """
        pairs = [[self.top_ctl, self.bottom_npo, 1, 2],
                 [self.bottom_ctl, self.bottom_pivot, 2, 1],
                 [self.ext_ctl, self.int_npo, 3, 4],
                 [self.int_ctl, self.int_pivot, 4, 3]]

        for pair in pairs:
            d = vector.getDistance(self.guide.apos[pair[2]],
                                   self.guide.apos[pair[3]])

            sum_node = node.createPlusMinusAverage1D([d, pair[0].ty])
            mul_node = node.createMulNode(pair[0].ty, self.volume_att)
            sum2_node = node.createPlusMinusAverage1D([d, mul_node.outputX])
            mul2_node = node.createDivNode(
                [sum2_node.output1D, sum_node.output1D, sum2_node.output1D],
                [d, d, d])

            sum3D_node = pm.createNode("plusMinusAverage")
            sum3D_node.attr("operation").set(2)
            sum3D_node.input3D[0].input3Dx.set(2)
            sum3D_node.input3D[0].input3Dz.set(2)
            mul2_node.outputX >> sum3D_node.input3D[1].input3Dx
            mul2_node.outputZ >> sum3D_node.input3D[1].input3Dz
            sum3D_node.output3D.output3Dx >> pair[1].sx
            mul2_node.outputY >> pair[1].sy
            sum3D_node.output3D.output3Dx >> pair[1].sz
Пример #7
0
def connectInvertSRT(source, target, srt="srt", axis="xyz"):
    """Connect the locat transformations with inverted values.

    Args:
        source (dagNode): The source driver dagNode
        target (dagNode): The target driven dagNode
        srt (string, optional): String value for the scale(s), rotate(r),
            translation(t). Default value is "srt". Posible values "s", "r",
            "t" or any combination
        axis (string, optional):  String value for the axis. Default
            value is "xyz". Posible values "x", "y", "z" or any combination
    """
    for t in srt:
        soureList = []
        invList = []
        targetList = []
        for a in axis:
            soureList.append(source.attr(t + a))
            invList.append(-1)
            targetList.append(target.attr(t + a))

        if soureList:
            node.createMulNode(soureList, invList, targetList)
Пример #8
0
def createRivetTweak(mesh,
                     edgePair,
                     name,
                     parent=None,
                     ctlParent=None,
                     jntParent=None,
                     color=[0, 0, 0],
                     size=.04,
                     defSet=None,
                     ctlSet=None,
                     side=None,
                     gearMulMatrix=True,
                     attach_rot=False,
                     inputMesh=None):
    """Create a tweak joint attached to the mesh using a rivet

    Args:
        mesh (mesh): The object to add the tweak
        edgePair (pair list): The edge pair to create the rivet
        name (str): The name for the tweak
        parent (None or dagNode, optional): The parent for the tweak
        jntParent (None or dagNode, optional): The parent for the joints
        ctlParent (None or dagNode, optional): The parent for the tweak control
        color (list, optional): The color for the control
        size (float, optional): Size of the control
        defSet (None or set, optional): Deformer set to add the joints
        ctlSet (None or set, optional): the set to add the controls
        side (None, str): String to set the side. Valid values are L, R or C.
            If the side is not set or the value is not valid, the side will be
            set automatically based on the world position
        gearMulMatrix (bool, optional): If False will use Maya default multiply
            matrix node

    Returns:
        PyNode: The tweak control
    """
    blendShape = blendShapes.getBlendShape(mesh)
    if not inputMesh:
        inputMesh = blendShape.listConnections(sh=True, t="shape", d=False)[0]

    oRivet = rivet.rivet()
    base = oRivet.create(inputMesh, edgePair[0], edgePair[1], parent)
    # get side
    if not side or side not in ["L", "R", "C"]:
        if base.getTranslation(space='world')[0] < -0.01:
            side = "R"
        elif base.getTranslation(space='world')[0] > 0.01:
            side = "L"
        else:
            side = "C"

    nameSide = name + "_tweak_" + side
    pm.rename(base, nameSide)

    if not ctlParent:
        ctlParent = base
        ctl_parent_tag = None
    else:
        ctl_parent_tag = ctlParent

    # Joints NPO
    npo = pm.PyNode(pm.createNode("transform",
                                  n=nameSide + "_npo",
                                  p=ctlParent,
                                  ss=True))
    if attach_rot:
        # npo.setTranslation(base.getTranslation(space="world"), space="world")
        pm.parentConstraint(base, npo, mo=False)
    else:
        pm.pointConstraint(base, npo, mo=False)

    # create joints
    if not jntParent:
        jntParent = npo
        matrix_cnx = False
    else:
        # need extra connection to ensure is moving with th npo, even is
        # not child of npo
        matrix_cnx = True

    jointBase = primitive.addJoint(jntParent, nameSide + "_jnt_lvl")
    joint = primitive.addJoint(jointBase, nameSide + "_jnt")

    # reset axis and invert behaviour
    for axis in "XYZ":
        pm.setAttr(jointBase + ".jointOrient" + axis, 0)
        pm.setAttr(npo + ".translate" + axis, 0)
        # pm.setAttr(jointBase + ".translate" + axis, 0)

    pp = npo.getParent()
    pm.parent(npo, w=True)
    for axis in "xyz":
        npo.attr("r" + axis).set(0)
    if side == "R":
        npo.attr("ry").set(180)
        npo.attr("sz").set(-1)
    pm.parent(npo, pp)

    dm_node = None

    if matrix_cnx:
        mulmat_node = applyop.gear_mulmatrix_op(
            npo + ".worldMatrix", jointBase + ".parentInverseMatrix")
        dm_node = node.createDecomposeMatrixNode(
            mulmat_node + ".output")
        m = mulmat_node.attr('output').get()
        pm.connectAttr(dm_node + ".outputTranslate", jointBase + ".t")
        pm.connectAttr(dm_node + ".outputRotate", jointBase + ".r")

        # invert negative scaling in Joints. We only inver Z axis, so is
        # the only axis that we are checking
        print(dm_node.attr("outputScaleZ").get())
        if dm_node.attr("outputScaleZ").get() < 0:
            mul_nod_invert = node.createMulNode(
                dm_node.attr("outputScaleZ"),
                -1)
            out_val = mul_nod_invert.attr("outputX")
        else:
            out_val = dm_node.attr("outputScaleZ")

        pm.connectAttr(dm_node.attr("outputScaleX"), jointBase + ".sx")
        pm.connectAttr(dm_node.attr("outputScaleY"), jointBase + ".sy")
        pm.connectAttr(out_val, jointBase + ".sz")
        pm.connectAttr(dm_node + ".outputShear", jointBase + ".shear")

        # Segment scale compensate Off to avoid issues with the global
        # scale
        jointBase.setAttr("segmentScaleCompensate", 0)
        joint.setAttr("segmentScaleCompensate", 0)

        jointBase.setAttr("jointOrient", 0, 0, 0)

        # setting the joint orient compensation in order to have clean
        # rotation channels
        jointBase.attr("jointOrientX").set(jointBase.attr("rx").get())
        jointBase.attr("jointOrientY").set(jointBase.attr("ry").get())
        jointBase.attr("jointOrientZ").set(jointBase.attr("rz").get())

        im = m.inverse()

        if gearMulMatrix:
            mul_nod = applyop.gear_mulmatrix_op(
                mulmat_node.attr('output'), im, jointBase, 'r')
            dm_node2 = mul_nod.output.listConnections()[0]
        else:
            mul_nod = node.createMultMatrixNode(
                mulmat_node.attr('matrixSum'), im, jointBase, 'r')
            dm_node2 = mul_nod.matrixSum.listConnections()[0]

        if dm_node.attr("outputScaleZ").get() < 0:
            negateTransformConnection(dm_node2.outputRotate, jointBase.rotate)

    else:
        resetJntLocalSRT(jointBase)

    # hidding joint base by changing the draw mode
    pm.setAttr(jointBase + ".drawStyle", 2)
    if not defSet:
        try:
            defSet = pm.PyNode("rig_deformers_grp")
        except TypeError:
            pm.sets(n="rig_deformers_grp", empty=True)
            defSet = pm.PyNode("rig_deformers_grp")
    pm.sets(defSet, add=joint)

    controlType = "sphere"
    o_icon = icon.create(npo,
                         nameSide + "_ctl",
                         datatypes.Matrix(),
                         color,
                         controlType,
                         w=size)

    attribute.addAttribute(o_icon, "isCtl", "bool", keyable=False)

    transform.resetTransform(o_icon)
    if dm_node and dm_node.attr("outputScaleZ").get() < 0:
        pm.connectAttr(o_icon.scale, joint.scale)
        negateTransformConnection(o_icon.rotate, joint.rotate)
        negateTransformConnection(o_icon.translate,
                                  joint.translate,
                                  [1, 1, -1])

    else:
        for t in [".translate", ".scale", ".rotate"]:
            pm.connectAttr(o_icon + t, joint + t)

    # create the attributes to handlde mirror and symetrical pose
    attribute.addAttribute(
        o_icon, "invTx", "bool", 0, keyable=False, niceName="Invert Mirror TX")
    attribute.addAttribute(
        o_icon, "invTy", "bool", 0, keyable=False, niceName="Invert Mirror TY")
    attribute.addAttribute(
        o_icon, "invTz", "bool", 0, keyable=False, niceName="Invert Mirror TZ")
    attribute.addAttribute(
        o_icon, "invRx", "bool", 0, keyable=False, niceName="Invert Mirror RX")
    attribute.addAttribute(
        o_icon, "invRy", "bool", 0, keyable=False, niceName="Invert Mirror RY")
    attribute.addAttribute(
        o_icon, "invRz", "bool", 0, keyable=False, niceName="Invert Mirror RZ")
    attribute.addAttribute(
        o_icon, "invSx", "bool", 0, keyable=False, niceName="Invert Mirror SX")
    attribute.addAttribute(
        o_icon, "invSy", "bool", 0, keyable=False, niceName="Invert Mirror SY")
    attribute.addAttribute(
        o_icon, "invSz", "bool", 0, keyable=False, niceName="Invert Mirror SZ")

    # magic of doritos connection
    pre_bind_matrix_connect(mesh, joint, jointBase)

    # add control tag
    node.add_controller_tag(o_icon, ctl_parent_tag)

    if not ctlSet:
        try:
            ctlSet = pm.PyNode("rig_controllers_grp")
        except TypeError:
            pm.sets(n="rig_controllers_grp", empty=True)
            ctlSet = pm.PyNode("rig_controllers_grp")
    pm.sets(ctlSet, add=o_icon)

    return o_icon
Пример #9
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """

        # Tangent position ---------------------------------
        # common part
        d = vector.getDistance(self.guide.apos[0], self.guide.apos[1])
        dist_node = node.createDistNode(self.ik0_ctl, self.ik1_ctl)
        rootWorld_node = node.createDecomposeMatrixNode(
            self.root.attr("worldMatrix"))

        div_node = node.createDivNode(dist_node + ".distance",
                                      rootWorld_node + ".outputScaleX")

        div_node = node.createDivNode(div_node + ".outputX", d)

        # tan0
        mul_node = node.createMulNode(self.tan0_att,
                                      self.tan0_npo.getAttr("ty"))

        res_node = node.createMulNode(mul_node + ".outputX",
                                      div_node + ".outputX")

        pm.connectAttr(res_node + ".outputX", self.tan0_npo.attr("ty"))

        # tan1
        mul_node = node.createMulNode(self.tan1_att,
                                      self.tan1_npo.getAttr("ty"))

        res_node = node.createMulNode(mul_node + ".outputX",
                                      div_node + ".outputX")

        pm.connectAttr(res_node + ".outputX", self.tan1_npo.attr("ty"))

        # Tangent Mid --------------------------------------
        if self.settings["centralTangent"]:
            tanIntMat = applyop.gear_intmatrix_op(
                self.tan0_npo.attr("worldMatrix"),
                self.tan1_npo.attr("worldMatrix"), .5)

            applyop.gear_mulmatrix_op(
                tanIntMat.attr("output"),
                self.tan_npo.attr("parentInverseMatrix[0]"), self.tan_npo)

            pm.connectAttr(self.tan_ctl.attr("translate"),
                           self.tan0_off.attr("translate"))

            pm.connectAttr(self.tan_ctl.attr("translate"),
                           self.tan1_off.attr("translate"))

        # Curves -------------------------------------------
        op = applyop.gear_curveslide2_op(self.slv_crv, self.mst_crv, 0, 1.5,
                                         .5, .5)

        pm.connectAttr(self.position_att, op + ".position")
        pm.connectAttr(self.maxstretch_att, op + ".maxstretch")
        pm.connectAttr(self.maxsquash_att, op + ".maxsquash")
        pm.connectAttr(self.softness_att, op + ".softness")

        # Volume driver ------------------------------------
        crv_node = node.createCurveInfoNode(self.slv_crv)

        # Division -----------------------------------------
        for i in range(self.settings["division"]):

            # References
            u = i / (self.settings["division"] - 1.0)

            cns = applyop.pathCns(self.div_cns[i], self.slv_crv, False, u,
                                  True)

            cns.setAttr("frontAxis", 1)  # front axis is 'Y'
            cns.setAttr("upAxis", 0)  # front axis is 'X'

            # Roll
            intMatrix = applyop.gear_intmatrix_op(
                self.ik0_ctl + ".worldMatrix", self.ik1_ctl + ".worldMatrix",
                u)

            dm_node = node.createDecomposeMatrixNode(intMatrix + ".output")
            pm.connectAttr(dm_node + ".outputRotate",
                           self.twister[i].attr("rotate"))

            pm.parentConstraint(self.twister[i],
                                self.ref_twist[i],
                                maintainOffset=True)

            pm.connectAttr(self.ref_twist[i] + ".translate",
                           cns + ".worldUpVector")

            # Squash n Stretch
            op = applyop.gear_squashstretch2_op(self.scl_transforms[i],
                                                self.root,
                                                pm.arclen(self.slv_crv), "y")

            pm.connectAttr(self.volume_att, op + ".blend")
            pm.connectAttr(crv_node + ".arcLength", op + ".driver")
            pm.connectAttr(self.st_att[i], op + ".stretch")
            pm.connectAttr(self.sq_att[i], op + ".squash")

        # Connections (Hooks) ------------------------------
        pm.pointConstraint(self.scl_transforms[0], self.cnx0)
        pm.scaleConstraint(self.scl_transforms[0], self.cnx0)
        pm.orientConstraint(self.ik0_ctl, self.cnx0)
        pm.pointConstraint(self.scl_transforms[-1], self.cnx1)
        pm.scaleConstraint(self.scl_transforms[-1], self.cnx1)
        pm.orientConstraint(self.ik1_ctl, self.cnx1)
Пример #10
0
def eyeRig(eyeMesh,
           edgeLoop,
           blinkH,
           namePrefix,
           offset,
           rigidLoops,
           falloffLoops,
           headJnt,
           doSkin,
           parent=None,
           ctlName="ctl",
           sideRange=False,
           customCorner=False,
           intCorner=None,
           extCorner=None,
           ctlGrp=None,
           defGrp=None):
    """Create eyelid and eye rig

    Args:
        eyeMesh (TYPE): Description
        edgeLoop (TYPE): Description
        blinkH (TYPE): Description
        namePrefix (TYPE): Description
        offset (TYPE): Description
        rigidLoops (TYPE): Description
        falloffLoops (TYPE): Description
        headJnt (TYPE): Description
        doSkin (TYPE): Description
        parent (None, optional): Description
        ctlName (str, optional): Description
        sideRange (bool, optional): Description
        customCorner (bool, optional): Description
        intCorner (None, optional): Description
        extCorner (None, optional): Description
        ctlGrp (None, optional): Description
        defGrp (None, optional): Description

    Returns:
        TYPE: Description
    """
    # Checkers
    if edgeLoop:
        edgeLoopList = [pm.PyNode(e) for e in edgeLoop.split(",")]
    else:
        pm.displayWarning("Please set the edge loop first")
        return

    if eyeMesh:
        try:
            eyeMesh = pm.PyNode(eyeMesh)
        except pm.MayaNodeError:
            pm.displayWarning("The object %s can not be found in the "
                              "scene" % (eyeMesh))
            return
    else:
        pm.displayWarning("Please set the eye mesh first")

    if doSkin:
        if not headJnt:
            pm.displayWarning("Please set the Head Jnt or unCheck "
                              "Compute Topological Autoskin")
            return

    # Initial Data
    bboxCenter = meshNavigation.bboxCenter(eyeMesh)

    extr_v = meshNavigation.getExtremeVertexFromLoop(edgeLoopList, sideRange)
    upPos = extr_v[0]
    lowPos = extr_v[1]
    inPos = extr_v[2]
    outPos = extr_v[3]
    edgeList = extr_v[4]
    vertexList = extr_v[5]

    # Detect the side L or R from the x value
    if inPos.getPosition(space='world')[0] < 0.0:
        side = "R"
        inPos = extr_v[3]
        outPos = extr_v[2]
        normalPos = outPos
        npw = normalPos.getPosition(space='world')
        normalVec = npw - bboxCenter
    else:
        side = "L"
        normalPos = outPos
        npw = normalPos.getPosition(space='world')
        normalVec = bboxCenter - npw
    # Manual Vertex corners
    if customCorner:
        if intCorner:
            try:
                if side == "R":
                    inPos = pm.PyNode(extCorner)
                else:
                    inPos = pm.PyNode(intCorner)
            except pm.MayaNodeError:
                pm.displayWarning("%s can not be found" % intCorner)
                return
        else:
            pm.displayWarning("Please set the internal eyelid corner")
            return

        if extCorner:
            try:
                normalPos = pm.PyNode(extCorner)
                npw = normalPos.getPosition(space='world')
                if side == "R":
                    outPos = pm.PyNode(intCorner)
                    normalVec = npw - bboxCenter
                else:
                    outPos = pm.PyNode(extCorner)
                    normalVec = bboxCenter - npw
            except pm.MayaNodeError:
                pm.displayWarning("%s can not be found" % extCorner)
                return
        else:
            pm.displayWarning("Please set the external eyelid corner")
            return

    # Check if we have prefix:
    if namePrefix:
        namePrefix = string.removeInvalidCharacter(namePrefix)
    else:
        pm.displayWarning("Prefix is needed")
        return

    def setName(name, ind=None):
        namesList = [namePrefix, side, name]
        if ind is not None:
            namesList[1] = side + str(ind)
        name = "_".join(namesList)
        return name

    if pm.ls(setName("root")):
        pm.displayWarning("The object %s already exist in the scene. Please "
                          "choose another name prefix" % setName("root"))
        return

    # Eye root
    eye_root = primitive.addTransform(None, setName("root"))
    eyeCrv_root = primitive.addTransform(eye_root, setName("crvs"))

    # Eyelid Main crvs
    try:
        upEyelid = meshNavigation.edgeRangeInLoopFromMid(
            edgeList, upPos, inPos, outPos)
        upCrv = curve.createCurveFromOrderedEdges(upEyelid,
                                                  inPos,
                                                  setName("upperEyelid"),
                                                  parent=eyeCrv_root)
        upCrv_ctl = curve.createCurveFromOrderedEdges(upEyelid,
                                                      inPos,
                                                      setName("upCtl_crv"),
                                                      parent=eyeCrv_root)
        pm.rebuildCurve(upCrv_ctl, s=2, rt=0, rpo=True, ch=False)

        lowEyelid = meshNavigation.edgeRangeInLoopFromMid(
            edgeList, lowPos, inPos, outPos)
        lowCrv = curve.createCurveFromOrderedEdges(lowEyelid,
                                                   inPos,
                                                   setName("lowerEyelid"),
                                                   parent=eyeCrv_root)
        lowCrv_ctl = curve.createCurveFromOrderedEdges(lowEyelid,
                                                       inPos,
                                                       setName("lowCtl_crv"),
                                                       parent=eyeCrv_root)

        pm.rebuildCurve(lowCrv_ctl, s=2, rt=0, rpo=True, ch=False)

    except UnboundLocalError:
        if customCorner:
            pm.displayWarning("This error is maybe caused because the custom "
                              "Corner vertex is not part of the edge loop")
        pm.displayError(traceback.format_exc())
        return

    upBlink = curve.createCurveFromCurve(upCrv,
                                         setName("upblink_crv"),
                                         nbPoints=30,
                                         parent=eyeCrv_root)
    lowBlink = curve.createCurveFromCurve(lowCrv,
                                          setName("lowBlink_crv"),
                                          nbPoints=30,
                                          parent=eyeCrv_root)

    upTarget = curve.createCurveFromCurve(upCrv,
                                          setName("upblink_target"),
                                          nbPoints=30,
                                          parent=eyeCrv_root)
    lowTarget = curve.createCurveFromCurve(lowCrv,
                                           setName("lowBlink_target"),
                                           nbPoints=30,
                                           parent=eyeCrv_root)
    midTarget = curve.createCurveFromCurve(lowCrv,
                                           setName("midBlink_target"),
                                           nbPoints=30,
                                           parent=eyeCrv_root)

    rigCrvs = [
        upCrv, lowCrv, upCrv_ctl, lowCrv_ctl, upBlink, lowBlink, upTarget,
        lowTarget, midTarget
    ]

    for crv in rigCrvs:
        crv.attr("visibility").set(False)

    # localBBOX
    localBBox = eyeMesh.getBoundingBox(invisible=True, space='world')
    wRadius = abs((localBBox[0][0] - localBBox[1][0]))
    dRadius = abs((localBBox[0][1] - localBBox[1][1]) / 1.7)

    # Groups
    if not ctlGrp:
        ctlGrp = "rig_controllers_grp"
    try:
        ctlSet = pm.PyNode(ctlGrp)
    except pm.MayaNodeError:
        pm.sets(n=ctlGrp, em=True)
        ctlSet = pm.PyNode(ctlGrp)
    if not defGrp:
        defGrp = "rig_deformers_grp"
    try:
        defset = pm.PyNode(defGrp)
    except pm.MayaNodeError:
        pm.sets(n=defGrp, em=True)
        defset = pm.PyNode(defGrp)

    # Calculate center looking at
    averagePosition = (
        (upPos.getPosition(space='world') + lowPos.getPosition(space='world') +
         inPos.getPosition(space='world') + outPos.getPosition(space='world'))
        / 4)
    if side == "R":
        negate = False
        offset = offset
        over_offset = dRadius
    else:
        negate = False
        over_offset = dRadius

    if side == "R" and sideRange or side == "R" and customCorner:
        axis = "z-x"
        # axis = "zx"
    else:
        axis = "z-x"

    t = transform.getTransformLookingAt(bboxCenter,
                                        averagePosition,
                                        normalVec,
                                        axis=axis,
                                        negate=negate)

    over_npo = primitive.addTransform(eye_root, setName("center_lookatRoot"),
                                      t)

    over_ctl = icon.create(over_npo,
                           setName("over_%s" % ctlName),
                           t,
                           icon="square",
                           w=wRadius,
                           d=dRadius,
                           ro=datatypes.Vector(1.57079633, 0, 0),
                           po=datatypes.Vector(0, 0, over_offset),
                           color=4)
    node.add_controller_tag(over_ctl)
    attribute.add_mirror_config_channels(over_ctl)
    attribute.setKeyableAttributes(
        over_ctl,
        params=["tx", "ty", "tz", "ro", "rx", "ry", "rz", "sx", "sy", "sz"])

    if side == "R":
        over_npo.attr("rx").set(over_npo.attr("rx").get() * -1)
        over_npo.attr("ry").set(over_npo.attr("ry").get() + 180)
        over_npo.attr("sz").set(-1)

    if len(ctlName.split("_")) == 2 and ctlName.split("_")[-1] == "ghost":
        pass
    else:
        pm.sets(ctlSet, add=over_ctl)

    center_lookat = primitive.addTransform(over_ctl, setName("center_lookat"),
                                           t)

    # Tracking
    # Eye aim control
    t_arrow = transform.getTransformLookingAt(bboxCenter,
                                              averagePosition,
                                              upPos.getPosition(space='world'),
                                              axis="zy",
                                              negate=False)

    radius = abs((localBBox[0][0] - localBBox[1][0]) / 1.7)
    arrow_npo = primitive.addTransform(eye_root, setName("aim_npo"), t_arrow)
    arrow_ctl = icon.create(arrow_npo,
                            setName("aim_%s" % ctlName),
                            t_arrow,
                            icon="arrow",
                            w=1,
                            po=datatypes.Vector(0, 0, radius),
                            color=4)
    if len(ctlName.split("_")) == 2 and ctlName.split("_")[-1] == "ghost":
        pass
    else:
        pm.sets(ctlSet, add=arrow_ctl)
    attribute.setKeyableAttributes(arrow_ctl, params=["rx", "ry", "rz"])

    # tracking custom trigger
    if side == "R":
        tt = t_arrow
    else:
        tt = t
    aimTrigger_root = primitive.addTransform(center_lookat,
                                             setName("aimTrigger_root"), tt)
    aimTrigger_lvl = primitive.addTransform(aimTrigger_root,
                                            setName("aimTrigger_lvl"), tt)
    aimTrigger_lvl.attr("tz").set(1.0)
    aimTrigger_ref = primitive.addTransform(aimTrigger_lvl,
                                            setName("aimTrigger_ref"), tt)
    aimTrigger_ref.attr("tz").set(0.0)
    # connect  trigger with arrow_ctl
    pm.parentConstraint(arrow_ctl, aimTrigger_ref, mo=True)

    # Controls lists
    upControls = []
    trackLvl = []

    # upper eyelid controls
    upperCtlNames = ["inCorner", "upInMid", "upMid", "upOutMid", "outCorner"]
    cvs = upCrv_ctl.getCVs(space="world")
    if side == "R" and not sideRange:
        # if side == "R":
        cvs = [cv for cv in reversed(cvs)]
    for i, cv in enumerate(cvs):
        if utils.is_odd(i):
            color = 14
            wd = .5
            icon_shape = "circle"
            params = ["tx", "ty", "tz"]
        else:
            color = 4
            wd = .7
            icon_shape = "square"
            params = [
                "tx", "ty", "tz", "ro", "rx", "ry", "rz", "sx", "sy", "sz"
            ]

        t = transform.setMatrixPosition(t, cvs[i])
        npo = primitive.addTransform(center_lookat,
                                     setName("%s_npo" % upperCtlNames[i]), t)
        npoBase = npo
        if i == 2:
            # we add an extra level to input the tracking ofset values
            npo = primitive.addTransform(npo,
                                         setName("%s_trk" % upperCtlNames[i]),
                                         t)
            trackLvl.append(npo)

        ctl = icon.create(npo,
                          setName("%s_%s" % (upperCtlNames[i], ctlName)),
                          t,
                          icon=icon_shape,
                          w=wd,
                          d=wd,
                          ro=datatypes.Vector(1.57079633, 0, 0),
                          po=datatypes.Vector(0, 0, offset),
                          color=color)
        attribute.add_mirror_config_channels(ctl)
        node.add_controller_tag(ctl, over_ctl)
        upControls.append(ctl)
        if len(ctlName.split("_")) == 2 and ctlName.split("_")[-1] == "ghost":
            pass
        else:
            pm.sets(ctlSet, add=ctl)
        attribute.setKeyableAttributes(ctl, params)
        if side == "R":
            npoBase.attr("ry").set(180)
            npoBase.attr("sz").set(-1)

    # adding parent average contrains to odd controls
    for i, ctl in enumerate(upControls):
        if utils.is_odd(i):
            cns_node = pm.parentConstraint(upControls[i - 1],
                                           upControls[i + 1],
                                           ctl.getParent(),
                                           mo=True)
            # Make the constraint "noFlip"
            cns_node.interpType.set(0)

    # lower eyelid controls
    lowControls = [upControls[0]]
    lowerCtlNames = [
        "inCorner", "lowInMid", "lowMid", "lowOutMid", "outCorner"
    ]

    cvs = lowCrv_ctl.getCVs(space="world")
    if side == "R" and not sideRange:
        cvs = [cv for cv in reversed(cvs)]
    for i, cv in enumerate(cvs):
        # we skip the first and last point since is already in the uper eyelid
        if i in [0, 4]:
            continue
        if utils.is_odd(i):
            color = 14
            wd = .5
            icon_shape = "circle"
            params = ["tx", "ty", "tz"]
        else:
            color = 4
            wd = .7
            icon_shape = "square"
            params = [
                "tx", "ty", "tz", "ro", "rx", "ry", "rz", "sx", "sy", "sz"
            ]

        t = transform.setMatrixPosition(t, cvs[i])
        npo = primitive.addTransform(center_lookat,
                                     setName("%s_npo" % lowerCtlNames[i]), t)
        npoBase = npo
        if i == 2:
            # we add an extra level to input the tracking ofset values
            npo = primitive.addTransform(npo,
                                         setName("%s_trk" % lowerCtlNames[i]),
                                         t)
            trackLvl.append(npo)
        ctl = icon.create(npo,
                          setName("%s_%s" % (lowerCtlNames[i], ctlName)),
                          t,
                          icon=icon_shape,
                          w=wd,
                          d=wd,
                          ro=datatypes.Vector(1.57079633, 0, 0),
                          po=datatypes.Vector(0, 0, offset),
                          color=color)
        attribute.add_mirror_config_channels(ctl)

        lowControls.append(ctl)
        if len(ctlName.split("_")) == 2 and ctlName.split("_")[-1] == "ghost":
            pass
        else:
            pm.sets(ctlSet, add=ctl)
        attribute.setKeyableAttributes(ctl, params)
        # mirror behaviout on R side controls
        if side == "R":
            npoBase.attr("ry").set(180)
            npoBase.attr("sz").set(-1)
    for lctl in reversed(lowControls[1:]):
        node.add_controller_tag(lctl, over_ctl)
    lowControls.append(upControls[-1])

    # adding parent average contrains to odd controls
    for i, ctl in enumerate(lowControls):
        if utils.is_odd(i):
            cns_node = pm.parentConstraint(lowControls[i - 1],
                                           lowControls[i + 1],
                                           ctl.getParent(),
                                           mo=True)
            # Make the constraint "noFlip"
            cns_node.interpType.set(0)

    # Connecting control crvs with controls
    applyop.gear_curvecns_op(upCrv_ctl, upControls)
    applyop.gear_curvecns_op(lowCrv_ctl, lowControls)

    # adding wires
    w1 = pm.wire(upCrv, w=upBlink)[0]
    w2 = pm.wire(lowCrv, w=lowBlink)[0]

    w3 = pm.wire(upTarget, w=upCrv_ctl)[0]
    w4 = pm.wire(lowTarget, w=lowCrv_ctl)[0]

    # adding blendshapes
    bs_upBlink = pm.blendShape(upTarget,
                               midTarget,
                               upBlink,
                               n="blendShapeUpBlink")
    bs_lowBlink = pm.blendShape(lowTarget,
                                midTarget,
                                lowBlink,
                                n="blendShapeLowBlink")
    bs_mid = pm.blendShape(lowTarget,
                           upTarget,
                           midTarget,
                           n="blendShapeLowBlink")

    # setting blendshape reverse connections
    rev_node = pm.createNode("reverse")
    pm.connectAttr(bs_upBlink[0].attr(midTarget.name()), rev_node + ".inputX")
    pm.connectAttr(rev_node + ".outputX", bs_upBlink[0].attr(upTarget.name()))
    rev_node = pm.createNode("reverse")
    pm.connectAttr(bs_lowBlink[0].attr(midTarget.name()), rev_node + ".inputX")
    pm.connectAttr(rev_node + ".outputX",
                   bs_lowBlink[0].attr(lowTarget.name()))
    rev_node = pm.createNode("reverse")
    pm.connectAttr(bs_mid[0].attr(upTarget.name()), rev_node + ".inputX")
    pm.connectAttr(rev_node + ".outputX", bs_mid[0].attr(lowTarget.name()))

    # setting default values
    bs_mid[0].attr(upTarget.name()).set(blinkH)

    # joints root
    jnt_root = primitive.addTransformFromPos(eye_root,
                                             setName("joints"),
                                             pos=bboxCenter)

    # head joint
    if headJnt:
        try:
            headJnt = pm.PyNode(headJnt)
            jnt_base = headJnt
        except pm.MayaNodeError:
            pm.displayWarning("Aborted can not find %s " % headJnt)
            return
    else:
        # Eye root
        jnt_base = jnt_root

    eyeTargets_root = primitive.addTransform(eye_root, setName("targets"))

    eyeCenter_jnt = rigbits.addJnt(arrow_ctl,
                                   jnt_base,
                                   grp=defset,
                                   jntName=setName("center_jnt"))

    # Upper Eyelid joints ##################################################

    cvs = upCrv.getCVs(space="world")
    upCrv_info = node.createCurveInfoNode(upCrv)

    # aim constrain targets and joints
    upperEyelid_aimTargets = []
    upperEyelid_jnt = []
    upperEyelid_jntRoot = []

    for i, cv in enumerate(cvs):

        # aim targets
        trn = primitive.addTransformFromPos(eyeTargets_root,
                                            setName("upEyelid_aimTarget", i),
                                            pos=cv)
        upperEyelid_aimTargets.append(trn)
        # connecting positions with crv
        pm.connectAttr(upCrv_info + ".controlPoints[%s]" % str(i),
                       trn.attr("translate"))

        # joints
        jntRoot = primitive.addJointFromPos(jnt_root,
                                            setName("upEyelid_jnt_base", i),
                                            pos=bboxCenter)
        jntRoot.attr("radius").set(.08)
        jntRoot.attr("visibility").set(False)
        upperEyelid_jntRoot.append(jntRoot)
        applyop.aimCns(jntRoot, trn, axis="zy", wupObject=jnt_root)

        jnt_ref = primitive.addJointFromPos(jntRoot,
                                            setName("upEyelid_jnt_ref", i),
                                            pos=cv)
        jnt_ref.attr("radius").set(.08)
        jnt_ref.attr("visibility").set(False)

        jnt = rigbits.addJnt(jnt_ref,
                             jnt_base,
                             grp=defset,
                             jntName=setName("upEyelid_jnt", i))
        upperEyelid_jnt.append(jnt)

    # Lower Eyelid joints ##################################################

    cvs = lowCrv.getCVs(space="world")
    lowCrv_info = node.createCurveInfoNode(lowCrv)

    # aim constrain targets and joints
    lowerEyelid_aimTargets = []
    lowerEyelid_jnt = []
    lowerEyelid_jntRoot = []

    for i, cv in enumerate(cvs):
        if i in [0, len(cvs) - 1]:
            continue

        # aim targets
        trn = primitive.addTransformFromPos(eyeTargets_root,
                                            setName("lowEyelid_aimTarget", i),
                                            pos=cv)
        lowerEyelid_aimTargets.append(trn)
        # connecting positions with crv
        pm.connectAttr(lowCrv_info + ".controlPoints[%s]" % str(i),
                       trn.attr("translate"))

        # joints
        jntRoot = primitive.addJointFromPos(jnt_root,
                                            setName("lowEyelid_base", i),
                                            pos=bboxCenter)
        jntRoot.attr("radius").set(.08)
        jntRoot.attr("visibility").set(False)
        lowerEyelid_jntRoot.append(jntRoot)
        applyop.aimCns(jntRoot, trn, axis="zy", wupObject=jnt_root)

        jnt_ref = primitive.addJointFromPos(jntRoot,
                                            setName("lowEyelid_jnt_ref", i),
                                            pos=cv)
        jnt_ref.attr("radius").set(.08)
        jnt_ref.attr("visibility").set(False)

        jnt = rigbits.addJnt(jnt_ref,
                             jnt_base,
                             grp=defset,
                             jntName=setName("lowEyelid_jnt", i))
        lowerEyelid_jnt.append(jnt)

    # Channels
    # Adding and connecting attributes for the blink
    up_ctl = upControls[2]
    blink_att = attribute.addAttribute(over_ctl,
                                       "blink",
                                       "float",
                                       0,
                                       minValue=0,
                                       maxValue=1)
    blinkMult_att = attribute.addAttribute(over_ctl,
                                           "blinkMult",
                                           "float",
                                           1,
                                           minValue=1,
                                           maxValue=2)
    midBlinkH_att = attribute.addAttribute(over_ctl,
                                           "blinkHeight",
                                           "float",
                                           blinkH,
                                           minValue=0,
                                           maxValue=1)
    mult_node = node.createMulNode(blink_att, blinkMult_att)
    pm.connectAttr(mult_node + ".outputX",
                   bs_upBlink[0].attr(midTarget.name()))
    pm.connectAttr(mult_node + ".outputX",
                   bs_lowBlink[0].attr(midTarget.name()))
    pm.connectAttr(midBlinkH_att, bs_mid[0].attr(upTarget.name()))

    low_ctl = lowControls[2]

    # Adding channels for eye tracking
    upVTracking_att = attribute.addAttribute(up_ctl,
                                             "vTracking",
                                             "float",
                                             .02,
                                             minValue=0,
                                             maxValue=1,
                                             keyable=False,
                                             channelBox=True)
    upHTracking_att = attribute.addAttribute(up_ctl,
                                             "hTracking",
                                             "float",
                                             .01,
                                             minValue=0,
                                             maxValue=1,
                                             keyable=False,
                                             channelBox=True)

    lowVTracking_att = attribute.addAttribute(low_ctl,
                                              "vTracking",
                                              "float",
                                              .01,
                                              minValue=0,
                                              maxValue=1,
                                              keyable=False,
                                              channelBox=True)
    lowHTracking_att = attribute.addAttribute(low_ctl,
                                              "hTracking",
                                              "float",
                                              .01,
                                              minValue=0,
                                              maxValue=1,
                                              keyable=False,
                                              channelBox=True)

    mult_node = node.createMulNode(upVTracking_att, aimTrigger_ref.attr("ty"))
    pm.connectAttr(mult_node + ".outputX", trackLvl[0].attr("ty"))
    mult_node = node.createMulNode(upHTracking_att, aimTrigger_ref.attr("tx"))
    pm.connectAttr(mult_node + ".outputX", trackLvl[0].attr("tx"))

    mult_node = node.createMulNode(lowVTracking_att, aimTrigger_ref.attr("ty"))
    pm.connectAttr(mult_node + ".outputX", trackLvl[1].attr("ty"))
    mult_node = node.createMulNode(lowHTracking_att, aimTrigger_ref.attr("tx"))
    pm.connectAttr(mult_node + ".outputX", trackLvl[1].attr("tx"))

    # Tension on blink
    node.createReverseNode(blink_att, w1.scale[0])
    node.createReverseNode(blink_att, w3.scale[0])
    node.createReverseNode(blink_att, w2.scale[0])
    node.createReverseNode(blink_att, w4.scale[0])

    ###########################################
    # Reparenting
    ###########################################
    if parent:
        try:
            if isinstance(parent, basestring):
                parent = pm.PyNode(parent)
            parent.addChild(eye_root)
        except pm.MayaNodeError:
            pm.displayWarning("The eye rig can not be parent to: %s. Maybe "
                              "this object doesn't exist." % parent)

    ###########################################
    # Auto Skinning
    ###########################################
    if doSkin:
        # eyelid vertex rows
        totalLoops = rigidLoops + falloffLoops
        vertexLoopList = meshNavigation.getConcentricVertexLoop(
            vertexList, totalLoops)
        vertexRowList = meshNavigation.getVertexRowsFromLoops(vertexLoopList)

        # we set the first value 100% for the first initial loop
        skinPercList = [1.0]
        # we expect to have a regular grid topology
        for r in range(rigidLoops):
            for rr in range(2):
                skinPercList.append(1.0)
        increment = 1.0 / float(falloffLoops)
        # we invert to smooth out from 100 to 0
        inv = 1.0 - increment
        for r in range(falloffLoops):
            for rr in range(2):
                if inv < 0.0:
                    inv = 0.0
                skinPercList.append(inv)
            inv -= increment

        # this loop add an extra 0.0 indices to avoid errors
        for r in range(10):
            for rr in range(2):
                skinPercList.append(0.0)

        # base skin
        geo = pm.listRelatives(edgeLoopList[0], parent=True)[0]
        # Check if the object has a skinCluster
        objName = pm.listRelatives(geo, parent=True)[0]

        skinCluster = skin.getSkinCluster(objName)
        if not skinCluster:
            skinCluster = pm.skinCluster(headJnt,
                                         geo,
                                         tsb=True,
                                         nw=2,
                                         n='skinClsEyelid')

        eyelidJoints = upperEyelid_jnt + lowerEyelid_jnt
        pm.progressWindow(title='Auto skinning process',
                          progress=0,
                          max=len(eyelidJoints))
        firstBoundary = False
        for jnt in eyelidJoints:
            pm.progressWindow(e=True, step=1, status='\nSkinning %s' % jnt)
            skinCluster.addInfluence(jnt, weight=0)
            v = meshNavigation.getClosestVertexFromTransform(geo, jnt)

            for row in vertexRowList:

                if v in row:
                    it = 0  # iterator
                    inc = 1  # increment
                    for i, rv in enumerate(row):
                        try:
                            perc = skinPercList[it]
                            t_val = [(jnt, perc), (headJnt, 1.0 - perc)]
                            pm.skinPercent(skinCluster,
                                           rv,
                                           transformValue=t_val)
                            if rv.isOnBoundary():
                                # we need to compare with the first boundary
                                # to check if the row have inverted direction
                                # and offset the value
                                if not firstBoundary:
                                    firstBoundary = True
                                    firstBoundaryValue = it

                                else:
                                    if it < firstBoundaryValue:
                                        it -= 1
                                    elif it > firstBoundaryValue:
                                        it += 1
                                inc = 2
                        except IndexError:
                            continue

                        it = it + inc
        pm.progressWindow(e=True, endProgress=True)

        # Eye Mesh skinning
        skinCluster = skin.getSkinCluster(eyeMesh)
        if not skinCluster:
            skinCluster = pm.skinCluster(eyeCenter_jnt,
                                         eyeMesh,
                                         tsb=True,
                                         nw=1,
                                         n='skinClsEye')
Пример #11
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """

        # 1 bone chain Upv ref ===========================
        self.ikHandleUpvRef = primitive.addIkHandle(
            self.root,
            self.getName("ikHandleLegChainUpvRef"),
            self.legChainUpvRef,
            "ikSCsolver")
        pm.pointConstraint(self.ik_ctl, self.ikHandleUpvRef)
        pm.parentConstraint(self.legChainUpvRef[0],
                            self.ik_ctl,
                            self.upv_cns,
                            mo=True)

        # Visibilities -------------------------------------
        # shape.dispGeometry
        # fk
        fkvis_node = node.createReverseNode(self.blend_att)
        try:
            for shp in self.fk0_ctl.getShapes():
                pm.connectAttr(fkvis_node.outputX, shp.attr("visibility"))
            for shp in self.fk1_ctl.getShapes():
                pm.connectAttr(fkvis_node.outputX, shp.attr("visibility"))
            for shp in self.fk2_ctl.getShapes():
                pm.connectAttr(fkvis_node.outputX, shp.attr("visibility"))

            # ik
            for shp in self.upv_ctl.getShapes():
                pm.connectAttr(self.blend_att, shp.attr("visibility"))
            for shp in self.ikcns_ctl.getShapes():
                pm.connectAttr(self.blend_att, shp.attr("visibility"))
            for shp in self.ik_ctl.getShapes():
                pm.connectAttr(self.blend_att, shp.attr("visibility"))
            for shp in self.line_ref.getShapes():
                pm.connectAttr(self.blend_att, shp.attr("visibility"))
        except RuntimeError:
            pm.displayInfo("Visibility already connecte")

        # IK Solver -----------------------------------------
        out = [self.bone0, self.bone1, self.ctrn_loc, self.eff_loc]
        o_node = applyop.gear_ikfk2bone_op(out,
                                           self.root_ctl,
                                           self.ik_ref,
                                           self.upv_ctl,
                                           self.fk_ctl[0],
                                           self.fk_ctl[1],
                                           self.fk_ref,
                                           self.length0,
                                           self.length1,
                                           self.negate)

        pm.connectAttr(self.blend_att, o_node + ".blend")
        if self.negate:
            mulVal = -1
        else:
            mulVal = 1
        node.createMulNode(self.roll_att, mulVal, o_node + ".roll")
        pm.connectAttr(self.scale_att, o_node + ".scaleA")
        pm.connectAttr(self.scale_att, o_node + ".scaleB")
        pm.connectAttr(self.maxstretch_att, o_node + ".maxstretch")
        pm.connectAttr(self.slide_att, o_node + ".slide")
        pm.connectAttr(self.softness_att, o_node + ".softness")
        pm.connectAttr(self.reverse_att, o_node + ".reverse")

        # Twist references ---------------------------------
        self.ikhArmRef, self.tmpCrv = applyop.splineIK(
            self.getName("legRollRef"),
            self.rollRef,
            parent=self.root,
            cParent=self.bone0)

        pm.pointConstraint(self.mid_ctl, self.tws1_loc, maintainOffset=False)
        pm.connectAttr(self.mid_ctl.scaleX, self.tws1_loc.scaleX)
        applyop.oriCns(self.mid_ctl, self.tws1_rot, maintainOffset=False)

        pm.pointConstraint(self.eff_loc, self.tws2_loc, maintainOffset=False)
        pm.scaleConstraint(self.eff_loc, self.tws2_loc, maintainOffset=False)
        applyop.oriCns(self.bone1, self.tws2_loc, maintainOffset=False)

        applyop.oriCns(self.tws_ref, self.tws2_rot)

        if self.settings["div0"]:
            ori_ref = self.rollRef[0]
        else:
            ori_ref = self.bone0

        applyop.oriCns(ori_ref, self.tws0_loc, maintainOffset=True)

        self.tws0_loc.setAttr("sx", .001)
        self.tws2_loc.setAttr("sx", .001)

        add_node = node.createAddNode(self.roundness_att, .0)
        pm.connectAttr(add_node + ".output", self.tws1_rot.attr("sx"))

        # Volume -------------------------------------------
        distA_node = node.createDistNode(self.tws0_loc, self.tws1_loc)
        distB_node = node.createDistNode(self.tws1_loc, self.tws2_loc)
        add_node = node.createAddNode(distA_node.distance,
                                      distB_node.distance)
        div_node = node.createDivNode(add_node.output,
                                      self.root_ctl.attr("sx"))

        # comp scaling issue
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(self.root.attr("worldMatrix"), dm_node.inputMatrix)

        div_node2 = node.createDivNode(div_node.outputX,
                                       dm_node.outputScaleX)

        self.volDriver_att = div_node2.outputX

        if self.settings["extraTweak"]:
            for tweak_ctl in self.tweak_ctl:
                for shp in tweak_ctl.getShapes():
                    pm.connectAttr(self.tweakVis_att, shp.attr("visibility"))

        # Divisions ----------------------------------------
        # at 0 or 1 the division will follow exactly the rotation of the
        # controler.. and we wont have this nice tangent + roll
        for i, div_cns in enumerate(self.div_cns):
            subdiv = 40
            if i < (self.settings["div0"] + 1):
                perc = i * .5 / (self.settings["div0"] + 1.0)
            elif i < (self.settings["div0"] + 2):
                perc = .501
            else:
                perc = .5 + \
                    (i - self.settings["div0"] - 1.0) * .5 / \
                    (self.settings["div1"] + 1.0)

            perc = max(.0001, min(.999, perc))

            # Roll
            if self.negate:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cns,
                    [self.tws2_rot, self.tws1_rot, self.tws0_rot],
                    1.0 - perc,
                    subdiv)
            else:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cns,
                    [self.tws0_rot, self.tws1_rot, self.tws2_rot],
                    perc,
                    subdiv)

            pm.connectAttr(self.resample_att, o_node.resample)
            pm.connectAttr(self.absolute_att, o_node.absolute)

            # Squash n Stretch
            o_node = applyop.gear_squashstretch2_op(
                div_cns, None, pm.getAttr(self.volDriver_att), "x")
            pm.connectAttr(self.volume_att, o_node.blend)
            pm.connectAttr(self.volDriver_att, o_node.driver)
            pm.connectAttr(self.st_att[i], o_node.stretch)
            pm.connectAttr(self.sq_att[i], o_node.squash)

        # match IK/FK ref
        pm.parentConstraint(self.bone0, self.match_fk0_off, mo=True)
        pm.parentConstraint(self.bone1, self.match_fk1_off, mo=True)
        return
Пример #12
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """

        # 1 bone chain Upv ref ===========================
        self.ikHandleUpvRef = primitive.addIkHandle(
            self.root, self.getName("ikHandleLegChainUpvRef"),
            self.legChainUpvRef, "ikSCsolver")
        pm.pointConstraint(self.ik_ctl, self.ikHandleUpvRef)
        pm.parentConstraint(self.legChainUpvRef[0],
                            self.ik_ctl,
                            self.upv_cns,
                            mo=True)

        # Visibilities -------------------------------------
        # shape.dispGeometry
        # fk
        fkvis_node = node.createReverseNode(self.blend_att)

        for shp in self.fk0_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk1_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk2_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))

        # ik
        for shp in self.upv_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ikcns_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ik_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.line_ref.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))

        # IK Solver -----------------------------------------
        out = [self.bone0, self.bone1, self.ctrn_loc, self.eff_loc]
        o_node = applyop.gear_ikfk2bone_op(out, self.root_ctl, self.ik_ref,
                                           self.upv_ctl, self.fk_ctl[0],
                                           self.fk_ctl[1], self.fk_ref,
                                           self.length0, self.length1,
                                           self.negate)

        pm.connectAttr(self.blend_att, o_node + ".blend")
        if self.negate:
            mulVal = -1
        else:
            mulVal = 1
        node.createMulNode(self.roll_att, mulVal, o_node + ".roll")
        pm.connectAttr(self.scale_att, o_node + ".scaleA")
        pm.connectAttr(self.scale_att, o_node + ".scaleB")
        pm.connectAttr(self.maxstretch_att, o_node + ".maxstretch")
        pm.connectAttr(self.slide_att, o_node + ".slide")
        pm.connectAttr(self.softness_att, o_node + ".softness")
        pm.connectAttr(self.reverse_att, o_node + ".reverse")

        # Twist references ---------------------------------
        self.ikhArmRef, self.tmpCrv = applyop.splineIK(
            self.getName("legRollRef"),
            self.rollRef,
            parent=self.root,
            cParent=self.bone0)

        pm.pointConstraint(self.mid_ctl, self.tws1_loc, maintainOffset=False)
        pm.connectAttr(self.mid_ctl.scaleX, self.tws1_loc.scaleX)
        pm.connectAttr(self.mid_ctl.scaleX, self.tws1B_loc.scaleX)
        applyop.oriCns(self.mid_ctl, self.tws1_rot, maintainOffset=False)
        applyop.oriCns(self.mid_ctl, self.tws1B_rot, maintainOffset=False)
        if self.negate:
            axis = "xz"
            axisb = "-xz"
        else:
            axis = "-xz"
            axisb = "xz"
        applyop.aimCns(self.tws1_loc,
                       self.root_ctl,
                       axis=axis,
                       wupType=4,
                       wupVector=[0, 0, 1],
                       wupObject=self.mid_ctl,
                       maintainOffset=False)

        applyop.aimCns(self.tws1B_loc,
                       self.eff_loc,
                       axis=axisb,
                       wupType=4,
                       wupVector=[0, 0, 1],
                       wupObject=self.mid_ctl,
                       maintainOffset=False)

        pm.pointConstraint(self.thick_ctl,
                           self.tws1B_loc,
                           maintainOffset=False)
        pm.pointConstraint(self.eff_loc, self.tws2_loc, maintainOffset=False)
        pm.scaleConstraint(self.eff_loc, self.tws2_loc, maintainOffset=False)
        applyop.oriCns(self.bone1, self.tws2_loc, maintainOffset=False)

        applyop.oriCns(self.tws_ref, self.tws2_rot)

        self.tws0_loc.setAttr("sx", .001)
        self.tws2_loc.setAttr("sx", .001)

        add_node = node.createAddNode(self.roundness_att, .001)
        pm.connectAttr(add_node + ".output", self.tws1_rot.attr("sx"))
        pm.connectAttr(add_node + ".output", self.tws1B_rot.attr("sx"))

        # Volume -------------------------------------------
        distA_node = node.createDistNode(self.tws0_loc, self.tws1_loc)
        distB_node = node.createDistNode(self.tws1_loc, self.tws2_loc)
        add_node = node.createAddNode(distA_node + ".distance",
                                      distB_node + ".distance")
        div_node = node.createDivNode(add_node + ".output",
                                      self.root_ctl.attr("sx"))

        # comp scaling issue
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(self.root.attr("worldMatrix"), dm_node + ".inputMatrix")

        div_node2 = node.createDivNode(div_node + ".outputX",
                                       dm_node + ".outputScaleX")

        self.volDriver_att = div_node2 + ".outputX"

        if self.settings["extraTweak"]:
            for tweak_ctl in self.tweak_ctl:
                for shp in tweak_ctl.getShapes():
                    pm.connectAttr(self.tweakVis_att, shp.attr("visibility"))

        # Divisions ----------------------------------------
        # at 0 or 1 the division will follow exactly the rotation of the
        # controler.. and we wont have this nice tangent + roll
        b_twist = False
        for i, div_cns in enumerate(self.div_cns):
            subdiv = False
            if self.settings["supportJoints"]:
                if i == len(self.div_cns) - 1 or i == 0:
                    subdiv = 45
                else:
                    subdiv = 10

                if i < (self.settings["div0"] + 1):
                    perc = i * .5 / (self.settings["div0"] + 1.0)
                elif i < (self.settings["div0"] + 2):
                    perc = .49
                    subdiv = 45
                elif i < (self.settings["div0"] + 3):
                    perc = .50
                    subdiv = 45
                elif i < (self.settings["div0"] + 4):
                    b_twist = True
                    perc = .51
                    subdiv = 45

                else:
                    perc = (.5 + (i - self.settings["div0"] - 3.0) * .5 /
                            (self.settings["div1"] + 1.0))
            else:
                subdiv = 40
                if i < (self.settings["div0"] + 1):
                    perc = i * .5 / (self.settings["div0"] + 1.0)
                elif i < (self.settings["div0"] + 2):
                    b_twist = True
                    perc = .501
                else:
                    perc = .5 + \
                        (i - self.settings["div0"] - 1.0) * .5 / \
                        (self.settings["div1"] + 1.0)

            perc = max(.001, min(.990, perc))

            # mid twist distribution
            if b_twist:
                mid_twist = self.tws1B_rot
            else:
                mid_twist = self.tws1_rot

            # Roll
            if self.negate:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cns, [self.tws2_rot, mid_twist, self.tws0_rot],
                    1.0 - perc, subdiv)
            else:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cns, [self.tws0_rot, mid_twist, self.tws2_rot], perc,
                    subdiv)

            pm.connectAttr(self.resample_att, o_node + ".resample")
            pm.connectAttr(self.absolute_att, o_node + ".absolute")

            # Squash n Stretch
            o_node = applyop.gear_squashstretch2_op(
                div_cns, None, pm.getAttr(self.volDriver_att), "x")
            pm.connectAttr(self.volume_att, o_node + ".blend")
            pm.connectAttr(self.volDriver_att, o_node + ".driver")
            pm.connectAttr(self.st_att[i], o_node + ".stretch")
            pm.connectAttr(self.sq_att[i], o_node + ".squash")

        # NOTE: next line fix the issue on meters.
        # This is special case becasuse the IK solver from mGear use
        # the scale as lenght and we have shear
        # TODO: check for a more clean and elegant solution instead of
        # re-match the world matrix again
        # transform.matchWorldTransform(self.fk_ctl[0], self.match_fk0_off)
        # transform.matchWorldTransform(self.fk_ctl[1], self.match_fk1_off)
        # transform.matchWorldTransform(self.fk_ctl[0], self.match_fk0)
        # transform.matchWorldTransform(self.fk_ctl[1], self.match_fk1)

        # match IK/FK ref
        pm.parentConstraint(self.bone0, self.match_fk0_off, mo=True)
        pm.parentConstraint(self.bone1, self.match_fk1_off, mo=True)

        # connect_reader
        pm.parentConstraint(self.bone0, self.readerA, mo=True)
        pm.parentConstraint(self.bone1, self.readerB, mo=True)

        # connect auto thickness
        if self.negate and not self.settings["mirrorMid"]:
            d_val = -180 / self.length1
        else:
            d_val = 180 / self.length1
        div_thick_node = node.createDivNode(self.knee_thickness_att, d_val)
        node.createMulNode(div_thick_node.outputX, self.readerB.rx,
                           self.thick_lvl.tx)

        return
Пример #13
0
def _createSoftModTweak(baseCtl,
                        tweakCtl,
                        name,
                        targets,
                        nameExt="softMod",
                        is_asset=False):

    sm = pm.softMod(targets, wn=[tweakCtl, tweakCtl])
    pm.rename(sm[0], "{}_{}".format(name, nameExt))

    # disconnect default connection
    plugs = sm[0].softModXforms.listConnections(p=True)
    for p in plugs:
        pm.disconnectAttr(p, sm[0].softModXforms)
        pm.delete(p.node())

    dm_node = node.createDecomposeMatrixNode(baseCtl.worldMatrix[0])
    pm.connectAttr(dm_node.outputTranslate, sm[0].falloffCenter)
    mul_node = node.createMulNode(dm_node.outputScaleX,
                                  tweakCtl.attr("falloff"))
    pm.connectAttr(mul_node.outputX, sm[0].falloffRadius)
    pm.connectAttr(tweakCtl.attr("surfaceMode"), sm[0].falloffMode)
    mulMatrix_node = applyop.gear_mulmatrix_op(tweakCtl.worldMatrix[0],
                                               tweakCtl.parentInverseMatrix[0])
    pm.connectAttr(mulMatrix_node.output, sm[0].weightedMatrix)
    pm.connectAttr(baseCtl.worldInverseMatrix[0], sm[0].postMatrix)
    pm.connectAttr(baseCtl.worldMatrix[0], sm[0].preMatrix)
    if is_asset:
        tag_name = ASSET_TAG
    else:
        tag_name = SHOT_TAG

    attribute.addAttribute(sm[0], tag_name, "bool", False, keyable=False)

    sm[0].addAttr("ctlRoot", at='message', m=False)
    sm[0].addAttr("ctlBase", at='message', m=False)
    sm[0].addAttr("ctlTweak", at='message', m=False)
    pm.connectAttr(baseCtl.getParent().attr("message"), sm[0].attr("ctlRoot"))
    pm.connectAttr(baseCtl.attr("message"), sm[0].attr("ctlBase"))
    pm.connectAttr(tweakCtl.attr("message"), sm[0].attr("ctlTweak"))

    # This connection allow the softTweak to work if we apply the  skin
    # precision fix.
    # TODO: By default only apply to a non asset tweaks.
    if skin.getSkinCluster(targets[0]) and not is_asset:

        skin_cls = skin.getSkinCluster(targets[0])
        cnxs = skin_cls.matrix[0].listConnections()
        if (cnxs and cnxs[0].type() == "mgear_mulMatrix" and
                not sm[0].hasAttr("_fixedSkinFix")):

            # tag the softmod as fixed
            attribute.addAttribute(sm[0], "_fixedSkinFix", "bool")

            # original connections
            matrix_cnx = sm[0].matrix.listConnections(p=True)[0]
            preMatrix_cnx = sm[0].preMatrix.listConnections(p=True)[0]
            wgtMatrix_cnx = sm[0].weightedMatrix.listConnections(p=True)[0]
            postMatrix_cnx = sm[0].postMatrix.listConnections(p=True)[0]

            # pre existing node operators
            mulMtx_node = wgtMatrix_cnx.node()
            dcMtx_node = sm[0].falloffCenter.listConnections(p=True)[0].node()

            # geo offset connnections
            geo_root = targets[0].getParent()
            gr_W = geo_root.worldMatrix[0]
            gr_WI = geo_root.worldInverseMatrix[0]

            # new offset operators
            mmm1 = applyop.gear_mulmatrix_op(preMatrix_cnx, gr_WI)
            mmm2 = applyop.gear_mulmatrix_op(matrix_cnx, gr_WI)
            mmm3 = applyop.gear_mulmatrix_op(gr_W, postMatrix_cnx)

            # re-wire connections
            pm.connectAttr(mmm1.output, dcMtx_node.inputMatrix, f=True)
            pm.connectAttr(mmm1.output, sm[0].preMatrix, f=True)

            pm.connectAttr(mmm2.output, sm[0].matrix, f=True)
            pm.connectAttr(mmm2.output, mulMtx_node.matrixA, f=True)

            pm.connectAttr(mmm3.output, mulMtx_node.matrixB, f=True)
            pm.connectAttr(mmm3.output, sm[0].postMatrix, f=True)

            _neutra_geomMatrix(sm[0])

    return sm[0]
Пример #14
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """
        # setup out channels. This channels are pass through for stack
        node.createPlusMinusAverage1D(
            [self.mid_wide_att, self.mid_wide_in_att, -1.0], 1,
            self.mid_wide_out_att)
        node.createPlusMinusAverage1D(
            [self.mid_depth_att, self.mid_depth_in_att, -1.0], 1,
            self.mid_depth_out_att)

        node.createPlusMinusAverage1D(
            [self.tip_wide_att, self.tip_wide_in_att, -1.0], 1,
            self.tip_wide_out_att)
        node.createPlusMinusAverage1D(
            [self.tip_depth_att, self.tip_depth_in_att, -1.0], 1,
            self.tip_depth_out_att)

        node.createPlusMinusAverage1D(
            [self.mid_twist_att, self.mid_twist_in_att], 1,
            self.mid_twist_out_att)

        node.createPlusMinusAverage1D(
            [self.tip_twist_att, self.tip_twist_in_att], 1,
            self.tip_twist_out_att)

        if not self.settings["simpleFK"]:
            dm_node_scl = node.createDecomposeMatrixNode(self.root.worldMatrix)
            if self.settings["keepLength"]:
                arclen_node = pm.arclen(self.mst_crv, ch=True)
                alAttr = pm.getAttr(arclen_node + ".arcLength")
                ration_node = node.createMulNode(self.length_ratio_att, alAttr)

                pm.addAttr(self.mst_crv, ln="length_ratio", k=True, w=True)
                node.createDivNode(arclen_node.arcLength, ration_node.outputX,
                                   self.mst_crv.length_ratio)

                div_node_scl = node.createDivNode(self.mst_crv.length_ratio,
                                                  dm_node_scl.outputScaleX)

            step = 1.000 / (self.def_number - 1)
            step_mid = 1.000 / ((self.def_number - 1) / 2.0)
            u = 0.000
            u_mid = 0.000
            pass_mid = False
            for i in range(self.def_number):
                cnsUpv = applyop.pathCns(self.upv_cns[i],
                                         self.upv_crv,
                                         cnsType=False,
                                         u=u,
                                         tangent=False)

                cns = applyop.pathCns(self.div_cns[i], self.mst_crv, False, u,
                                      True)

                # Connecting the scale for scaling compensation
                # for axis, AX in zip("xyz", "XYZ"):
                for axis, AX in zip("x", "X"):
                    pm.connectAttr(
                        dm_node_scl.attr("outputScale{}".format(AX)),
                        self.div_cns[i].attr("s{}".format(axis)))

                if self.settings["keepLength"]:

                    div_node2 = node.createDivNode(u, div_node_scl.outputX)

                    cond_node = node.createConditionNode(
                        div_node2.input1X, div_node2.outputX, 4,
                        div_node2.input1X, div_node2.outputX)

                    pm.connectAttr(cond_node + ".outColorR",
                                   cnsUpv + ".uValue")
                    pm.connectAttr(cond_node + ".outColorR", cns + ".uValue")

                cns.setAttr("worldUpType", 1)
                cns.setAttr("frontAxis", 0)
                cns.setAttr("upAxis", 1)

                pm.connectAttr(self.upv_cns[i].attr("worldMatrix[0]"),
                               cns.attr("worldUpMatrix"))

                # Connect scale Wide and Depth
                # wide and Depth
                mid_mul_node = node.createMulNode(
                    [self.mid_wide_att, self.mid_depth_att],
                    [self.mid_wide_in_att, self.mid_depth_in_att])
                mid_mul_node2 = node.createMulNode(
                    [mid_mul_node.outputX, mid_mul_node.outputY],
                    [u_mid, u_mid])
                mid_mul_node3 = node.createMulNode(
                    [mid_mul_node2.outputX, mid_mul_node2.outputY], [
                        dm_node_scl.attr("outputScaleX"),
                        dm_node_scl.attr("outputScaleY")
                    ])
                tip_mul_node = node.createMulNode(
                    [self.tip_wide_att, self.tip_depth_att],
                    [self.tip_wide_in_att, self.tip_depth_in_att])
                tip_mul_node2 = node.createMulNode(
                    [tip_mul_node.outputX, tip_mul_node.outputY], [u, u])
                node.createPlusMinusAverage1D([
                    mid_mul_node3.outputX, 1.0 - u_mid, tip_mul_node2.outputX,
                    1.0 - u, -1.0
                ], 1, self.div_cns[i].attr("sy"))
                node.createPlusMinusAverage1D([
                    mid_mul_node3.outputY, 1.0 - u_mid, tip_mul_node2.outputY,
                    1.0 - u, -1.0
                ], 1, self.div_cns[i].attr("sz"))

                # Connect Twist "cns.frontTwist"
                twist_mul_node = node.createMulNode(
                    [self.mid_twist_att, self.tip_twist_att], [u_mid, u])
                twist_mul_node2 = node.createMulNode(
                    [self.mid_twist_in_att, self.tip_twist_in_att], [u_mid, u])
                node.createPlusMinusAverage1D([
                    twist_mul_node.outputX,
                    twist_mul_node.outputY,
                    twist_mul_node2.outputX,
                    twist_mul_node2.outputY,
                ], 1, cns.frontTwist)

                # u_mid calc
                if u_mid >= 1.0 or pass_mid:
                    u_mid -= step_mid
                    pass_mid = True
                else:
                    u_mid += step_mid

                if u_mid > 1.0:
                    u_mid = 1.0

                # ensure the tip is never affected byt the mid
                if i == (self.def_number - 1):
                    u_mid = 0.0
                u += step

            if self.settings["keepLength"]:
                # add the safty distance offset
                self.tweakTip_npo.attr("tx").set(self.off_dist)
                # connect vis line ref
                for shp in self.line_ref.getShapes():
                    pm.connectAttr(self.ikVis_att, shp.attr("visibility"))

        # CONNECT STACK
        # master components
        mstr_global = self.settings["masterChainGlobal"]
        mstr_local = self.settings["masterChainLocal"]
        if mstr_global:
            mstr_global = self.rig.components[mstr_global]
        if mstr_local:
            mstr_local = self.rig.components[mstr_local]

        # connect twist and scale
        if mstr_global and mstr_local:
            node.createPlusMinusAverage1D([
                mstr_global.root.mid_twist_out, mstr_local.root.mid_twist_out
            ], 1, self.mid_twist_in_att)
            node.createPlusMinusAverage1D([
                mstr_global.root.tip_twist_out, mstr_local.root.tip_twist_out
            ], 1, self.tip_twist_in_att)
            node.createPlusMinusAverage1D([
                mstr_global.root.mid_wide_out, mstr_local.root.mid_wide_out, -1
            ], 1, self.mid_wide_in_att)
            node.createPlusMinusAverage1D([
                mstr_global.root.tip_wide_out, mstr_local.root.tip_wide_out, -1
            ], 1, self.tip_wide_in_att)
            node.createPlusMinusAverage1D([
                mstr_global.root.mid_depth_out, mstr_local.root.mid_depth_out,
                -1
            ], 1, self.mid_depth_in_att)
            node.createPlusMinusAverage1D([
                mstr_global.root.tip_depth_out, mstr_local.root.tip_depth_out,
                -1
            ], 1, self.tip_depth_in_att)
        elif mstr_local or mstr_global:
            for master_chain in [mstr_local, mstr_global]:
                if master_chain:
                    pm.connectAttr(master_chain.root.mid_twist_out,
                                   self.mid_twist_in_att)
                    pm.connectAttr(master_chain.root.tip_twist_out,
                                   self.tip_twist_in_att)
                    pm.connectAttr(master_chain.root.mid_wide_out,
                                   self.mid_wide_in_att)
                    pm.connectAttr(master_chain.root.tip_wide_out,
                                   self.tip_wide_in_att)
                    pm.connectAttr(master_chain.root.mid_depth_out,
                                   self.mid_depth_in_att)
                    pm.connectAttr(master_chain.root.tip_depth_out,
                                   self.tip_depth_in_att)
        # connect the fk chain ctls
        for e, ctl in enumerate(self.fk_ctl):
            # connect out
            out_loc = self.fk_local_out[e]
            applyop.gear_mulmatrix_op(ctl.attr("worldMatrix"),
                                      out_loc.attr("parentInverseMatrix[0]"),
                                      out_loc)
            out_glob = self.fk_global_out[e]
            out_ref = self.fk_global_ref[e]
            applyop.gear_mulmatrix_op(out_ref.attr("worldMatrix"),
                                      out_glob.attr("parentInverseMatrix[0]"),
                                      out_glob)
            # connect in global
            if mstr_global:
                self.connect_master(mstr_global.fk_global_out,
                                    self.fk_global_in, e,
                                    self.settings["cnxOffset"])

            # connect in local
            if mstr_local:
                self.connect_master(mstr_local.fk_local_out, self.fk_local_in,
                                    e, self.settings["cnxOffset"])

            for shp in ctl.getShapes():
                pm.connectAttr(self.fkVis_att, shp.attr("visibility"))

        for ctl in self.tweak_ctl:
            for shp in ctl.getShapes():
                pm.connectAttr(self.ikVis_att, shp.attr("visibility"))

        if self.settings["extraTweak"]:
            for tweak_ctl in self.extratweak_ctl:
                for shp in tweak_ctl.getShapes():
                    pm.connectAttr(self.tweakVis_att, shp.attr("visibility"))
Пример #15
0
def cycleTweak(name,
               edgePair,
               mirrorAxis,
               baseMesh,
               rotMesh,
               transMesh,
               setupParent,
               ctlParent,
               jntOrg=None,
               grp=None,
               iconType="square",
               size=.025,
               color=13,
               ro=datatypes.Vector(1.5708, 0, 1.5708 / 2)):
    """The command to create a cycle tweak.

    A cycle tweak is a tweak that cycles to the parent position but doesn't
    create a cycle of dependency. This type of tweaks
    are very useful to create facial tweakers.

    Args:
        name (string): Name for the cycle tweak
        edgePair (list): List of edge pair to attach the cycle tweak
        mirrorAxis (bool): If true, will mirror the x axis behaviour.
        baseMesh (Mesh): The base mesh for the cycle tweak.
        rotMesh (Mesh): The mesh that will support the rotation transformations
                for the cycle tweak
        transMesh (Mesh): The mesh that will support the translation and scale
                transformations for the cycle tweak
        setupParent (dagNode): The parent for the setup objects
        ctlParent (dagNode): The parent for the control objects
        jntOrg (None or dagNode, optional): The parent for the joints
        grp (None or set, optional): The set to add the controls
        iconType (str, optional): The controls shape
        size (float, optional): The control size
        color (int, optional): The control color
        ro (TYPE, optional): The control shape rotation offset

    Returns:
        multi: the tweak control and the list of related joints.
    """
    # rotation sctructure
    rRivet = rivet.rivet()
    rBase = rRivet.create(
        baseMesh, edgePair[0], edgePair[1], setupParent, name + "_rRivet_loc")

    pos = rBase.getTranslation(space="world")

    # translation structure
    tRivetParent = pm.createNode("transform",
                                 n=name + "_tRivetBase",
                                 p=ctlParent)
    tRivetParent.setMatrix(datatypes.Matrix(), worldSpace=True)
    tRivet = rivet.rivet()
    tBase = tRivet.create(transMesh,
                          edgePair[0],
                          edgePair[1],
                          tRivetParent,
                          name + "_tRivet_loc")

    # create the control
    tweakBase = pm.createNode("transform", n=name + "_tweakBase", p=ctlParent)
    tweakBase.setMatrix(datatypes.Matrix(), worldSpace=True)
    tweakNpo = pm.createNode("transform", n=name + "_tweakNpo", p=tweakBase)
    tweakBase.setTranslation(pos, space="world")
    tweakCtl = icon.create(tweakNpo,
                           name + "_ctl",
                           tweakNpo.getMatrix(worldSpace=True),
                           color,
                           iconType,
                           w=size,
                           d=size,
                           ro=ro)
    inverseTranslateParent(tweakCtl)
    pm.pointConstraint(tBase, tweakBase)

    # rot
    rotBase = pm.createNode("transform", n=name + "_rotBase", p=setupParent)
    rotBase.setMatrix(datatypes.Matrix(), worldSpace=True)
    rotNPO = pm.createNode("transform", n=name + "_rot_npo", p=rotBase)
    rotJointDriver = pm.createNode("transform",
                                   n=name + "_rotJointDriver",
                                   p=rotNPO)
    rotBase.setTranslation(pos, space="world")

    node.createMulNode([rotNPO.attr("tx"),
                        rotNPO.attr("ty"),
                        rotNPO.attr("tz")],
                       [-1, -1, -1],
                       [rotJointDriver.attr("tx"),
                        rotJointDriver.attr("ty"),
                        rotJointDriver.attr("tz")])

    pm.pointConstraint(rBase, rotNPO)
    pm.connectAttr(tweakCtl.r, rotNPO.r)
    pm.connectAttr(tweakCtl.s, rotNPO.s)

    # transform
    posNPO = pm.createNode("transform", n=name + "_pos_npo", p=setupParent)
    posJointDriver = pm.createNode("transform",
                                   n=name + "_posJointDriver",
                                   p=posNPO)
    posNPO.setTranslation(pos, space="world")
    pm.connectAttr(tweakCtl.t, posJointDriver.t)

    # mirror behaviour
    if mirrorAxis:
        tweakBase.attr("ry").set(tweakBase.attr("ry").get() + 180)
        rotBase.attr("ry").set(rotBase.attr("ry").get() + 180)
        posNPO.attr("ry").set(posNPO.attr("ry").get() + 180)
        tweakBase.attr("sz").set(-1)
        rotBase.attr("sz").set(-1)
        posNPO.attr("sz").set(-1)

    # create joints
    rJoint = rigbits.addJnt(rotJointDriver, jntOrg, True, grp)
    tJoint = rigbits.addJnt(posJointDriver, jntOrg, True, grp)

    # add to rotation skin
    # TODO: add checker to see if joint is in the skincluster.
    rSK = skin.getSkinCluster(rotMesh)
    pm.skinCluster(rSK, e=True, ai=rJoint, lw=True, wt=0)

    # add to transform skin
    # TODO: add checker to see if joint is in the skincluster.
    tSK = skin.getSkinCluster(transMesh)
    pm.skinCluster(tSK, e=True, ai=tJoint, lw=True, wt=0)

    return tweakCtl, [rJoint, tJoint]
Пример #16
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """
        dm_node_scl = node.createDecomposeMatrixNode(self.root.worldMatrix)
        if self.settings["keepLength"]:
            arclen_node = pm.arclen(self.mst_crv, ch=True)
            alAttr = pm.getAttr(arclen_node + ".arcLength")
            ration_node = node.createMulNode(self.length_ratio_att, alAttr)

            pm.addAttr(self.mst_crv, ln="length_ratio", k=True, w=True)
            node.createDivNode(arclen_node.arcLength, ration_node.outputX,
                               self.mst_crv.length_ratio)

            div_node_scl = node.createDivNode(self.mst_crv.length_ratio,
                                              dm_node_scl.outputScaleX)

        step = 1.000 / (self.def_number - 1)
        u = 0.000
        for i in range(self.def_number):
            cnsUpv = applyop.pathCns(self.upv_cns[i],
                                     self.upv_crv,
                                     cnsType=False,
                                     u=u,
                                     tangent=False)

            cns = applyop.pathCns(self.div_cns[i], self.mst_crv, False, u,
                                  True)

            # Connectiong the scale for scaling compensation
            for axis, AX in zip("xyz", "XYZ"):
                pm.connectAttr(dm_node_scl.attr("outputScale{}".format(AX)),
                               self.div_cns[i].attr("s{}".format(axis)))

            if self.settings["keepLength"]:

                div_node2 = node.createDivNode(u, div_node_scl.outputX)

                cond_node = node.createConditionNode(div_node2.input1X,
                                                     div_node2.outputX, 4,
                                                     div_node2.input1X,
                                                     div_node2.outputX)

                pm.connectAttr(cond_node + ".outColorR", cnsUpv + ".uValue")
                pm.connectAttr(cond_node + ".outColorR", cns + ".uValue")

            cns.setAttr("worldUpType", 1)
            cns.setAttr("frontAxis", 0)
            cns.setAttr("upAxis", 1)

            pm.connectAttr(self.upv_cns[i].attr("worldMatrix[0]"),
                           cns.attr("worldUpMatrix"))
            u += step

        if self.settings["keepLength"]:
            # add the safty distance offset
            self.tweakTip_npo.attr("tx").set(self.off_dist)
            # connect vis line ref
            for shp in self.line_ref.getShapes():
                pm.connectAttr(self.ikVis_att, shp.attr("visibility"))

        for ctl in self.tweak_ctl:
            for shp in ctl.getShapes():
                pm.connectAttr(self.ikVis_att, shp.attr("visibility"))
        for ctl in self.fk_ctl:
            for shp in ctl.getShapes():
                pm.connectAttr(self.fkVis_att, shp.attr("visibility"))

        if self.settings["extraTweak"]:
            for tweak_ctl in self.extratweak_ctl:
                for shp in tweak_ctl.getShapes():
                    pm.connectAttr(self.tweakVis_att, shp.attr("visibility"))
    def addFkOperator(self, i, rootWorld_node, crv_node):

        if i == 0 and self.settings["isSplitHip"]:
            s = self.fk_hip_ctl
            d = self.fk_local_npo[0],
            # maintainOffset, skipRotate, skipTranslate
            _ = pm.parentConstraint(s, d, mo=True, sr=("x", "y", "z"), st=())

            s = self.ik_global_out[0]
            d = self.hip_fk_local_in,
            # maintainOffset, skipRotate, skipTranslate
            pm.parentConstraint(s, d, mo=True)

        # break FK hierarchical orient
        if i not in [len(self.guide.apos), 0]:
            s = self.fk_ctl[i - 1]
            s2 = self.fk_npo[i]
            d = self.fk_local_npo[i]

            mulmat_node = applyop.gear_mulmatrix_op(s2.attr("matrix"), s.attr("matrix"))
            mulmat_node2 = applyop.gear_mulmatrix_op(mulmat_node.attr("output"), s2.attr("inverseMatrix"))

            dm_node = node.createDecomposeMatrixNode(mulmat_node2 + ".output")
            pm.connectAttr(dm_node + ".outputTranslate", d.attr("t"))

            check_list = (pm.Attribute, unicode, str)  # noqa
            cond = pm.createNode("condition")
            pm.setAttr(cond + ".operation", 4)  # greater
            attribute.connectSet(self.fk_collapsed_att, cond + ".secondTerm", check_list)
            attribute.connectSet(dm_node + ".outputRotate", cond + ".colorIfTrue", check_list)
            pm.setAttr(cond + ".colorIfFalseR", 0.)
            pm.setAttr(cond + ".colorIfFalseG", 0.)
            pm.setAttr(cond + ".colorIfFalseB", 0.)
            pm.connectAttr(cond + ".outColor", d.attr("r"))

        # References
        if i == 0:  # we add extra 10% to the first position
            u = (1.0 / (len(self.guide.apos) - 1.0)) / 1000
        else:
            u = getCurveUAtPoint(self.slv_crv, self.guide.apos[i])

        tmp_div_npo_transform = getTransform(self.div_cns_npo[i])  # to fix mismatch before/after later
        cns = applyop.pathCns(self.div_cns[i], self.slv_crv, False, u, True)
        cns.setAttr("frontAxis", 1)  # front axis is 'Y'
        cns.setAttr("upAxis", 0)  # front axis is 'X'

        # Roll
        # choose ik_ctls
        for _i, uv in enumerate(self.ik_uv_param):
            if u < uv:

                ik_a = self.ik_ctl[_i - 1]
                ik_b = self.ik_ctl[_i]

                if self.settings["isSplitHip"] and i == 0:
                    u = (i + 1) / (len(self.guide.apos) - 1.0)
                    ratio = u / uv * .5

                else:
                    ratio = u / uv

                break

        else:
            ik_a = self.ik_ctl[-2]
            ik_b = self.ik_ctl[-1]
            ratio = 1.

        intMatrix = applyop.gear_intmatrix_op(
            ik_a + ".worldMatrix",
            ik_b + ".worldMatrix",
            ratio)

        dm_node = node.createDecomposeMatrixNode(intMatrix + ".output")
        pm.connectAttr(dm_node + ".outputRotate", self.twister[i].attr("rotate"))
        pm.parentConstraint(self.twister[i], self.ref_twist[i], maintainOffset=True)

        pm.connectAttr(self.ref_twist[i] + ".translate", cns + ".worldUpVector")
        self.div_cns_npo[i].setMatrix(tmp_div_npo_transform, worldSpace=True)

        # compensate scale reference
        div_node = node.createDivNode(
            [1, 1, 1],
            [rootWorld_node + ".outputScaleX",
             rootWorld_node + ".outputScaleY",
             rootWorld_node + ".outputScaleZ"])

        # Squash n Stretch
        op = applyop.gear_squashstretch2_op(self.scl_transforms[i],
                                            self.root,
                                            pm.arclen(self.slv_crv),
                                            "y",
                                            div_node + ".output")

        pm.connectAttr(self.volume_att, op + ".blend")
        pm.connectAttr(crv_node + ".arcLength", op + ".driver")
        pm.connectAttr(self.st_att[i], op + ".stretch")
        pm.connectAttr(self.sq_att[i], op + ".squash")

        # Controlers
        tmp_local_npo_transform = getTransform(self.fk_local_npo[i])  # to fix mismatch before/after later
        if i == 0:
            mulmat_node = applyop.gear_mulmatrix_op(
                self.div_cns_npo[i].attr("worldMatrix"),
                self.root.attr("worldInverseMatrix"))

            dm_node = node.createDecomposeMatrixNode(mulmat_node + ".output")
            pm.connectAttr(dm_node + ".outputTranslate", self.fk_npo[i].attr("t"))

        else:
            mulmat_node = applyop.gear_mulmatrix_op(
                self.div_cns_npo[i].attr("worldMatrix"),
                self.div_cns_npo[i - 1].attr("worldInverseMatrix"))

            dm_node = node.createDecomposeMatrixNode(mulmat_node + ".output")
            mul_node = node.createMulNode(div_node + ".output", dm_node + ".outputTranslate")
            pm.connectAttr(mul_node + ".output", self.fk_npo[i].attr("t"))

        pm.connectAttr(dm_node + ".outputRotate", self.fk_npo[i].attr("r"))
        self.addOperatorsOrientationLock(i, cns)
        self.fk_local_npo[i].setMatrix(tmp_local_npo_transform, worldSpace=True)

        # References
        if i < (len(self.fk_ctl) - 1):
            aim = pm.aimConstraint(self.div_cns_npo[i + 1], self.div_cns_npo[i], maintainOffset=False)
            pm.setAttr(aim + ".aimVectorX", 0)
            pm.setAttr(aim + ".aimVectorY", 1)
            pm.setAttr(aim + ".aimVectorZ", 0)
            pm.setAttr(aim + ".upVectorX", 0)
            pm.setAttr(aim + ".upVectorY", 1)
            pm.setAttr(aim + ".upVectorZ", 0)
Пример #18
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """

        # 1 bone chain Upv ref ==============================
        self.ikHandleUpvRef = primitive.addIkHandle(
            self.root, self.getName("ikHandleLegChainUpvRef"),
            self.legChainUpvRef, "ikSCsolver")
        pm.pointConstraint(self.ik_ctl, self.ikHandleUpvRef)
        pm.parentConstraint(self.legChainUpvRef[0],
                            self.ik_ctl,
                            self.upv_cns,
                            mo=True)

        # Visibilities -------------------------------------
        # shape.dispGeometry
        # fk
        fkvis_node = node.createReverseNode(self.blend_att)

        for shp in self.fk0_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk1_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk2_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))

        # ik
        for shp in self.upv_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ikcns_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ik_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.line_ref.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))

        # IK Solver -----------------------------------------
        out = [self.bone0, self.bone1, self.ctrn_loc, self.eff_loc]
        o_node = applyop.gear_ikfk2bone_op(out, self.root_ctl, self.ik_ref,
                                           self.upv_ctl, self.fk_ctl[0],
                                           self.fk_ctl[1], self.fk_ref,
                                           self.length0, self.length1,
                                           self.negate)

        pm.connectAttr(self.blend_att, o_node + ".blend")
        if self.negate:
            mulVal = -1
        else:
            mulVal = 1
        node.createMulNode(self.roll_att, mulVal, o_node + ".roll")
        # pm.connectAttr(self.roll_att, o_node+".roll")
        pm.connectAttr(self.scale_att, o_node + ".scaleA")
        pm.connectAttr(self.scale_att, o_node + ".scaleB")
        pm.connectAttr(self.maxstretch_att, o_node + ".maxstretch")
        pm.connectAttr(self.slide_att, o_node + ".slide")
        pm.connectAttr(self.softness_att, o_node + ".softness")
        pm.connectAttr(self.reverse_att, o_node + ".reverse")

        # Twist references ---------------------------------
        o_node = applyop.gear_mulmatrix_op(
            self.eff_loc.attr("worldMatrix"),
            self.root.attr("worldInverseMatrix"))

        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputTranslate",
                       self.tws2_npo.attr("translate"))

        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputRotate", self.tws2_npo.attr("rotate"))

        # spline IK for  twist jnts
        self.ikhUpLegTwist, self.uplegTwistCrv = applyop.splineIK(
            self.getName("uplegTwist"),
            self.uplegTwistChain,
            parent=self.root,
            cParent=self.bone0)

        self.ikhLowLegTwist, self.lowlegTwistCrv = applyop.splineIK(
            self.getName("lowlegTwist"),
            self.lowlegTwistChain,
            parent=self.root,
            cParent=self.bone1)

        # references
        self.ikhUpLegRef, self.tmpCrv = applyop.splineIK(
            self.getName("uplegRollRef"),
            self.uplegRollRef,
            parent=self.root,
            cParent=self.bone0)

        self.ikhLowLegRef, self.tmpCrv = applyop.splineIK(
            self.getName("lowlegRollRef"),
            self.lowlegRollRef,
            parent=self.root,
            cParent=self.eff_loc)

        self.ikhAuxTwist, self.tmpCrv = applyop.splineIK(
            self.getName("auxTwist"),
            self.auxTwistChain,
            parent=self.root,
            cParent=self.eff_loc)

        # setting connexions for ikhUpLegTwist
        self.ikhUpLegTwist.attr("dTwistControlEnable").set(True)
        self.ikhUpLegTwist.attr("dWorldUpType").set(4)
        self.ikhUpLegTwist.attr("dWorldUpAxis").set(3)
        self.ikhUpLegTwist.attr("dWorldUpVectorZ").set(1.0)
        self.ikhUpLegTwist.attr("dWorldUpVectorY").set(0.0)
        self.ikhUpLegTwist.attr("dWorldUpVectorEndZ").set(1.0)
        self.ikhUpLegTwist.attr("dWorldUpVectorEndY").set(0.0)
        pm.connectAttr(self.uplegRollRef[0].attr("worldMatrix[0]"),
                       self.ikhUpLegTwist.attr("dWorldUpMatrix"))
        pm.connectAttr(self.bone0.attr("worldMatrix[0]"),
                       self.ikhUpLegTwist.attr("dWorldUpMatrixEnd"))

        # setting connexions for ikhAuxTwist
        self.ikhAuxTwist.attr("dTwistControlEnable").set(True)
        self.ikhAuxTwist.attr("dWorldUpType").set(4)
        self.ikhAuxTwist.attr("dWorldUpAxis").set(3)
        self.ikhAuxTwist.attr("dWorldUpVectorZ").set(1.0)
        self.ikhAuxTwist.attr("dWorldUpVectorY").set(0.0)
        self.ikhAuxTwist.attr("dWorldUpVectorEndZ").set(1.0)
        self.ikhAuxTwist.attr("dWorldUpVectorEndY").set(0.0)
        pm.connectAttr(self.lowlegRollRef[0].attr("worldMatrix[0]"),
                       self.ikhAuxTwist.attr("dWorldUpMatrix"))
        pm.connectAttr(self.tws_ref.attr("worldMatrix[0]"),
                       self.ikhAuxTwist.attr("dWorldUpMatrixEnd"))
        pm.connectAttr(self.auxTwistChain[1].attr("rx"),
                       self.ikhLowLegTwist.attr("twist"))

        pm.parentConstraint(self.bone1, self.aux_npo, maintainOffset=True)

        # scale arm length for twist chain (not the squash and stretch)
        arclen_node = pm.arclen(self.uplegTwistCrv, ch=True)
        alAttrUpLeg = arclen_node.attr("arcLength")
        muldiv_nodeArm = pm.createNode("multiplyDivide")
        pm.connectAttr(arclen_node.attr("arcLength"),
                       muldiv_nodeArm.attr("input1X"))
        muldiv_nodeArm.attr("input2X").set(alAttrUpLeg.get())
        muldiv_nodeArm.attr("operation").set(2)
        for jnt in self.uplegTwistChain:
            pm.connectAttr(muldiv_nodeArm.attr("outputX"), jnt.attr("sx"))

        # scale forearm length for twist chain (not the squash and stretch)
        arclen_node = pm.arclen(self.lowlegTwistCrv, ch=True)
        alAttrLowLeg = arclen_node.attr("arcLength")
        muldiv_nodeLowLeg = pm.createNode("multiplyDivide")
        pm.connectAttr(arclen_node.attr("arcLength"),
                       muldiv_nodeLowLeg.attr("input1X"))
        muldiv_nodeLowLeg.attr("input2X").set(alAttrLowLeg.get())
        muldiv_nodeLowLeg.attr("operation").set(2)
        for jnt in self.lowlegTwistChain:
            pm.connectAttr(muldiv_nodeLowLeg.attr("outputX"), jnt.attr("sx"))

        # scale compensation for the first  twist join
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(self.root.attr("worldMatrix[0]"),
                       dm_node.attr("inputMatrix"))
        pm.connectAttr(dm_node.attr("outputScale"),
                       self.uplegTwistChain[0].attr("inverseScale"))
        pm.connectAttr(dm_node.attr("outputScale"),
                       self.lowlegTwistChain[0].attr("inverseScale"))

        # tangent controls
        muldiv_node = pm.createNode("multiplyDivide")
        muldiv_node.attr("input2X").set(-1)
        pm.connectAttr(self.tws1A_npo.attr("rz"), muldiv_node.attr("input1X"))
        muldiv_nodeBias = pm.createNode("multiplyDivide")
        pm.connectAttr(muldiv_node.attr("outputX"),
                       muldiv_nodeBias.attr("input1X"))
        pm.connectAttr(self.roundness_att, muldiv_nodeBias.attr("input2X"))
        pm.connectAttr(muldiv_nodeBias.attr("outputX"),
                       self.tws1A_loc.attr("rz"))
        if self.negate:
            axis = "xz"
        else:
            axis = "-xz"
        applyop.aimCns(self.tws1A_npo,
                       self.tws0_loc,
                       axis=axis,
                       wupType=2,
                       wupVector=[0, 0, 1],
                       wupObject=self.mid_ctl,
                       maintainOffset=False)

        applyop.aimCns(self.lowlegTangentB_loc,
                       self.lowlegTangentA_npo,
                       axis=axis,
                       wupType=2,
                       wupVector=[0, 0, 1],
                       wupObject=self.mid_ctl,
                       maintainOffset=False)

        pm.pointConstraint(self.eff_loc, self.lowlegTangentB_loc)

        muldiv_node = pm.createNode("multiplyDivide")
        muldiv_node.attr("input2X").set(-1)
        pm.connectAttr(self.tws1B_npo.attr("rz"), muldiv_node.attr("input1X"))
        muldiv_nodeBias = pm.createNode("multiplyDivide")
        pm.connectAttr(muldiv_node.attr("outputX"),
                       muldiv_nodeBias.attr("input1X"))
        pm.connectAttr(self.roundness_att, muldiv_nodeBias.attr("input2X"))
        pm.connectAttr(muldiv_nodeBias.attr("outputX"),
                       self.tws1B_loc.attr("rz"))
        if self.negate:
            axis = "-xz"
        else:
            axis = "xz"
        applyop.aimCns(self.tws1B_npo,
                       self.tws2_loc,
                       axis=axis,
                       wupType=2,
                       wupVector=[0, 0, 1],
                       wupObject=self.mid_ctl,
                       maintainOffset=False)

        applyop.aimCns(self.uplegTangentA_loc,
                       self.uplegTangentB_npo,
                       axis=axis,
                       wupType=2,
                       wupVector=[0, 0, 1],
                       wupObject=self.mid_ctl,
                       maintainOffset=False)

        # Volume -------------------------------------------
        distA_node = node.createDistNode(self.tws0_loc, self.tws1_loc)
        distB_node = node.createDistNode(self.tws1_loc, self.tws2_loc)
        add_node = node.createAddNode(distA_node + ".distance",
                                      distB_node + ".distance")
        div_node = node.createDivNode(add_node + ".output",
                                      self.root_ctl.attr("sx"))

        # comp scaling issue
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(self.root.attr("worldMatrix"), dm_node + ".inputMatrix")

        div_node2 = node.createDivNode(div_node + ".outputX",
                                       dm_node + ".outputScaleX")

        self.volDriver_att = div_node2 + ".outputX"

        # connecting tangent scaele compensation after volume to
        # avoid duplicate some nodes
        distA_node = node.createDistNode(self.tws0_loc, self.mid_ctl)
        distB_node = node.createDistNode(self.mid_ctl, self.tws2_loc)

        div_nodeUpLeg = node.createDivNode(distA_node + ".distance",
                                           dm_node.attr("outputScaleX"))

        div_node2 = node.createDivNode(div_nodeUpLeg + ".outputX",
                                       distA_node.attr("distance").get())

        pm.connectAttr(div_node2.attr("outputX"), self.tws1A_loc.attr("sx"))

        pm.connectAttr(div_node2.attr("outputX"),
                       self.uplegTangentA_loc.attr("sx"))

        div_nodeLowLeg = node.createDivNode(distB_node + ".distance",
                                            dm_node.attr("outputScaleX"))
        div_node2 = node.createDivNode(div_nodeLowLeg + ".outputX",
                                       distB_node.attr("distance").get())

        pm.connectAttr(div_node2.attr("outputX"), self.tws1B_loc.attr("sx"))
        pm.connectAttr(div_node2.attr("outputX"),
                       self.lowlegTangentB_loc.attr("sx"))

        # conection curve
        cnts = [
            self.uplegTangentA_loc, self.uplegTangentA_ctl,
            self.uplegTangentB_ctl, self.kneeTangent_ctl
        ]
        applyop.gear_curvecns_op(self.uplegTwistCrv, cnts)

        cnts = [
            self.kneeTangent_ctl, self.lowlegTangentA_ctl,
            self.lowlegTangentB_ctl, self.lowlegTangentB_loc
        ]
        applyop.gear_curvecns_op(self.lowlegTwistCrv, cnts)

        # Tangent controls vis
        for shp in self.uplegTangentA_ctl.getShapes():
            pm.connectAttr(self.tangentVis_att, shp.attr("visibility"))
        for shp in self.uplegTangentB_ctl.getShapes():
            pm.connectAttr(self.tangentVis_att, shp.attr("visibility"))
        for shp in self.lowlegTangentA_ctl.getShapes():
            pm.connectAttr(self.tangentVis_att, shp.attr("visibility"))
        for shp in self.lowlegTangentB_ctl.getShapes():
            pm.connectAttr(self.tangentVis_att, shp.attr("visibility"))
        for shp in self.kneeTangent_ctl.getShapes():
            pm.connectAttr(self.tangentVis_att, shp.attr("visibility"))

        # Divisions ----------------------------------------
        # at 0 or 1 the division will follow exactly the rotation of the
        # controler.. and we wont have this nice tangent + roll
        for i, div_cns in enumerate(self.div_cns):
            if i < (self.settings["div0"] + 2):
                mulmat_node = applyop.gear_mulmatrix_op(
                    self.uplegTwistChain[i] + ".worldMatrix",
                    div_cns + ".parentInverseMatrix")
                lastUpLegDiv = div_cns
            else:
                o_node = self.lowlegTwistChain[i - (self.settings["div0"] + 2)]
                mulmat_node = applyop.gear_mulmatrix_op(
                    o_node + ".worldMatrix", div_cns + ".parentInverseMatrix")
                lastLowLegDiv = div_cns
            dm_node = node.createDecomposeMatrixNode(mulmat_node + ".output")
            pm.connectAttr(dm_node + ".outputTranslate", div_cns + ".t")
            pm.connectAttr(dm_node + ".outputRotate", div_cns + ".r")

            # Squash n Stretch
            o_node = applyop.gear_squashstretch2_op(
                div_cns, None, pm.getAttr(self.volDriver_att), "x")
            pm.connectAttr(self.volume_att, o_node + ".blend")
            pm.connectAttr(self.volDriver_att, o_node + ".driver")
            pm.connectAttr(self.st_att[i], o_node + ".stretch")
            pm.connectAttr(self.sq_att[i], o_node + ".squash")

        # force translation for last loc arm and foreamr
        applyop.gear_mulmatrix_op(self.kneeTangent_ctl.worldMatrix,
                                  lastUpLegDiv.parentInverseMatrix,
                                  lastUpLegDiv, "t")
        applyop.gear_mulmatrix_op(self.tws2_loc.worldMatrix,
                                  lastLowLegDiv.parentInverseMatrix,
                                  lastLowLegDiv, "t")

        # NOTE: next line fix the issue on meters.
        # This is special case becasuse the IK solver from mGear use the
        # scale as lenght and we have shear
        # TODO: check for a more clean and elegant solution instead of
        # re-match the world matrix again
        transform.matchWorldTransform(self.fk_ctl[0], self.match_fk0_off)
        transform.matchWorldTransform(self.fk_ctl[1], self.match_fk1_off)
        transform.matchWorldTransform(self.fk_ctl[0], self.match_fk0)
        transform.matchWorldTransform(self.fk_ctl[1], self.match_fk1)

        # match IK/FK ref
        pm.parentConstraint(self.bone0, self.match_fk0_off, mo=True)
        pm.parentConstraint(self.bone1, self.match_fk1_off, mo=True)

        return
Пример #19
0
    def addJoint(self,
                 obj,
                 name,
                 newActiveJnt=None,
                 UniScale=False,
                 segComp=0,
                 gearMulMatrix=True):
        """Add joint as child of the active joint or under driver object.

        Args:
            obj (dagNode): The input driver object for the joint.
            name (str): The joint name.
            newActiveJnt (bool or dagNode): If a joint is pass, this joint will
                be the active joint and parent of the newly created joint.
            UniScale (bool): Connects the joint scale with the Z axis for a
                unifor scalin, if set Falsewill connect with each axis
                separated.
            segComp (bool): Set True or False the segment compensation in the
                joint..
            gearMulMatrix (bool): Use the custom gear_multiply matrix node, if
                False will use Maya's default mulMatrix node.

        Returns:
            dagNode: The newly created joint.

        """

        customName = self.getCustomJointName(len(self.jointList))

        if self.options["joint_rig"]:
            if newActiveJnt:
                self.active_jnt = newActiveJnt

            jnt = primitive.addJoint(self.active_jnt, 
                customName or self.getName(str(name) + "_jnt"), 
                transform.getTransform(obj))

            # Disconnect inversScale for better preformance
            if isinstance(self.active_jnt, pm.nodetypes.Joint):
                try:
                    pm.disconnectAttr(self.active_jnt.scale, jnt.inverseScale)

                except RuntimeError:
                    # This handle the situation where we have in between joints
                    # transformation due a negative scaling
                    pm.ungroup(jnt.getParent())
            # All new jnts are the active by default
            self.active_jnt = jnt

            if gearMulMatrix:
                mulmat_node = applyop.gear_mulmatrix_op(
                    obj + ".worldMatrix", jnt + ".parentInverseMatrix")
                dm_node = node.createDecomposeMatrixNode(
                    mulmat_node + ".output")
                m = mulmat_node.attr('output').get()
            else:
                mulmat_node = node.createMultMatrixNode(
                    obj + ".worldMatrix", jnt + ".parentInverseMatrix")
                dm_node = node.createDecomposeMatrixNode(
                    mulmat_node + ".matrixSum")
                m = mulmat_node.attr('matrixSum').get()
            pm.connectAttr(dm_node + ".outputTranslate", jnt + ".t")
            pm.connectAttr(dm_node + ".outputRotate", jnt + ".r")
            # TODO: fix squash stretch solver to scale the joint uniform
            # the next line cheat the uniform scaling only fo X or Y axis
            # oriented joints
            if self.options["force_uniScale"]:
                UniScale = True

            # invert negative scaling in Joints. We only inver Z axis, so is
            # the only axis that we are checking
            if dm_node.attr("outputScaleZ").get() < 0:
                mul_nod_invert = node.createMulNode(
                    dm_node.attr("outputScaleZ"),
                    -1)
                out_val = mul_nod_invert.attr("outputX")
            else:
                out_val = dm_node.attr("outputScaleZ")

            # connect scaling
            if UniScale:
                pm.connectAttr(out_val, jnt + ".sx")
                pm.connectAttr(out_val, jnt + ".sy")
                pm.connectAttr(out_val, jnt + ".sz")
            else:
                pm.connectAttr(dm_node.attr("outputScaleX"), jnt + ".sx")
                pm.connectAttr(dm_node.attr("outputScaleY"), jnt + ".sy")
                pm.connectAttr(out_val, jnt + ".sz")
                pm.connectAttr(dm_node + ".outputShear", jnt + ".shear")

            # Segment scale compensate Off to avoid issues with the global
            # scale
            jnt.setAttr("segmentScaleCompensate", segComp)

            jnt.setAttr("jointOrient", 0, 0, 0)

            # setting the joint orient compensation in order to have clean
            # rotation channels
            jnt.attr("jointOrientX").set(jnt.attr("rx").get())
            jnt.attr("jointOrientY").set(jnt.attr("ry").get())
            jnt.attr("jointOrientZ").set(jnt.attr("rz").get())

            im = m.inverse()

            if gearMulMatrix:
                mul_nod = applyop.gear_mulmatrix_op(
                    mulmat_node.attr('output'), im, jnt, 'r')
                dm_node2 = mul_nod.output.listConnections()[0]
            else:
                mul_nod = node.createMultMatrixNode(
                    mulmat_node.attr('matrixSum'), im, jnt, 'r')
                dm_node2 = mul_nod.matrixSum.listConnections()[0]

            # if jnt.attr("sz").get() < 0:
            if dm_node.attr("outputScaleZ").get() < 0:
                # if negative scaling we have to negate some axis for rotation
                neg_rot_node = pm.createNode("multiplyDivide")
                pm.setAttr(neg_rot_node + ".operation", 1)
                pm.connectAttr(dm_node2.outputRotate,
                               neg_rot_node + ".input1",
                               f=True)
                for v, axis in zip([-1, -1, 1], "XYZ"):
                    pm.setAttr(neg_rot_node + ".input2" + axis, v)
                pm.connectAttr(neg_rot_node + ".output",
                               jnt + ".r",
                               f=True)

            # set not keyable
            attribute.setNotKeyableAttributes(jnt)

        else:
            jnt = primitive.addJoint(obj, 
                customName or self.getName(str(name) + "_jnt"), 
                transform.getTransform(obj))
            pm.connectAttr(self.rig.jntVis_att, jnt.attr("visibility"))
            attribute.lockAttribute(jnt)

        self.addToGroup(jnt, "deformers")

        # This is a workaround due the evaluation problem with compound attr
        # TODO: This workaround, should be removed onces the evaluation issue
        # is fixed
        # github issue: Shifter: Joint connection: Maya evaluation Bug #210
        dm = jnt.r.listConnections(p=True, type="decomposeMatrix")
        if dm:
            at = dm[0]
            dm_node = at.node()
            pm.disconnectAttr(at, jnt.r)
            pm.connectAttr(dm_node.outputRotateX, jnt.rx)
            pm.connectAttr(dm_node.outputRotateY, jnt.ry)
            pm.connectAttr(dm_node.outputRotateZ, jnt.rz)

        dm = jnt.t.listConnections(p=True, type="decomposeMatrix")
        if dm:
            at = dm[0]
            dm_node = at.node()
            pm.disconnectAttr(at, jnt.t)
            pm.connectAttr(dm_node.outputTranslateX, jnt.tx)
            pm.connectAttr(dm_node.outputTranslateY, jnt.ty)
            pm.connectAttr(dm_node.outputTranslateZ, jnt.tz)

        # dm = jnt.s.listConnections(p=True, type="decomposeMatrix")
        # if dm:
        #     at = dm[0]
        #     dm_node = at.node()
        #     pm.disconnectAttr(at, jnt.s)
        #     pm.connectAttr(dm_node.outputScaleX, jnt.sx)
        #     pm.connectAttr(dm_node.outputScaleY, jnt.sy)
        #     pm.connectAttr(dm_node.outputScaleZ, jnt.sz)

        return jnt
Пример #20
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """
        # 1 bone chain Upv ref ==============================================
        self.ikHandleUpvRef = primitive.addIkHandle(
            self.root, self.getName("ikHandleArmChainUpvRef"),
            self.armChainUpvRef, "ikSCsolver")
        pm.pointConstraint(self.ik_ctl, self.ikHandleUpvRef)
        pm.parentConstraint(self.armChainUpvRef[0], self.upv_cns, mo=True)

        # Visibilities -------------------------------------
        # fk
        fkvis_node = node.createReverseNode(self.blend_att)

        for shp in self.fk0_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk1_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk2_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))

        # ik
        for shp in self.upv_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ikcns_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ik_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.line_ref.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        if self.settings["ikTR"]:
            for shp in self.ikRot_ctl.getShapes():
                pm.connectAttr(self.blend_att, shp.attr("visibility"))

        # Controls ROT order -----------------------------------
        attribute.setRotOrder(self.fk0_ctl, "XZY")
        attribute.setRotOrder(self.fk1_ctl, "XYZ")
        attribute.setRotOrder(self.fk2_ctl, "YZX")
        attribute.setRotOrder(self.ik_ctl, "XYZ")

        # IK Solver -----------------------------------------
        out = [self.bone0, self.bone1, self.ctrn_loc, self.eff_loc]
        o_node = applyop.gear_ikfk2bone_op(out, self.root, self.ik_ref,
                                           self.upv_ctl, self.fk_ctl[0],
                                           self.fk_ctl[1], self.fk_ref,
                                           self.length0, self.length1,
                                           self.negate)

        if self.settings["ikTR"]:
            # connect the control inputs
            outEff_dm = o_node.listConnections(c=True)[-1][1]

            inAttr = self.ikRot_npo.attr("translate")
            outEff_dm.attr("outputTranslate") >> inAttr

            outEff_dm.attr("outputScale") >> self.ikRot_npo.attr("scale")
            dm_node = node.createDecomposeMatrixNode(o_node.attr("outB"))
            dm_node.attr("outputRotate") >> self.ikRot_npo.attr("rotate")

            # rotation
            mulM_node = applyop.gear_mulmatrix_op(
                self.ikRot_ctl.attr("worldMatrix"),
                self.eff_loc.attr("parentInverseMatrix"))
            intM_node = applyop.gear_intmatrix_op(o_node.attr("outEff"),
                                                  mulM_node.attr("output"),
                                                  o_node.attr("blend"))
            dm_node = node.createDecomposeMatrixNode(intM_node.attr("output"))
            dm_node.attr("outputRotate") >> self.eff_loc.attr("rotate")
            transform.matchWorldTransform(self.fk2_ctl, self.ikRot_cns)

        # scale: this fix the scalin popping issue
        intM_node = applyop.gear_intmatrix_op(
            self.fk2_ctl.attr("worldMatrix"),
            self.ik_ctl_ref.attr("worldMatrix"), o_node.attr("blend"))
        mulM_node = applyop.gear_mulmatrix_op(
            intM_node.attr("output"), self.eff_loc.attr("parentInverseMatrix"))
        dm_node = node.createDecomposeMatrixNode(mulM_node.attr("output"))
        dm_node.attr("outputScale") >> self.eff_loc.attr("scale")

        pm.connectAttr(self.blend_att, o_node + ".blend")
        if self.negate:
            mulVal = -1
        else:
            mulVal = 1
        node.createMulNode(self.roll_att, mulVal, o_node + ".roll")
        pm.connectAttr(self.scale_att, o_node + ".scaleA")
        pm.connectAttr(self.scale_att, o_node + ".scaleB")
        pm.connectAttr(self.maxstretch_att, o_node + ".maxstretch")
        pm.connectAttr(self.slide_att, o_node + ".slide")
        pm.connectAttr(self.softness_att, o_node + ".softness")
        pm.connectAttr(self.reverse_att, o_node + ".reverse")

        # Twist references ---------------------------------

        pm.pointConstraint(self.mid_ctl_twst_ref,
                           self.tws1_npo,
                           maintainOffset=False)
        pm.connectAttr(self.mid_ctl.scaleX, self.tws1_loc.scaleX)
        pm.orientConstraint(self.mid_ctl_twst_ref,
                            self.tws1_npo,
                            maintainOffset=False)

        o_node = applyop.gear_mulmatrix_op(
            self.eff_loc.attr("worldMatrix"),
            self.root.attr("worldInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputTranslate",
                       self.tws2_npo.attr("translate"))

        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputRotate", self.tws2_npo.attr("rotate"))

        o_node = applyop.gear_mulmatrix_op(
            self.eff_loc.attr("worldMatrix"),
            self.tws2_rot.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        attribute.setRotOrder(self.tws2_rot, "XYZ")
        pm.connectAttr(dm_node + ".outputRotate", self.tws2_rot + ".rotate")

        self.tws0_rot.setAttr("sx", .001)
        self.tws2_rot.setAttr("sx", .001)

        add_node = node.createAddNode(self.roundness_att, .001)
        pm.connectAttr(add_node + ".output", self.tws1_rot.attr("sx"))

        pm.connectAttr(self.armpit_roll_att, self.tws0_rot + ".rotateX")

        # Roll Shoulder
        applyop.splineIK(self.getName("rollRef"),
                         self.rollRef,
                         parent=self.root,
                         cParent=self.bone0)

        # Volume -------------------------------------------
        distA_node = node.createDistNode(self.tws0_loc, self.tws1_loc)
        distB_node = node.createDistNode(self.tws1_loc, self.tws2_loc)
        add_node = node.createAddNode(distA_node + ".distance",
                                      distB_node + ".distance")
        div_node = node.createDivNode(add_node + ".output",
                                      self.root.attr("sx"))

        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(self.root.attr("worldMatrix"), dm_node + ".inputMatrix")

        div_node2 = node.createDivNode(div_node + ".outputX",
                                       dm_node + ".outputScaleX")
        self.volDriver_att = div_node2 + ".outputX"

        if self.settings["extraTweak"]:
            for tweak_ctl in self.tweak_ctl:
                for shp in tweak_ctl.getShapes():
                    pm.connectAttr(self.tweakVis_att, shp.attr("visibility"))

        # Divisions ----------------------------------------
        # at 0 or 1 the division will follow exactly the rotation of the
        # controler.. and we wont have this nice tangent + roll
        for i, div_cns in enumerate(self.div_cns):

            if self.settings["supportJoints"]:
                if i < (self.settings["div0"] + 1):
                    perc = i * .5 / (self.settings["div0"] + 1.0)
                elif i < (self.settings["div0"] + 2):
                    perc = .49
                elif i < (self.settings["div0"] + 3):
                    perc = .50
                elif i < (self.settings["div0"] + 4):
                    perc = .51

                else:
                    perc = .5 + \
                        (i - self.settings["div0"] - 3.0) * .5 / \
                        (self.settings["div1"] + 1.0)
            else:
                if i < (self.settings["div0"] + 1):
                    perc = i * .5 / (self.settings["div0"] + 1.0)
                elif i < (self.settings["div0"] + 2):
                    perc = .501
                else:
                    perc = .5 + \
                        (i - self.settings["div0"] - 1.0) * .5 / \
                        (self.settings["div1"] + 1.0)

            perc = max(.001, min(.990, perc))

            # Roll
            if self.negate:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cns, [self.tws2_rot, self.tws1_rot, self.tws0_rot],
                    1.0 - perc, 40)
            else:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cns, [self.tws0_rot, self.tws1_rot, self.tws2_rot],
                    perc, 40)

            pm.connectAttr(self.resample_att, o_node + ".resample")
            pm.connectAttr(self.absolute_att, o_node + ".absolute")

            # Squash n Stretch
            o_node = applyop.gear_squashstretch2_op(
                div_cns, None, pm.getAttr(self.volDriver_att), "x")
            pm.connectAttr(self.volume_att, o_node + ".blend")
            pm.connectAttr(self.volDriver_att, o_node + ".driver")
            pm.connectAttr(self.st_att[i], o_node + ".stretch")
            pm.connectAttr(self.sq_att[i], o_node + ".squash")

        # match IK/FK ref
        pm.parentConstraint(self.bone0, self.match_fk0_off, mo=True)
        pm.parentConstraint(self.bone1, self.match_fk1_off, mo=True)
        if self.settings["ikTR"]:
            transform.matchWorldTransform(self.ikRot_ctl, self.match_ikRot)
            transform.matchWorldTransform(self.fk_ctl[2], self.match_fk2)

        return
Пример #21
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """
        # Visibilities -------------------------------------

        # ik
        if self.settings["useRollCtl"]:
            for shp in self.roll_ctl.getShapes():
                pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for bk_ctl in self.bk_ctl:
            for shp in bk_ctl.getShapes():
                pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.heel_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.tip_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))

        # Roll / Bank --------------------------------------
        if self.settings["useRollCtl"]:  # Using the controler
            self.roll_att = self.roll_ctl.attr("rz")
            self.bank_att = self.roll_ctl.attr("rx")

        clamp_node = node.createClampNode(
            [self.roll_att, self.bank_att, self.bank_att],
            [0, -180, 0],
            [180, 0, 180])

        inAdd_nod = node.createAddNode(
            clamp_node + ".outputB",
            pm.getAttr(self.in_piv.attr("rx")) * self.n_factor)

        pm.connectAttr(clamp_node + ".outputR", self.heel_loc.attr("rz"))
        pm.connectAttr(clamp_node + ".outputG", self.out_piv.attr("rx"))
        pm.connectAttr(inAdd_nod + ".output", self.in_piv.attr("rx"))

        # Reverse Controler offset -------------------------
        angle_outputs = node.createAddNodeMulti(self.angles_att)
        for i, bk_loc in enumerate(reversed(self.bk_loc)):

            if i == 0:  # First
                input = self.roll_att
                min_input = self.angles_att[i]

            elif i == len(self.angles_att):  # Last
                sub_nod = node.createSubNode(self.roll_att,
                                             angle_outputs[i - 1])
                input = sub_nod + ".output"
                min_input = -360

            else:  # Others
                sub_nod = node.createSubNode(self.roll_att,
                                             angle_outputs[i - 1])
                input = sub_nod + ".output"
                min_input = self.angles_att[i]

            clamp_node = node.createClampNode(input, min_input, 0)

            add_node = node.createAddNode(clamp_node + ".outputR",
                                          bk_loc.getAttr("rz"))

            pm.connectAttr(add_node + ".output", bk_loc.attr("rz"))

        # Reverse compensation -----------------------------
        for i, fk_loc in enumerate(self.fk_loc):
            bk_ctl = self.bk_ctl[-i - 1]
            bk_loc = self.bk_loc[-i - 1]
            fk_ctl = self.fk_ctl[i]

            # Inverse Rotorder
            applyop.gear_inverseRotorder_op(bk_loc, fk_ctl)
            pm.connectAttr(fk_ctl.attr("ro"), fk_loc.attr("ro"))
            attribute.lockAttribute(bk_loc, "ro")

            # Compensate the backward rotation
            # ik
            # addx_node = node.createAddNode(bk_loc.attr("rx"), bk_loc.attr("rx"))
            # addy_node = node.createAddNode(bk_loc.attr("ry"), bk_loc.attr("ry"))
            # addz_node = node.createAddNode(bk_loc.attr("rz"), bk_loc.attr("rz"))
            addz_node = node.createAddNode(
                bk_loc.attr("rz"), -bk_loc.getAttr("rz") - fk_loc.getAttr("rz"))

            neg_node = node.createMulNode([bk_loc.attr("rx"),
                                           bk_loc.attr("ry"),
                                           addz_node + ".output"],
                                          [-1, -1, -1])
            ik_outputs = [neg_node + ".outputX",
                          neg_node + ".outputY",
                          neg_node + ".outputZ"]

            # fk
            fk_outputs = [0, 0, fk_loc.getAttr("rz")]

            # blend
            blend_node = node.createBlendNode(ik_outputs,
                                              fk_outputs,
                                              self.blend_att)
            pm.connectAttr(blend_node + ".output", fk_loc.attr("rotate"))

        return
Пример #22
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """

        # Curves -------------------------------------------
        op = applyop.gear_curveslide2_op(
            self.slv_crv, self.mst_crv, 0, 1.5, .5, .5)

        pm.connectAttr(self.position_att, op + ".position")
        pm.connectAttr(self.lenght_att, op + ".maxstretch")

        op = applyop.gear_curveslide2_op(
            self.slv_upv_crv, self.upv_crv, 0, 1.5, .5, .5)

        pm.connectAttr(self.position_att, op + ".position")
        pm.connectAttr(self.lenght_att, op + ".maxstretch")

        for tang in self.tangentsCtl:
            for shp in tang.getShapes():
                pm.connectAttr(self.tangentsVis_att, shp.attr("visibility"))

        for twnpo, fkctl in zip(self.tweak_npo, self.fk_ctl):
            intMatrix = applyop.gear_intmatrix_op(
                fkctl.attr("worldMatrix"),
                fkctl.getParent().attr("worldMatrix"),
                .5)

            applyop.gear_mulmatrix_op(intMatrix.attr("output"),
                                      twnpo.attr("parentInverseMatrix[0]"),
                                      twnpo)

        dm_node_scl = node.createDecomposeMatrixNode(self.root.worldMatrix)
        if self.settings["keepLength"]:
            arclen_node = pm.arclen(self.slv_crv, ch=True)
            alAttr = pm.getAttr(arclen_node + ".arcLength")

            pm.addAttr(self.slv_crv, ln="length_ratio", k=True, w=True)
            node.createDivNode(arclen_node.arcLength,
                               alAttr,
                               self.slv_crv.length_ratio)

            div_node_scl = node.createDivNode(self.slv_crv.length_ratio,
                                              dm_node_scl.outputScaleX)

        step = 1.000 / (self.def_number - 1)
        u = 0.000
        for i in range(self.def_number):
            mult_node = node.createMulNode(u, self.lenght_att)
            cnsUpv = applyop.pathCns(self.upv_cns[i],
                                     self.slv_upv_crv,
                                     cnsType=False,
                                     u=u,
                                     tangent=False)
            pm.connectAttr(mult_node.outputX, cnsUpv.uValue)

            cns = applyop.pathCns(
                self.div_cns[i], self.slv_crv, False, u, True)
            pm.connectAttr(mult_node.outputX, cns.uValue)

            # Connectiong the scale for scaling compensation
            for axis, AX in zip("xyz", "XYZ"):
                pm.connectAttr(dm_node_scl.attr("outputScale{}".format(AX)),
                               self.div_cns[i].attr("s{}".format(axis)))

            if self.settings["keepLength"]:

                div_node2 = node.createDivNode(u, div_node_scl.outputX)

                cond_node = node.createConditionNode(div_node2.input1X,
                                                     div_node2.outputX,
                                                     4,
                                                     div_node2.input1X,
                                                     div_node2.outputX)

                # pm.connectAttr(cond_node + ".outColorR",
                #                cnsUpv + ".uValue")
                # pm.connectAttr(cond_node + ".outColorR",
                #                cns + ".uValue")
                pm.connectAttr(cond_node + ".outColorR",
                               mult_node + ".input1X", f=True)

            # Connect the scaling for self.Extra_tweak_npo
            et_npo = self.Extra_tweak_npo[i]
            pm.connectAttr(self.spin_att, et_npo + ".rz")

            base_node = node.createMulNode(self.baseSize_att, 1.00000 - u, output=None)
            tip_node = node.createMulNode(self.tipSize_att, u, output=None)
            sum_node = node.createPlusMinusAverage1D([base_node.outputX, tip_node.outputX])
            # print et_npo
            pm.connectAttr(sum_node.output1D, et_npo.scaleX, f=True)
            pm.connectAttr(sum_node.output1D, et_npo.scaleY, f=True)
            pm.connectAttr(sum_node.output1D, et_npo.scaleZ, f=True)

            cns.setAttr("worldUpType", 1)
            cns.setAttr("frontAxis", 0)
            cns.setAttr("upAxis", 1)

            pm.connectAttr(self.upv_cns[i].attr("worldMatrix[0]"),
                           cns.attr("worldUpMatrix"))
            u += step

        for et in self.Extra_tweak_ctl:
            for shp in et.getShapes():
                pm.connectAttr(self.tweakVis_att, shp.attr("visibility"))

        if self.settings["keepLength"]:
            # add the safty distance offset
            self.tweakTip_npo.attr("tx").set(self.off_dist)
            # connect vis line ref
            for shp in self.line_ref.getShapes():
                pm.connectAttr(self.ikVis_att, shp.attr("visibility"))

        for ctl in self.tweak_ctl:
            for shp in ctl.getShapes():
                pm.connectAttr(self.ikVis_att, shp.attr("visibility"))
        for ctl in self.fk_ctl:
            for shp in ctl.getShapes():
                pm.connectAttr(self.fkVis_att, shp.attr("visibility"))
Пример #23
0
def rig(
    eyeMesh=None,
    edgeLoop="",
    blinkH=20,
    namePrefix="eye",
    offset=0.05,
    rigidLoops=2,
    falloffLoops=4,
    headJnt=None,
    doSkin=True,
    parent_node=None,
    ctlName="ctl",
    sideRange=False,
    customCorner=False,
    intCorner=None,
    extCorner=None,
    ctlSet=None,
    defSet=None,
    upperVTrack=0.02,
    upperHTrack=0.01,
    lowerVTrack=0.02,
    lowerHTrack=0.01,
    aim_controller="",
    deformers_group="",
    everyNVertex=1,
):
    """Create eyelid and eye rig

    Args:
        eyeMesh (TYPE): Description
        edgeLoop (TYPE): Description
        blinkH (TYPE): Description
        namePrefix (TYPE): Description
        offset (TYPE): Description
        rigidLoops (TYPE): Description
        falloffLoops (TYPE): Description
        headJnt (TYPE): Description
        doSkin (TYPE): Description
        parent_node (None, optional): Description
        ctlName (str, optional): Description
        sideRange (bool, optional): Description
        customCorner (bool, optional): Description
        intCorner (None, optional): Description
        extCorner (None, optional): Description
        ctlSet (None, optional): Description
        defSet (None, optional): Description
        upperVTrack (None, optional): Description
        upperHTrack (None, optional): Description
        lowerVTrack (None, optional): Description
        lowerHTrack (None, optional): Description
        aim_controller (None, optional): Description
        deformers_group (None, optional): Description
        everyNVertex (int, optional): Will create a joint every N vertex

    No Longer Returned:
        TYPE: Description
    """

    ##########################################
    # INITIAL SETUP
    ##########################################
    up_axis = pm.upAxis(q=True, axis=True)
    if up_axis == "z":
        z_up = True
    else:
        z_up = False

    # getters
    edgeLoopList = get_edge_loop(edgeLoop)
    eyeMesh = get_eye_mesh(eyeMesh)

    # checkers
    if not edgeLoopList or not eyeMesh:
        return
    if doSkin:
        if not headJnt:
            pm.displayWarning("Please set the Head Jnt or unCheck "
                              "Compute Topological Autoskin")
            return

    # Convert data
    blinkH = blinkH / 100.0

    # Initial Data
    bboxCenter = meshNavigation.bboxCenter(eyeMesh)

    extr_v = meshNavigation.getExtremeVertexFromLoop(edgeLoopList, sideRange,
                                                     z_up)
    upPos = extr_v[0]
    lowPos = extr_v[1]
    inPos = extr_v[2]
    outPos = extr_v[3]
    edgeList = extr_v[4]
    vertexList = extr_v[5]

    # Detect the side L or R from the x value
    if inPos.getPosition(space="world")[0] < 0.0:
        side = "R"
        inPos = extr_v[3]
        outPos = extr_v[2]
        normalPos = outPos
        npw = normalPos.getPosition(space="world")
        normalVec = npw - bboxCenter
    else:
        side = "L"
        normalPos = outPos
        npw = normalPos.getPosition(space="world")
        normalVec = bboxCenter - npw

    # Manual Vertex corners
    if customCorner:
        if intCorner:
            try:
                if side == "R":
                    inPos = pm.PyNode(extCorner)
                else:
                    inPos = pm.PyNode(intCorner)
            except pm.MayaNodeError:
                pm.displayWarning("%s can not be found" % intCorner)
                return
        else:
            pm.displayWarning("Please set the internal eyelid corner")
            return

        if extCorner:
            try:
                normalPos = pm.PyNode(extCorner)
                npw = normalPos.getPosition(space="world")
                if side == "R":
                    outPos = pm.PyNode(intCorner)
                    normalVec = npw - bboxCenter
                else:
                    outPos = pm.PyNode(extCorner)
                    normalVec = bboxCenter - npw
            except pm.MayaNodeError:
                pm.displayWarning("%s can not be found" % extCorner)
                return
        else:
            pm.displayWarning("Please set the external eyelid corner")
            return

    # Check if we have prefix:
    if namePrefix:
        namePrefix = string.removeInvalidCharacter(namePrefix)
    else:
        pm.displayWarning("Prefix is needed")
        return

    def setName(name, ind=None):
        namesList = [namePrefix, side, name]
        if ind is not None:
            namesList[1] = side + str(ind)
        name = "_".join(namesList)
        return name

    if pm.ls(setName("root")):
        pm.displayWarning("The object %s already exist in the scene. Please "
                          "choose another name prefix" % setName("root"))
        return

    ##########################################
    # CREATE OBJECTS
    ##########################################

    # Eye root
    eye_root = primitive.addTransform(None, setName("root"))
    eyeCrv_root = primitive.addTransform(eye_root, setName("crvs"))

    # Eyelid Main crvs
    try:
        upEyelid_edge = meshNavigation.edgeRangeInLoopFromMid(
            edgeList, upPos, inPos, outPos)
        up_crv = curve.createCurveFromOrderedEdges(upEyelid_edge,
                                                   inPos,
                                                   setName("upperEyelid"),
                                                   parent=eyeCrv_root)
        upCtl_crv = curve.createCurveFromOrderedEdges(upEyelid_edge,
                                                      inPos,
                                                      setName("upCtl_crv"),
                                                      parent=eyeCrv_root)
        pm.rebuildCurve(upCtl_crv, s=2, rt=0, rpo=True, ch=False)

        lowEyelid_edge = meshNavigation.edgeRangeInLoopFromMid(
            edgeList, lowPos, inPos, outPos)
        low_crv = curve.createCurveFromOrderedEdges(lowEyelid_edge,
                                                    inPos,
                                                    setName("lowerEyelid"),
                                                    parent=eyeCrv_root)
        lowCtl_crv = curve.createCurveFromOrderedEdges(lowEyelid_edge,
                                                       inPos,
                                                       setName("lowCtl_crv"),
                                                       parent=eyeCrv_root)

        pm.rebuildCurve(lowCtl_crv, s=2, rt=0, rpo=True, ch=False)

    except UnboundLocalError:
        if customCorner:
            pm.displayWarning("This error is maybe caused because the custom "
                              "Corner vertex is not part of the edge loop")
        pm.displayError(traceback.format_exc())
        return

    # blendshape  curves. All crv have 30 point to allow blendshape connect
    upDriver_crv = curve.createCurveFromCurve(up_crv,
                                              setName("upDriver_crv"),
                                              nbPoints=30,
                                              parent=eyeCrv_root)
    upDriver_crv.attr("lineWidth").set(5)
    lowDriver_crv = curve.createCurveFromCurve(low_crv,
                                               setName("lowDriver_crv"),
                                               nbPoints=30,
                                               parent=eyeCrv_root)
    lowDriver_crv.attr("lineWidth").set(5)

    upRest_target_crv = curve.createCurveFromCurve(
        up_crv, setName("upRest_target_crv"), nbPoints=30, parent=eyeCrv_root)
    lowRest_target_crv = curve.createCurveFromCurve(
        low_crv,
        setName("lowRest_target_crv"),
        nbPoints=30,
        parent=eyeCrv_root)
    upProfile_target_crv = curve.createCurveFromCurve(
        up_crv,
        setName("upProfile_target_crv"),
        nbPoints=30,
        parent=eyeCrv_root,
    )
    lowProfile_target_crv = curve.createCurveFromCurve(
        low_crv,
        setName("lowProfile_target_crv"),
        nbPoints=30,
        parent=eyeCrv_root,
    )

    # mid driver
    midUpDriver_crv = curve.createCurveFromCurve(up_crv,
                                                 setName("midUpDriver_crv"),
                                                 nbPoints=30,
                                                 parent=eyeCrv_root)
    midLowDriver_crv = curve.createCurveFromCurve(low_crv,
                                                  setName("midLowDriver_crv"),
                                                  nbPoints=30,
                                                  parent=eyeCrv_root)

    # curve that define the close point of the eyelid
    closeTarget_crv = curve.createCurveFromCurve(up_crv,
                                                 setName("closeTarget_crv"),
                                                 nbPoints=30,
                                                 parent=eyeCrv_root)

    eyeCrv_root.attr("visibility").set(False)

    # localBBOX
    localBBox = eyeMesh.getBoundingBox(invisible=True, space="world")
    wRadius = abs((localBBox[0][0] - localBBox[1][0]))
    dRadius = abs((localBBox[0][1] - localBBox[1][1]) / 1.7)

    # Groups
    if not ctlSet:
        ctlSet = "rig_controllers_grp"
    try:
        ctlSet = pm.PyNode(ctlSet)
    except pm.MayaNodeError:
        pm.sets(n=ctlSet, em=True)
        ctlSet = pm.PyNode(ctlSet)
    if not defSet:
        defSet = "rig_deformers_grp"
    try:
        defset = pm.PyNode(defSet)
    except pm.MayaNodeError:
        pm.sets(n=defSet, em=True)
        defset = pm.PyNode(defSet)

    # Calculate center looking at
    averagePosition = (upPos.getPosition(space="world") + lowPos.getPosition(
        space="world") + inPos.getPosition(space="world") +
                       outPos.getPosition(space="world")) / 4

    if z_up:
        axis = "zx"
    else:
        axis = "z-x"
    t = transform.getTransformLookingAt(bboxCenter,
                                        averagePosition,
                                        normalVec,
                                        axis=axis,
                                        negate=False)

    over_npo = primitive.addTransform(eye_root, setName("center_lookatRoot"),
                                      t)

    center_lookat = primitive.addTransform(over_npo, setName("center_lookat"),
                                           t)

    if side == "R":
        over_npo.attr("rx").set(over_npo.attr("rx").get() * -1)
        over_npo.attr("ry").set(over_npo.attr("ry").get() + 180)
        over_npo.attr("sz").set(-1)
    t = transform.getTransform(over_npo)

    # Tracking
    # Eye aim control
    t_arrow = transform.getTransformLookingAt(
        bboxCenter,
        averagePosition,
        upPos.getPosition(space="world"),
        axis="zy",
        negate=False,
    )

    radius = abs((localBBox[0][0] - localBBox[1][0]) / 1.7)

    arrow_ctl = None
    arrow_npo = None
    if aim_controller:
        arrow_ctl = pm.PyNode(aim_controller)
    else:
        arrow_npo = primitive.addTransform(eye_root, setName("aim_npo"),
                                           t_arrow)
        arrow_ctl = icon.create(
            arrow_npo,
            setName("aim_%s" % ctlName),
            t_arrow,
            icon="arrow",
            w=1,
            po=datatypes.Vector(0, 0, radius),
            color=4,
        )
    if len(ctlName.split("_")) == 2 and ctlName.split("_")[-1] == "ghost":
        pass
    else:
        pm.sets(ctlSet, add=arrow_ctl)
    attribute.setKeyableAttributes(arrow_ctl, params=["rx", "ry", "rz"])
    attribute.addAttribute(arrow_ctl, "isCtl", "bool", keyable=False)

    # tracking custom trigger
    if side == "R":
        tt = t_arrow
    else:
        tt = t
    aimTrigger_root = primitive.addTransform(center_lookat,
                                             setName("aimTrigger_root"), tt)
    # For some unknown reason the right side gets scewed rotation values
    mgear.core.transform.resetTransform(aimTrigger_root)
    aimTrigger_lvl = primitive.addTransform(aimTrigger_root,
                                            setName("aimTrigger_lvl"), tt)
    # For some unknown reason the right side gets scewed rotation values
    mgear.core.transform.resetTransform(aimTrigger_lvl)
    aimTrigger_lvl.attr("tz").set(1.0)
    aimTrigger_ref = primitive.addTransform(aimTrigger_lvl,
                                            setName("aimTrigger_ref"), tt)
    # For some unknown reason the right side gets scewed rotation values
    mgear.core.transform.resetTransform(aimTrigger_ref)
    aimTrigger_ref.attr("tz").set(0.0)
    # connect  trigger with arrow_ctl
    pm.parentConstraint(arrow_ctl, aimTrigger_ref, mo=True)

    # Blink driver controls
    if z_up:
        trigger_axis = "tz"
        ro_up = [0, 1.57079633 * 2, 1.57079633]
        ro_low = [0, 0, 1.57079633]
        po = [0, offset * -1, 0]
        low_pos = 2  # Z
    else:
        trigger_axis = "ty"
        ro_up = (1.57079633, 1.57079633, 0)
        ro_low = [1.57079633, 1.57079633, 1.57079633 * 2]
        po = [0, 0, offset]
        low_pos = 1  # Y

    # upper ctl
    p = upRest_target_crv.getCVs(space="world")[15]
    ut = transform.setMatrixPosition(datatypes.Matrix(), p)
    npo = primitive.addTransform(over_npo, setName("upBlink_npo"), ut)

    up_ctl = icon.create(
        npo,
        setName("upBlink_ctl"),
        ut,
        icon="arrow",
        w=2.5,
        d=2.5,
        ro=datatypes.Vector(ro_up[0], ro_up[1], ro_up[2]),
        po=datatypes.Vector(po[0], po[1], po[2]),
        color=4,
    )
    attribute.setKeyableAttributes(up_ctl, [trigger_axis])
    pm.sets(ctlSet, add=up_ctl)

    # use translation of the object to drive the blink
    blink_driver = primitive.addTransform(up_ctl, setName("blink_drv"), ut)

    # lowe ctl
    p_low = lowRest_target_crv.getCVs(space="world")[15]
    p[low_pos] = p_low[low_pos]
    lt = transform.setMatrixPosition(ut, p)
    npo = primitive.addTransform(over_npo, setName("lowBlink_npo"), lt)

    low_ctl = icon.create(
        npo,
        setName("lowBlink_ctl"),
        lt,
        icon="arrow",
        w=1.5,
        d=1.5,
        ro=datatypes.Vector(ro_low[0], ro_low[1], ro_low[2]),
        po=datatypes.Vector(po[0], po[1], po[2]),
        color=4,
    )
    attribute.setKeyableAttributes(low_ctl, [trigger_axis])
    pm.sets(ctlSet, add=low_ctl)

    # Controls lists
    upControls = []
    trackLvl = []
    track_corner_lvl = []
    corner_ctl = []
    ghost_ctl = []

    # upper eyelid controls
    upperCtlNames = ["inCorner", "upInMid", "upMid", "upOutMid", "outCorner"]
    cvs = upCtl_crv.getCVs(space="world")
    if side == "R" and not sideRange:
        # if side == "R":
        cvs = [cv for cv in reversed(cvs)]
        # offset = offset * -1
    for i, cv in enumerate(cvs):
        if utils.is_odd(i):
            color = 14
            wd = 0.3
            icon_shape = "circle"
            params = ["tx", "ty", "tz"]
        else:
            color = 4
            wd = 0.6
            icon_shape = "circle"
            params = [
                "tx",
                "ty",
                "tz",
                "ro",
                "rx",
                "ry",
                "rz",
                "sx",
                "sy",
                "sz",
            ]

        t = transform.setMatrixPosition(t, cvs[i])
        npo = primitive.addTransform(center_lookat,
                                     setName("%s_npo" % upperCtlNames[i]), t)
        npoBase = npo
        # track for corners and mid point level
        if i in [0, 2, 4]:
            # we add an extra level to input the tracking ofset values
            npo = primitive.addTransform(npo,
                                         setName("%s_trk" % upperCtlNames[i]),
                                         t)
            if i == 2:
                trackLvl.append(npo)
            else:
                track_corner_lvl.append(npo)

        if i in [1, 2, 3]:
            ctl = primitive.addTransform(npo,
                                         setName("%s_loc" % upperCtlNames[i]),
                                         t)
            # ghost controls
            if i == 2:
                gt = transform.setMatrixPosition(
                    t, transform.getPositionFromMatrix(ut))
            else:
                gt = t
            npo_g = primitive.addTransform(
                up_ctl, setName("%sCtl_npo" % upperCtlNames[i]), gt)
            ctl_g = icon.create(
                npo_g,
                setName("%s_%s" % (upperCtlNames[i], ctlName)),
                gt,
                icon=icon_shape,
                w=wd,
                d=wd,
                ro=datatypes.Vector(1.57079633, 0, 0),
                po=datatypes.Vector(0, 0, offset),
                color=color,
            )
            # define the ctl_param to recive the ctl configuration
            ctl_param = ctl_g
            ghost_ctl.append(ctl_g)
            # connect local SRT
            rigbits.connectLocalTransform([ctl_g, ctl])
        else:
            ctl = icon.create(
                npo,
                setName("%s_%s" % (upperCtlNames[i], ctlName)),
                t,
                icon=icon_shape,
                w=wd,
                d=wd,
                ro=datatypes.Vector(1.57079633, 0, 0),
                po=datatypes.Vector(0, 0, offset),
                color=color,
            )
            # define the ctl_param to recive the ctl configuration
            ctl_param = ctl
        attribute.addAttribute(ctl_param, "isCtl", "bool", keyable=False)
        attribute.add_mirror_config_channels(ctl_param)
        node.add_controller_tag(ctl_param, over_npo)
        if len(ctlName.split("_")) == 2 and ctlName.split("_")[-1] == "ghost":
            pass
        else:
            pm.sets(ctlSet, add=ctl_param)
        attribute.setKeyableAttributes(ctl_param, params)
        upControls.append(ctl)
        # add corner ctls to corner ctl list for tracking
        if i in [0, 4]:
            corner_ctl.append(ctl)
        # if side == "R":
        #     npoBase.attr("ry").set(180)
        #     npoBase.attr("sz").set(-1)
    # adding parent constraints to odd controls
    for i, ctl in enumerate(upControls):
        if utils.is_odd(i):
            cns_node = pm.parentConstraint(upControls[i - 1],
                                           upControls[i + 1],
                                           ctl.getParent(),
                                           mo=True)
            # Make the constraint "noFlip"
            cns_node.interpType.set(0)

    # adding parent constraint ghost controls
    cns_node = pm.parentConstraint(ghost_ctl[1],
                                   upControls[0],
                                   ghost_ctl[0].getParent(),
                                   mo=True)
    cns_node.interpType.set(0)
    cns_node = pm.parentConstraint(ghost_ctl[1],
                                   upControls[-1],
                                   ghost_ctl[2].getParent(),
                                   mo=True)
    cns_node.interpType.set(0)
    # lower eyelid controls
    lowControls = [upControls[0]]
    lowerCtlNames = [
        "inCorner",
        "lowInMid",
        "lowMid",
        "lowOutMid",
        "outCorner",
    ]

    cvs = lowCtl_crv.getCVs(space="world")
    if side == "R" and not sideRange:
        cvs = [cv for cv in reversed(cvs)]
    for i, cv in enumerate(cvs):
        # we skip the first and last point since is already in the uper eyelid
        if i in [0, 4]:
            continue
        if utils.is_odd(i):
            color = 14
            wd = 0.3
            icon_shape = "circle"
            params = ["tx", "ty", "tz"]
        else:
            color = 4
            wd = 0.6
            icon_shape = "circle"
            params = [
                "tx",
                "ty",
                "tz",
                "ro",
                "rx",
                "ry",
                "rz",
                "sx",
                "sy",
                "sz",
            ]

        t = transform.setMatrixPosition(t, cvs[i])
        npo = primitive.addTransform(center_lookat,
                                     setName("%s_npo" % lowerCtlNames[i]), t)
        npoBase = npo
        if i in [1, 2, 3]:
            if i == 2:
                # we add an extra level to input the tracking ofset values
                npo = primitive.addTransform(
                    npo, setName("%s_trk" % lowerCtlNames[i]), t)
                trackLvl.append(npo)
            ctl = primitive.addTransform(npo,
                                         setName("%s_loc" % lowerCtlNames[i]),
                                         t)
            # ghost controls
            if i == 2:
                gt = transform.setMatrixPosition(
                    t, transform.getPositionFromMatrix(lt))
            else:
                gt = t
            # ghost controls
            npo_g = primitive.addTransform(
                low_ctl, setName("%sCtl_npo" % lowerCtlNames[i]), gt)
            ctl_g = icon.create(
                npo_g,
                setName("%s_%s" % (lowerCtlNames[i], ctlName)),
                gt,
                icon=icon_shape,
                w=wd,
                d=wd,
                ro=datatypes.Vector(1.57079633, 0, 0),
                po=datatypes.Vector(0, 0, offset),
                color=color,
            )
            # define the ctl_param to recive the ctl configuration
            ctl_param = ctl_g
            ghost_ctl.append(ctl_g)
            # connect local SRT
            rigbits.connectLocalTransform([ctl_g, ctl])
        else:
            ctl = icon.create(
                npo,
                setName("%s_%s" % (lowerCtlNames[i], ctlName)),
                t,
                icon=icon_shape,
                w=wd,
                d=wd,
                ro=datatypes.Vector(1.57079633, 0, 0),
                po=datatypes.Vector(0, 0, offset),
                color=color,
            )
            # define the ctl_param to recive the ctl configuration
            ctl_param = ctl
        attribute.addAttribute(ctl_param, "isCtl", "bool", keyable=False)
        attribute.add_mirror_config_channels(ctl_param)

        lowControls.append(ctl)
        if len(ctlName.split("_")) == 2 and ctlName.split("_")[-1] == "ghost":
            pass
        else:
            pm.sets(ctlSet, add=ctl_param)
        attribute.setKeyableAttributes(ctl_param, params)
        # mirror behaviout on R side controls
        # if side == "R":
        #     npoBase.attr("ry").set(180)
        #     npoBase.attr("sz").set(-1)
    for lctl in reversed(lowControls[1:]):
        node.add_controller_tag(lctl, over_npo)
    lowControls.append(upControls[-1])

    # adding parent constraints to odd controls
    for i, ctl in enumerate(lowControls):
        if utils.is_odd(i):
            cns_node = pm.parentConstraint(
                lowControls[i - 1],
                lowControls[i + 1],
                ctl.getParent(),
                mo=True,
            )
            # Make the constraint "noFlip"
            cns_node.interpType.set(0)

    # adding parent constraint ghost controls
    cns_node = pm.parentConstraint(ghost_ctl[4],
                                   upControls[0],
                                   ghost_ctl[3].getParent(),
                                   mo=True)
    cns_node.interpType.set(0)
    cns_node = pm.parentConstraint(ghost_ctl[4],
                                   upControls[-1],
                                   ghost_ctl[5].getParent(),
                                   mo=True)
    cns_node.interpType.set(0)
    ##########################################
    # OPERATORS
    ##########################################
    # Connecting control crvs with controls
    applyop.gear_curvecns_op(upCtl_crv, upControls)
    applyop.gear_curvecns_op(lowCtl_crv, lowControls)

    # adding wires
    w1 = pm.wire(up_crv, w=upDriver_crv)[0]
    w2 = pm.wire(low_crv, w=lowDriver_crv)[0]

    w3 = pm.wire(upProfile_target_crv, w=upCtl_crv)[0]
    w4 = pm.wire(lowProfile_target_crv, w=lowCtl_crv)[0]

    if z_up:
        trigger_axis = "tz"
    else:
        trigger_axis = "ty"

    # connect blink driver
    pm.pointConstraint(low_ctl, blink_driver, mo=False)
    rest_val = blink_driver.attr(trigger_axis).get()

    up_div_node = node.createDivNode(up_ctl.attr(trigger_axis), rest_val)
    low_div_node = node.createDivNode(low_ctl.attr(trigger_axis),
                                      rest_val * -1)

    # contact driver
    minus_node = node.createPlusMinusAverage1D(
        [rest_val, blink_driver.attr(trigger_axis)], operation=2)
    contact_div_node = node.createDivNode(minus_node.output1D, rest_val)

    # wire tension
    for w in [w1, w2, w3, w4]:
        w.dropoffDistance[0].set(100)

    # TODO: what is the best solution?
    # trigger using proximity
    # remap_node = pm.createNode("remapValue")
    # contact_div_node.outputX >> remap_node.inputValue
    # remap_node.value[0].value_Interp.set(2)
    # remap_node.inputMin.set(0.995)
    # reverse_node = node.createReverseNode(remap_node.outColorR)
    # for w in [w1, w2]:
    #     reverse_node.outputX >> w.scale[0]

    # trigger at starting movement for up and low
    # up
    remap_node = pm.createNode("remapValue")
    up_ctl.attr(trigger_axis) >> remap_node.inputValue
    remap_node.value[0].value_Interp.set(2)
    remap_node.inputMax.set(rest_val / 8)
    reverse_node = node.createReverseNode(remap_node.outColorR)
    reverse_node.outputX >> w1.scale[0]
    # low
    remap_node = pm.createNode("remapValue")
    low_ctl.attr(trigger_axis) >> remap_node.inputValue
    remap_node.value[0].value_Interp.set(2)
    remap_node.inputMin.set((rest_val / 8) * -1)
    remap_node.outColorR >> w2.scale[0]

    # mid position drivers blendshapes
    bs_midUpDrive = pm.blendShape(
        lowRest_target_crv,
        upProfile_target_crv,
        midUpDriver_crv,
        n="midUpDriver_blendShape",
    )

    bs_midLowDrive = pm.blendShape(
        upRest_target_crv,
        lowProfile_target_crv,
        midLowDriver_crv,
        n="midlowDriver_blendShape",
    )

    bs_closeTarget = pm.blendShape(
        midUpDriver_crv,
        midLowDriver_crv,
        closeTarget_crv,
        n="closeTarget_blendShape",
    )

    pm.connectAttr(
        up_div_node.outputX,
        bs_midUpDrive[0].attr(lowRest_target_crv.name()),
    )

    pm.connectAttr(
        low_div_node.outputX,
        bs_midLowDrive[0].attr(upRest_target_crv.name()),
    )

    pm.setAttr(bs_closeTarget[0].attr(midUpDriver_crv.name()), 0.5)
    pm.setAttr(bs_closeTarget[0].attr(midLowDriver_crv.name()), 0.5)

    # Main crv drivers
    bs_upBlink = pm.blendShape(
        lowRest_target_crv,
        closeTarget_crv,
        upProfile_target_crv,
        upDriver_crv,
        n="upBlink_blendShape",
    )
    bs_lowBlink = pm.blendShape(
        upRest_target_crv,
        closeTarget_crv,
        lowProfile_target_crv,
        lowDriver_crv,
        n="lowBlink_blendShape",
    )

    # blink contact connections
    cond_node_up = node.createConditionNode(contact_div_node.outputX, 1, 3, 0,
                                            up_div_node.outputX)
    pm.connectAttr(
        cond_node_up.outColorR,
        bs_upBlink[0].attr(lowRest_target_crv.name()),
    )

    cond_node_low = node.createConditionNode(contact_div_node.outputX, 1, 3, 0,
                                             low_div_node.outputX)
    pm.connectAttr(
        cond_node_low.outColorR,
        bs_lowBlink[0].attr(upRest_target_crv.name()),
    )

    cond_node_close = node.createConditionNode(contact_div_node.outputX, 1, 2,
                                               1, 0)
    cond_node_close.colorIfFalseR.set(0)
    pm.connectAttr(
        cond_node_close.outColorR,
        bs_upBlink[0].attr(closeTarget_crv.name()),
    )

    pm.connectAttr(
        cond_node_close.outColorR,
        bs_lowBlink[0].attr(closeTarget_crv.name()),
    )

    pm.setAttr(bs_upBlink[0].attr(upProfile_target_crv.name()), 1)
    pm.setAttr(bs_lowBlink[0].attr(lowProfile_target_crv.name()), 1)

    # joints root
    jnt_root = primitive.addTransformFromPos(eye_root,
                                             setName("joints"),
                                             pos=bboxCenter)
    if deformers_group:
        deformers_group = pm.PyNode(deformers_group)
        pm.parentConstraint(eye_root, jnt_root, mo=True)
        pm.scaleConstraint(eye_root, jnt_root, mo=True)
        deformers_group.addChild(jnt_root)

    # head joint
    if headJnt:
        try:
            headJnt = pm.PyNode(headJnt)
            jnt_base = headJnt
        except pm.MayaNodeError:
            pm.displayWarning("Aborted can not find %s " % headJnt)
            return
    else:
        # Eye root
        jnt_base = jnt_root

    eyeTargets_root = primitive.addTransform(eye_root, setName("targets"))

    eyeCenter_jnt = rigbits.addJnt(arrow_ctl,
                                   jnt_base,
                                   grp=defset,
                                   jntName=setName("center_jnt"))

    # Upper Eyelid joints ##################################################

    cvs = up_crv.getCVs(space="world")
    upCrv_info = node.createCurveInfoNode(up_crv)

    # aim constrain targets and joints
    upperEyelid_aimTargets = []
    upperEyelid_jnt = []
    upperEyelid_jntRoot = []

    if z_up:
        axis = "zy"
        wupVector = [0, 0, 1]
    else:
        axis = "-yz"
        wupVector = [0, 1, 0]

    for i, cv in enumerate(cvs):
        if i % everyNVertex:
            continue

        # aim targets
        trn = primitive.addTransformFromPos(eyeTargets_root,
                                            setName("upEyelid_aimTarget", i),
                                            pos=cv)
        upperEyelid_aimTargets.append(trn)
        # connecting positions with crv
        pm.connectAttr(upCrv_info + ".controlPoints[%s]" % str(i),
                       trn.attr("translate"))

        # joints
        jntRoot = primitive.addJointFromPos(jnt_root,
                                            setName("upEyelid_jnt_base", i),
                                            pos=bboxCenter)
        jntRoot.attr("radius").set(0.08)
        jntRoot.attr("visibility").set(False)
        upperEyelid_jntRoot.append(jntRoot)
        applyop.aimCns(jntRoot,
                       trn,
                       axis=axis,
                       wupObject=jnt_root,
                       wupVector=wupVector)

        jnt_ref = primitive.addJointFromPos(jntRoot,
                                            setName("upEyelid_jnt_ref", i),
                                            pos=cv)
        jnt_ref.attr("radius").set(0.08)
        jnt_ref.attr("visibility").set(False)

        jnt = rigbits.addJnt(jnt_ref,
                             jnt_base,
                             grp=defset,
                             jntName=setName("upEyelid_jnt", i))
        upperEyelid_jnt.append(jnt)

    # Lower Eyelid joints ##################################################

    cvs = low_crv.getCVs(space="world")
    lowCrv_info = node.createCurveInfoNode(low_crv)

    # aim constrain targets and joints
    lowerEyelid_aimTargets = []
    lowerEyelid_jnt = []
    lowerEyelid_jntRoot = []

    for i, cv in enumerate(cvs):
        if i in [0, len(cvs) - 1]:
            continue

        if i % everyNVertex:
            continue

        # aim targets
        trn = primitive.addTransformFromPos(eyeTargets_root,
                                            setName("lowEyelid_aimTarget", i),
                                            pos=cv)
        lowerEyelid_aimTargets.append(trn)
        # connecting positions with crv
        pm.connectAttr(lowCrv_info + ".controlPoints[%s]" % str(i),
                       trn.attr("translate"))

        # joints
        jntRoot = primitive.addJointFromPos(jnt_root,
                                            setName("lowEyelid_base", i),
                                            pos=bboxCenter)
        jntRoot.attr("radius").set(0.08)
        jntRoot.attr("visibility").set(False)
        lowerEyelid_jntRoot.append(jntRoot)
        applyop.aimCns(jntRoot,
                       trn,
                       axis=axis,
                       wupObject=jnt_root,
                       wupVector=wupVector)

        jnt_ref = primitive.addJointFromPos(jntRoot,
                                            setName("lowEyelid_jnt_ref", i),
                                            pos=cv)
        jnt_ref.attr("radius").set(0.08)
        jnt_ref.attr("visibility").set(False)

        jnt = rigbits.addJnt(jnt_ref,
                             jnt_base,
                             grp=defset,
                             jntName=setName("lowEyelid_jnt", i))
        lowerEyelid_jnt.append(jnt)

    # Adding channels for eye tracking
    upVTracking_att = attribute.addAttribute(up_ctl,
                                             "vTracking",
                                             "float",
                                             upperVTrack,
                                             minValue=0)
    upHTracking_att = attribute.addAttribute(up_ctl,
                                             "hTracking",
                                             "float",
                                             upperHTrack,
                                             minValue=0)

    lowVTracking_att = attribute.addAttribute(low_ctl,
                                              "vTracking",
                                              "float",
                                              lowerVTrack,
                                              minValue=0)
    lowHTracking_att = attribute.addAttribute(low_ctl,
                                              "hTracking",
                                              "float",
                                              lowerHTrack,
                                              minValue=0)

    # vertical tracking connect
    up_mult_node = node.createMulNode(upVTracking_att,
                                      aimTrigger_ref.attr("ty"))
    low_mult_node = node.createMulNode(lowVTracking_att,
                                       aimTrigger_ref.attr("ty"))
    # remap to use the low or the up eyelid as driver contact base on
    # the eyetrack trigger direction
    uT_remap_node = pm.createNode("remapValue")
    aimTrigger_ref.attr("ty") >> uT_remap_node.inputValue
    uT_remap_node.inputMax.set(0.1)
    uT_remap_node.inputMin.set(-0.1)
    up_mult_node.outputX >> uT_remap_node.outputMax
    low_mult_node.outputX >> uT_remap_node.outputMin
    # up
    u_remap_node = pm.createNode("remapValue")
    contact_div_node.outputX >> u_remap_node.inputValue
    u_remap_node.value[0].value_Interp.set(2)
    u_remap_node.inputMin.set(0.9)
    up_mult_node.outputX >> u_remap_node.outputMin
    uT_remap_node.outColorR >> u_remap_node.outputMax

    # low
    l_remap_node = pm.createNode("remapValue")
    contact_div_node.outputX >> l_remap_node.inputValue
    l_remap_node.value[0].value_Interp.set(2)
    l_remap_node.inputMin.set(0.9)
    low_mult_node.outputX >> l_remap_node.outputMin
    uT_remap_node.outColorR >> l_remap_node.outputMax

    # up connect and turn down to low when contact
    pm.connectAttr(u_remap_node.outColorR, trackLvl[0].attr("ty"))

    pm.connectAttr(l_remap_node.outColorR, trackLvl[1].attr("ty"))

    # horizontal tracking connect
    mult_node = node.createMulNode(upHTracking_att, aimTrigger_ref.attr("tx"))
    # Correct right side horizontal tracking
    # if side == "R":
    #     mult_node = node.createMulNode(mult_node.attr("outputX"), -1)
    pm.connectAttr(mult_node + ".outputX", trackLvl[0].attr("tx"))

    mult_node = node.createMulNode(lowHTracking_att, aimTrigger_ref.attr("tx"))
    # Correct right side horizontal tracking
    # if side == "R":
    #     mult_node = node.createMulNode(mult_node.attr("outputX"), -1)
    pm.connectAttr(mult_node + ".outputX", trackLvl[1].attr("tx"))

    # adding channels for corner tracking
    # track_corner_lvl
    for i, ctl in enumerate(corner_ctl):
        VTracking_att = attribute.addAttribute(ctl,
                                               "vTracking",
                                               "float",
                                               0.1,
                                               minValue=0)
        if z_up:
            mult_node = node.createMulNode(VTracking_att, up_ctl.tz)
            mult_node2 = node.createMulNode(VTracking_att, low_ctl.tz)
            plus_node = node.createPlusMinusAverage1D(
                [mult_node.outputX, mult_node2.outputX])

            mult_node3 = node.createMulNode(plus_node.output1D, -1)
            pm.connectAttr(mult_node3.outputX, track_corner_lvl[i].attr("ty"))
        else:
            mult_node = node.createMulNode(VTracking_att, up_ctl.ty)
            mult_node2 = node.createMulNode(VTracking_att, low_ctl.ty)
            plus_node = node.createPlusMinusAverage1D(
                [mult_node.outputX, mult_node2.outputX])

            pm.connectAttr(plus_node.output1D, track_corner_lvl[i].attr("ty"))

    ###########################################
    # Reparenting
    ###########################################
    if parent_node:
        try:
            if isinstance(parent_node, string_types):
                parent_node = pm.PyNode(parent_node)
            parent_node.addChild(eye_root)
        except pm.MayaNodeError:
            pm.displayWarning("The eye rig can not be parent to: %s. Maybe "
                              "this object doesn't exist." % parent_node)

    ###########################################
    # Auto Skinning
    ###########################################
    if doSkin:
        # eyelid vertex rows
        totalLoops = rigidLoops + falloffLoops
        vertexLoopList = meshNavigation.getConcentricVertexLoop(
            vertexList, totalLoops)
        vertexRowList = meshNavigation.getVertexRowsFromLoops(vertexLoopList)

        # we set the first value 100% for the first initial loop
        skinPercList = [1.0]
        # we expect to have a regular grid topology
        for r in range(rigidLoops):
            for rr in range(2):
                skinPercList.append(1.0)
        increment = 1.0 / float(falloffLoops)
        # we invert to smooth out from 100 to 0
        inv = 1.0 - increment
        for r in range(falloffLoops):
            for rr in range(2):
                if inv < 0.0:
                    inv = 0.0
                skinPercList.append(inv)
            inv -= increment

        # this loop add an extra 0.0 indices to avoid errors
        for r in range(10):
            for rr in range(2):
                skinPercList.append(0.0)

        # base skin
        geo = pm.listRelatives(edgeLoopList[0], parent=True)[0]
        # Check if the object has a skinCluster
        objName = pm.listRelatives(geo, parent=True)[0]

        skinCluster = skin.getSkinCluster(objName)
        if not skinCluster:
            skinCluster = pm.skinCluster(headJnt,
                                         geo,
                                         tsb=True,
                                         nw=2,
                                         n="skinClsEyelid")

        eyelidJoints = upperEyelid_jnt + lowerEyelid_jnt
        pm.progressWindow(title="Auto skinning process",
                          progress=0,
                          max=len(eyelidJoints))
        firstBoundary = False
        for jnt in eyelidJoints:
            pm.progressWindow(e=True, step=1, status="\nSkinning %s" % jnt)
            skinCluster.addInfluence(jnt, weight=0)
            v = meshNavigation.getClosestVertexFromTransform(geo, jnt)

            for row in vertexRowList:

                if v in row:
                    it = 0  # iterator
                    inc = 1  # increment
                    for i, rv in enumerate(row):
                        try:
                            perc = skinPercList[it]
                            t_val = [(jnt, perc), (headJnt, 1.0 - perc)]
                            pm.skinPercent(skinCluster,
                                           rv,
                                           transformValue=t_val)
                            if rv.isOnBoundary():
                                # we need to compare with the first boundary
                                # to check if the row have inverted direction
                                # and offset the value
                                if not firstBoundary:
                                    firstBoundary = True
                                    firstBoundaryValue = it

                                else:
                                    if it < firstBoundaryValue:
                                        it -= 1
                                    elif it > firstBoundaryValue:
                                        it += 1
                                inc = 2
                        except IndexError:
                            continue

                        it = it + inc
        pm.progressWindow(e=True, endProgress=True)

        # Eye Mesh skinning
        skinCluster = skin.getSkinCluster(eyeMesh)
        if not skinCluster:
            skinCluster = pm.skinCluster(eyeCenter_jnt,
                                         eyeMesh,
                                         tsb=True,
                                         nw=1,
                                         n="skinClsEye")
Пример #24
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """
        # 1 bone chain Upv ref ==============================================
        self.ikHandleUpvRef = primitive.addIkHandle(
            self.root, self.getName("ikHandleArmChainUpvRef"),
            self.armChainUpvRef, "ikSCsolver")
        pm.pointConstraint(self.ik_ctl, self.ikHandleUpvRef)
        pm.parentConstraint(self.armChainUpvRef[0], self.upv_cns, mo=True)

        # Visibilities -------------------------------------
        # fk
        fkvis_node = node.createReverseNode(self.blend_att)

        for shp in self.fk0_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk1_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk2_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))

        # ik
        for shp in self.upv_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ikcns_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ik_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.line_ref.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        if self.settings["ikTR"]:
            for shp in self.ikRot_ctl.getShapes():
                pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.roll_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))

        # Controls ROT order -----------------------------------
        attribute.setRotOrder(self.fk0_ctl, "XZY")
        attribute.setRotOrder(self.fk1_ctl, "XYZ")
        attribute.setRotOrder(self.fk2_ctl, "YZX")
        attribute.setRotOrder(self.ik_ctl, "XYZ")

        # IK Solver -----------------------------------------
        out = [self.bone0, self.bone1, self.ctrn_loc, self.eff_loc]
        o_node = applyop.gear_ikfk2bone_op(out, self.root, self.ik_ref,
                                           self.upv_ctl, self.fk_ctl[0],
                                           self.fk_ctl[1], self.fk_ref,
                                           self.length0, self.length1,
                                           self.negate)

        # NOTE: Ideally we should not change hierarchy or move object after
        # object generation method. But is much easier this way since every
        # part is in the final and correct position
        # after the  ctrn_loc is in the correct position with the ikfk2bone op

        # point constrain tip reference
        pm.pointConstraint(self.ik_ctl, self.tip_ref, mo=False)

        # interpolate transform  mid point locator
        int_matrix = applyop.gear_intmatrix_op(
            self.armChainUpvRef[0].attr("worldMatrix"),
            self.tip_ref.attr("worldMatrix"), .5)
        applyop.gear_mulmatrix_op(
            int_matrix.attr("output"),
            self.interpolate_lvl.attr("parentInverseMatrix[0]"),
            self.interpolate_lvl)

        # match roll ctl npo to ctrn_loc current transform (so correct orient)
        transform.matchWorldTransform(self.ctrn_loc, self.roll_ctl_npo)

        # match roll ctl npo to interpolate transform current position
        pos = self.interpolate_lvl.getTranslation(space="world")
        self.roll_ctl_npo.setTranslation(pos, space="world")

        # parent constraint roll control npo to interpolate trans
        pm.parentConstraint(self.interpolate_lvl, self.roll_ctl_npo, mo=True)

        if self.settings["ikTR"]:
            # connect the control inputs
            outEff_dm = o_node.listConnections(c=True)[-1][1]

            inAttr = self.ikRot_npo.attr("translate")
            outEff_dm.attr("outputTranslate") >> inAttr

            outEff_dm.attr("outputScale") >> self.ikRot_npo.attr("scale")
            dm_node = node.createDecomposeMatrixNode(o_node.attr("outB"))
            dm_node.attr("outputRotate") >> self.ikRot_npo.attr("rotate")

            # rotation
            mulM_node = applyop.gear_mulmatrix_op(
                self.ikRot_ctl.attr("worldMatrix"),
                self.eff_loc.attr("parentInverseMatrix"))
            intM_node = applyop.gear_intmatrix_op(o_node.attr("outEff"),
                                                  mulM_node.attr("output"),
                                                  o_node.attr("blend"))
            dm_node = node.createDecomposeMatrixNode(intM_node.attr("output"))
            dm_node.attr("outputRotate") >> self.eff_loc.attr("rotate")
            transform.matchWorldTransform(self.fk2_ctl, self.ikRot_cns)

        # scale: this fix the scalin popping issue
        intM_node = applyop.gear_intmatrix_op(
            self.fk2_ctl.attr("worldMatrix"),
            self.ik_ctl_ref.attr("worldMatrix"), o_node.attr("blend"))
        mulM_node = applyop.gear_mulmatrix_op(
            intM_node.attr("output"), self.eff_loc.attr("parentInverseMatrix"))
        dm_node = node.createDecomposeMatrixNode(mulM_node.attr("output"))
        dm_node.attr("outputScale") >> self.eff_loc.attr("scale")

        pm.connectAttr(self.blend_att, o_node + ".blend")
        if self.negate:
            mulVal = -1
            rollMulVal = 1
        else:
            mulVal = 1
            rollMulVal = -1
        roll_m_node = node.createMulNode(self.roll_att, mulVal)
        roll_m_node2 = node.createMulNode(self.roll_ctl.attr("rx"), rollMulVal)
        node.createPlusMinusAverage1D(
            [roll_m_node.outputX, roll_m_node2.outputX],
            operation=1,
            output=o_node + ".roll")
        pm.connectAttr(self.scale_att, o_node + ".scaleA")
        pm.connectAttr(self.scale_att, o_node + ".scaleB")
        pm.connectAttr(self.maxstretch_att, o_node + ".maxstretch")
        pm.connectAttr(self.slide_att, o_node + ".slide")
        pm.connectAttr(self.softness_att, o_node + ".softness")
        pm.connectAttr(self.reverse_att, o_node + ".reverse")

        # Twist references ---------------------------------

        pm.pointConstraint(self.mid_ctl_twst_ref,
                           self.tws1_npo,
                           maintainOffset=False)
        pm.connectAttr(self.mid_ctl.scaleX, self.tws1_loc.scaleX)
        pm.connectAttr(self.mid_ctl.scaleX, self.tws1B_loc.scaleX)
        pm.orientConstraint(self.mid_ctl_twst_ref,
                            self.tws1_npo,
                            maintainOffset=False)
        applyop.oriCns(self.mid_ctl, self.tws1_rot, maintainOffset=False)
        applyop.oriCns(self.mid_ctl, self.tws1B_rot, maintainOffset=False)

        if self.negate:
            axis = "xz"
            axisb = "-xz"
        else:
            axis = "-xz"
            axisb = "xz"
        applyop.aimCns(self.tws1_loc,
                       self.root,
                       axis=axis,
                       wupType=4,
                       wupVector=[0, 0, 1],
                       wupObject=self.mid_ctl,
                       maintainOffset=False)

        applyop.aimCns(self.tws1B_loc,
                       self.eff_loc,
                       axis=axisb,
                       wupType=4,
                       wupVector=[0, 0, 1],
                       wupObject=self.mid_ctl,
                       maintainOffset=False)

        pm.pointConstraint(self.thick_ctl,
                           self.tws1B_loc,
                           maintainOffset=False)

        o_node = applyop.gear_mulmatrix_op(
            self.eff_loc.attr("worldMatrix"),
            self.root.attr("worldInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputTranslate",
                       self.tws2_npo.attr("translate"))

        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputRotate", self.tws2_npo.attr("rotate"))

        o_node = applyop.gear_mulmatrix_op(
            self.eff_loc.attr("worldMatrix"),
            self.tws2_rot.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        attribute.setRotOrder(self.tws2_rot, "XYZ")
        pm.connectAttr(dm_node + ".outputRotate", self.tws2_rot + ".rotate")

        self.tws0_rot.setAttr("sx", .001)
        self.tws2_rot.setAttr("sx", .001)

        add_node = node.createAddNode(self.roundness_att, .001)
        pm.connectAttr(add_node + ".output", self.tws1_rot.attr("sx"))
        pm.connectAttr(add_node + ".output", self.tws1B_rot.attr("sx"))

        pm.connectAttr(self.armpit_roll_att, self.tws0_rot + ".rotateX")

        # Roll Shoulder
        applyop.splineIK(self.getName("rollRef"),
                         self.rollRef,
                         parent=self.root,
                         cParent=self.bone0)

        # Volume -------------------------------------------
        distA_node = node.createDistNode(self.tws0_loc, self.tws1_loc)
        distB_node = node.createDistNode(self.tws1_loc, self.tws2_loc)
        add_node = node.createAddNode(distA_node + ".distance",
                                      distB_node + ".distance")
        div_node = node.createDivNode(add_node + ".output",
                                      self.root.attr("sx"))

        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(self.root.attr("worldMatrix"), dm_node + ".inputMatrix")

        div_node2 = node.createDivNode(div_node + ".outputX",
                                       dm_node + ".outputScaleX")
        self.volDriver_att = div_node2 + ".outputX"

        if self.settings["extraTweak"]:
            for tweak_ctl in self.tweak_ctl:
                for shp in tweak_ctl.getShapes():
                    pm.connectAttr(self.tweakVis_att, shp.attr("visibility"))

        # Divisions ----------------------------------------
        # at 0 or 1 the division will follow exactly the rotation of the
        # controler.. and we wont have this nice tangent + roll
        b_twist = False
        for i, div_cns in enumerate(self.div_cns):

            if self.settings["supportJoints"]:
                if i < (self.settings["div0"] + 1):
                    perc = i * .5 / (self.settings["div0"] + 1.0)
                elif i < (self.settings["div0"] + 2):
                    perc = .49
                elif i < (self.settings["div0"] + 3):
                    perc = .50
                elif i < (self.settings["div0"] + 4):
                    b_twist = True
                    perc = .51

                else:
                    perc = .5 + \
                        (i - self.settings["div0"] - 3.0) * .5 / \
                        (self.settings["div1"] + 1.0)
            else:
                if i < (self.settings["div0"] + 1):
                    perc = i * .5 / (self.settings["div0"] + 1.0)
                elif i < (self.settings["div0"] + 2):
                    b_twist = True
                    perc = .501
                else:
                    perc = .5 + \
                        (i - self.settings["div0"] - 1.0) * .5 / \
                        (self.settings["div1"] + 1.0)

            perc = max(.001, min(.990, perc))

            # mid twist distribution
            if b_twist:
                mid_twist = self.tws1B_rot
            else:
                mid_twist = self.tws1_rot

            # Roll
            if self.negate:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cns, [self.tws2_rot, mid_twist, self.tws0_rot],
                    1.0 - perc, 40)
            else:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cns, [self.tws0_rot, mid_twist, self.tws2_rot], perc,
                    40)

            pm.connectAttr(self.resample_att, o_node + ".resample")
            pm.connectAttr(self.absolute_att, o_node + ".absolute")

            # Squash n Stretch
            o_node = applyop.gear_squashstretch2_op(
                div_cns, None, pm.getAttr(self.volDriver_att), "x")
            pm.connectAttr(self.volume_att, o_node + ".blend")
            pm.connectAttr(self.volDriver_att, o_node + ".driver")
            pm.connectAttr(self.st_att[i], o_node + ".stretch")
            pm.connectAttr(self.sq_att[i], o_node + ".squash")

        # match IK/FK ref
        pm.parentConstraint(self.bone0, self.match_fk0_off, mo=True)
        pm.parentConstraint(self.bone1, self.match_fk1_off, mo=True)
        if self.settings["ikTR"]:
            transform.matchWorldTransform(self.ikRot_ctl, self.match_ikRot)
            transform.matchWorldTransform(self.fk_ctl[2], self.match_fk2)

        # connect_reader
        pm.parentConstraint(self.bone0, self.readerA, mo=True)
        pm.parentConstraint(self.bone1, self.readerB, mo=True)

        # connect auto thickness
        if self.negate and not self.settings["mirrorMid"]:
            d_val = 180 / self.length1
        else:
            d_val = -180 / self.length1
        div_thick_node = node.createDivNode(self.elbow_thickness_att, d_val)
        node.createMulNode(div_thick_node.outputX, self.readerB.ry,
                           self.thick_lvl.tx)

        return
Пример #25
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """
        # Tangent position ---------------------------------
        # common part
        d = vector.getDistance(self.guide.pos["root"], self.guide.pos["neck"])
        dist_node = node.createDistNode(self.root, self.ik_ctl)
        rootWorld_node = node.createDecomposeMatrixNode(
            self.root.attr("worldMatrix"))
        div_node = node.createDivNode(dist_node + ".distance",
                                      rootWorld_node + ".outputScaleX")
        div_node = node.createDivNode(div_node + ".outputX", d)

        # tan0
        mul_node = node.createMulNode(self.tan0_att,
                                      self.tan0_loc.getAttr("ty"))
        res_node = node.createMulNode(mul_node + ".outputX",
                                      div_node + ".outputX")
        pm.connectAttr(res_node + ".outputX", self.tan0_loc + ".ty")

        # tan1
        mul_node = node.createMulNode(self.tan1_att,
                                      self.tan1_loc.getAttr("ty"))
        res_node = node.createMulNode(mul_node + ".outputX",
                                      div_node + ".outputX")
        pm.connectAttr(res_node + ".outputX", self.tan1_loc.attr("ty"))

        # Curves -------------------------------------------
        op = applyop.gear_curveslide2_op(self.slv_crv, self.mst_crv, 0, 1.5,
                                         0.5, 0.5)
        pm.connectAttr(self.maxstretch_att, op + ".maxstretch")
        pm.connectAttr(self.maxsquash_att, op + ".maxsquash")
        pm.connectAttr(self.softness_att, op + ".softness")

        # Volume driver ------------------------------------
        crv_node = node.createCurveInfoNode(self.slv_crv)

        # Division -----------------------------------------
        for i in range(self.divisions):

            # References
            u = i / (self.divisions - 1.0)

            cns = applyop.pathCns(self.div_cns[i], self.slv_crv, False, u,
                                  True)
            cns.setAttr("frontAxis", 1)  # front axis is 'Y'
            cns.setAttr("upAxis", 2)  # front axis is 'Z'

            # Roll
            intMatrix = applyop.gear_intmatrix_op(
                self.intMRef + ".worldMatrix", self.ik_ctl + ".worldMatrix", u)
            dm_node = node.createDecomposeMatrixNode(intMatrix + ".output")
            pm.connectAttr(dm_node + ".outputRotate",
                           self.twister[i].attr("rotate"))

            pm.parentConstraint(self.twister[i],
                                self.ref_twist[i],
                                maintainOffset=True)

            pm.connectAttr(self.ref_twist[i] + ".translate",
                           cns + ".worldUpVector")

            # Squash n Stretch
            op = applyop.gear_squashstretch2_op(self.fk_npo[i], self.root,
                                                pm.arclen(self.slv_crv), "y")

            pm.connectAttr(self.volume_att, op + ".blend")
            pm.connectAttr(crv_node + ".arcLength", op + ".driver")
            pm.connectAttr(self.st_att[i], op + ".stretch")
            pm.connectAttr(self.sq_att[i], op + ".squash")
            op.setAttr("driver_min", 0.1)

            # scl compas
            if i != 0:
                div_node = node.createDivNode(
                    [1, 1, 1],
                    [
                        self.fk_npo[i - 1] + ".sx",
                        self.fk_npo[i - 1] + ".sy",
                        self.fk_npo[i - 1] + ".sz",
                    ],
                )

                pm.connectAttr(div_node + ".output",
                               self.scl_npo[i] + ".scale")

            # Controlers
            if i == 0:
                mulmat_node = applyop.gear_mulmatrix_op(
                    self.div_cns[i].attr("worldMatrix"),
                    self.root.attr("worldInverseMatrix"),
                )
            else:
                mulmat_node = applyop.gear_mulmatrix_op(
                    self.div_cns[i].attr("worldMatrix"),
                    self.div_cns[i - 1].attr("worldInverseMatrix"),
                )

            dm_node = node.createDecomposeMatrixNode(mulmat_node + ".output")
            pm.connectAttr(dm_node + ".outputTranslate",
                           self.fk_npo[i].attr("t"))
            pm.connectAttr(dm_node + ".outputRotate", self.fk_npo[i].attr("r"))

            # Orientation Lock
            if i == self.divisions - 1:
                dm_node = node.createDecomposeMatrixNode(self.ik_ctl +
                                                         ".worldMatrix")
                blend_node = node.createBlendNode(
                    [dm_node + ".outputRotate%s" % s for s in "XYZ"],
                    [cns + ".rotate%s" % s for s in "XYZ"],
                    self.lock_ori_att,
                )
                self.div_cns[i].attr("rotate").disconnect()

                pm.connectAttr(blend_node + ".output",
                               self.div_cns[i] + ".rotate")

        # Head ---------------------------------------------
        self.fk_ctl[-1].addChild(self.head_cns)

        # scale compensation
        dm_node = node.createDecomposeMatrixNode(self.scl_npo[0] +
                                                 ".parentInverseMatrix")

        pm.connectAttr(dm_node + ".outputScale", self.scl_npo[0] + ".scale")
Пример #26
0
    def addFkOperator(self, i, rootWorld_node, crv_node):

        fk_local_npo_xfoms = []
        if i not in [len(self.guide.apos), 0]:
            xform = getTransform(self.fk_local_npo[i])
            fk_local_npo_xfoms.append(xform)

        # break FK hierarchical orient
        if i not in [len(self.guide.apos), 0]:
            s = self.fk_ctl[i - 1]
            s2 = self.fk_npo[i]
            d = self.fk_local_npo[i]

            mulmat_node = applyop.gear_mulmatrix_op(s2.attr("matrix"), s.attr("matrix"))
            mulmat_node2 = applyop.gear_mulmatrix_op(mulmat_node.attr("output"), s2.attr("inverseMatrix"))

            dm_node = node.createDecomposeMatrixNode(mulmat_node2 + ".output")
            pm.connectAttr(dm_node + ".outputTranslate", d.attr("t"))

            check_list = (pm.Attribute, unicode, str)  # noqa
            cond = pm.createNode("condition")
            pm.setAttr(cond + ".operation", 4)  # greater
            attribute.connectSet(self.fk_collapsed_att, cond + ".secondTerm", check_list)
            attribute.connectSet(dm_node + ".outputRotate", cond + ".colorIfTrue", check_list)
            pm.setAttr(cond + ".colorIfFalseR", 0.)
            pm.setAttr(cond + ".colorIfFalseG", 0.)
            pm.setAttr(cond + ".colorIfFalseB", 0.)
            pm.connectAttr(cond + ".outColor", d.attr("r"))

        # References
        if i == 0:  # we add extra 10% to the first position
            u = (1.0 / (len(self.guide.apos) - 1.0)) / 10000
        else:
            u = getCurveUAtPoint(self.slv_crv, self.guide.apos[i])

        tmp_div_npo_transform = getTransform(self.div_cns_npo[i])  # to fix mismatch before/after later
        cns = applyop.pathCns(self.div_cns[i], self.slv_crv, False, u, True)
        cns.setAttr("frontAxis", 1)  # front axis is 'Y'
        cns.setAttr("upAxis", 0)  # front axis is 'X'

        # Roll
        # choose ik_ctls
        for _i, uv in enumerate(self.ik_uv_param):
            if u < uv:

                ik_a = self.ik_ctl[_i - 1]
                ik_b = self.ik_ctl[_i]

                roll_a = self.ik_decompose_rot[_i - 1]
                roll_b = self.ik_decompose_rot[_i]

                ratio = (uv - u) * (self.settings["ikNb"] - 1)
                break

        else:
            ik_a = self.ik_ctl[-2]
            ik_b = self.ik_ctl[-1]

            roll_a = self.ik_decompose_rot[-2]
            roll_b = self.ik_decompose_rot[-1]

            ratio = 1.

        intMatrix = applyop.gear_intmatrix_op(
            ik_a + ".worldMatrix",
            ik_b + ".worldMatrix",
            ratio)

        dm_node = node.createDecomposeMatrixNode(intMatrix + ".output")
        # pm.connectAttr(dm_node + ".outputRotate", self.twister[i].attr("rotate"))
        pm.parentConstraint(self.twister[i], self.ref_twist[i], maintainOffset=True)

        pm.connectAttr(self.ref_twist[i] + ".translate", cns + ".worldUpVector")
        self.div_cns_npo[i].setMatrix(tmp_div_npo_transform, worldSpace=True)

        # rotationdriver
        roll_ratio = (i + 1.00) / len(self.fk_ctl)
        mul1 = pm.createNode("multDoubleLinear")
        pm.connectAttr(roll_a.attr("outRoll"), mul1.attr("input1"))
        pm.setAttr(mul1.attr("input2"), ratio)

        mul2 = pm.createNode("multDoubleLinear")
        pm.connectAttr(roll_b.attr("outRoll"), mul2.attr("input1"))
        pm.setAttr(mul2.attr("input2"), (1. - ratio))

        add = pm.createNode("addDoubleLinear")
        pm.connectAttr(mul1.attr("output"), add.attr("input1"))
        pm.connectAttr(mul2.attr("output"), add.attr("input2"))

        compose_rot = pm.createNode("composeRotate")
        pm.setAttr(compose_rot.attr("axisOrientX"), 90.0)
        pm.setAttr(compose_rot.attr("axisOrientZ"), 90.0)
        pm.connectAttr(add.attr("output"), compose_rot.attr("roll"))
        pm.connectAttr(compose_rot.attr("outRotate"), self.div_roll_npo[i].attr("rotate"))

        # compensate scale reference
        div_node = node.createDivNode(
            [1, 1, 1],
            [rootWorld_node + ".outputScaleX",
             rootWorld_node + ".outputScaleY",
             rootWorld_node + ".outputScaleZ"])

        # Squash n Stretch
        op = applyop.gear_squashstretch2_op(self.scl_transforms[i],
                                            self.root,
                                            pm.arclen(self.slv_crv),
                                            "y",
                                            div_node + ".output")

        pm.connectAttr(self.volume_att, op + ".blend")
        pm.connectAttr(crv_node + ".arcLength", op + ".driver")
        # pm.connectAttr(self.st_att[i], op + ".stretch")
        # pm.connectAttr(self.sq_att[i], op + ".squash")

        # Controlers
        tmp_local_npo_transform = getTransform(self.fk_local_npo[i])  # to fix mismatch before/after later
        if i == 0:
            mulmat_node = applyop.gear_mulmatrix_op(
                self.div_roll_npo[i].attr("worldMatrix"),
                self.root.attr("worldInverseMatrix"))

            dm_node = node.createDecomposeMatrixNode(mulmat_node + ".output")
            pm.connectAttr(dm_node + ".outputTranslate", self.fk_npo[i].attr("t"))

        elif i != len(self.guide.apos) - 1:
            mulmat_node = applyop.gear_mulmatrix_op(
                self.div_roll_npo[i].attr("worldMatrix"),
                self.div_roll_npo[i - 1].attr("worldInverseMatrix"))

            dm_node = node.createDecomposeMatrixNode(mulmat_node + ".output")
            mul_node = node.createMulNode(div_node + ".output", dm_node + ".outputTranslate")
            pm.connectAttr(mul_node + ".output", self.fk_npo[i].attr("t"))

        else:
            pass

        if i == len(self.guide.apos) - 1:
            # pm.connectAttr(dm_node + ".outputRotate", self.fk_local_npo2.attr("r"))
            _ = pm.parentConstraint(self.ik_ctl[-1],
                                    self.fk_local_npo2,
                                    skipTranslate=("x", "y", "z"),
                                    maintainOffset=True)
        else:
            pm.connectAttr(dm_node + ".outputRotate", self.fk_npo[i].attr("r"))
        # self.addOperatorsOrientationLock(i, cns)
        self.fk_local_npo[i].setMatrix(tmp_local_npo_transform, worldSpace=True)

        # References
        if i < (len(self.fk_ctl) - 1):

            if self.negate:
                aim = (0., 1., 0.)
                upv = (0., 0., 1.)
            else:
                aim = (0., -1., 0.)
                upv = (0., 0., -1.)

            pm.aimConstraint(self.div_cns_npo[i + 1],
                             self.div_cns_npo[i],
                             mo=True,
                             worldUpType="object",
                             worldUpObject=self.fk_upvectors[i],
                             worldUpVector=(0., 1., 0.),
                             aimVector=aim,
                             upVector=upv,
                             )
Пример #27
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """

        # Visibilities -------------------------------------
        # fk
        fkvis_node = node.createReverseNode(self.blend_att)

        for shp in self.fk0_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk0_roll_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk1_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk1_roll_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))

        fkvis2_node = node.createReverseNode(self.blend2_att)
        for shp in self.fk2_ctl.getShapes():
            pm.connectAttr(fkvis2_node + ".outputX", shp.attr("visibility"))

        # ik
        for shp in self.upv_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ikcns_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ik_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.line_ref.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))

        # jnt ctl
        for ctl in (self.div_ctls):
            for shp in ctl.getShapes():
                pm.connectAttr(self.jntctl_vis_att, shp.attr("visibility"))

        # Controls ROT order -----------------------------------
        attribute.setRotOrder(self.fk0_ctl, "YZX")
        attribute.setRotOrder(self.fk1_ctl, "XYZ")
        attribute.setRotOrder(self.fk2_ctl, "YZX")
        attribute.setRotOrder(self.ik_ctl, "XYZ")

        # IK Solver -----------------------------------------
        out = [self.bone0, self.bone1, self.ctrn_loc, self.eff_npo]

        o_node = applyop.gear_ikfk2bone_op(out,
                                           self.root,
                                           self.ik_ref,
                                           self.upv_ctl,
                                           self.fk0_mtx,
                                           self.fk1_mtx,
                                           self.fk2_mtx,
                                           self.length0,
                                           self.length1,
                                           self.negate)

        pm.connectAttr(self.blend_att, o_node + ".blend")
        pm.connectAttr(self.roll_att, o_node + ".roll")
        pm.connectAttr(self.scale_att, o_node + ".scaleA")
        pm.connectAttr(self.scale_att, o_node + ".scaleB")
        pm.connectAttr(self.maxstretch_att, o_node + ".maxstretch")
        pm.connectAttr(self.slide_att, o_node + ".slide")
        pm.connectAttr(self.softness_att, o_node + ".softness")
        pm.connectAttr(self.reverse_att, o_node + ".reverse")
        # update issue on effector scale interpol, disconnect for stability
        pm.disconnectAttr(self.eff_npo.scale)
        # auto upvector -------------------------------------

        if self.negate:
            o_node = applyop.aimCns(self.upv_auv,
                                    self.ik_ctl,
                                    axis="-xy",
                                    wupType=4,
                                    wupVector=[0, 1, 0],
                                    wupObject=self.upv_auv,
                                    maintainOffset=False)
        else:
            o_node = applyop.aimCns(self.upv_auv,
                                    self.ik_ctl,
                                    axis="xy",
                                    wupType=4,
                                    wupVector=[0, 1, 0],
                                    wupObject=self.upv_auv,
                                    maintainOffset=False)

        o_node = applyop.gear_mulmatrix_op(
            self.upv_auv.attr("worldMatrix"),
            self.upv_mtx.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pb_node = pm.createNode("pairBlend")
        pb_node.attr("rotInterpolation").set(1)
        pm.connectAttr(dm_node + ".outputTranslate", pb_node + ".inTranslate2")
        pm.connectAttr(dm_node + ".outputRotate", pb_node + ".inRotate2")
        pm.connectAttr(pb_node + ".outRotate", self.upv_mtx.attr("rotate"))
        pm.connectAttr(pb_node + ".outTranslate",
                       self.upv_mtx.attr("translate"))
        pm.connectAttr(self.auv_att, pb_node + ".weight")

        # fk0 mtx connection
        o_node = applyop.gear_mulmatrix_op(
            self.fk0_roll_ctl.attr("worldMatrix"),
            self.fk0_mtx.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputTranslate",
                       self.fk0_mtx.attr("translate"))
        pm.connectAttr(dm_node + ".outputRotate", self.fk0_mtx.attr("rotate"))
        # fk1 loc connect to fk1 ref @ pos and rot, not scl to avoid shearing
        o_node = applyop.gear_mulmatrix_op(
            self.fk1_ref.attr("worldMatrix"),
            self.fk1_loc.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputTranslate",
                       self.fk1_loc.attr("translate"))
        pm.connectAttr(dm_node + ".outputRotate", self.fk1_loc.attr("rotate"))
        # fk1 mtx orient cns to fk1 roll
        pm.connectAttr(self.fk1_roll_ctl.attr("rotate"),
                       self.fk1_mtx.attr("rotate"))
        # fk2_loc position constraint to effector------------------------
        o_node = applyop.gear_mulmatrix_op(
            self.eff_npo.attr("worldMatrix"),
            self.fk2_loc.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputTranslate",
                       self.fk2_loc.attr("translate"))
        # fk2_loc rotation constraint to bone1 (bugfixed) --------------
        o_node = applyop.gear_mulmatrix_op(
            self.bone1.attr("worldMatrix"),
            self.fk2_loc.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputRotate", self.fk2_loc.attr("rotate"))

        # hand ikfk blending from fk ref to ik ref (serious bugfix)--------
        o_node = applyop.gear_mulmatrix_op(
            self.fk_ref.attr("worldMatrix"),
            self.eff_loc.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pb_node = pm.createNode("pairBlend")
        pb_node.attr("rotInterpolation").set(1)
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputRotate", pb_node + ".inRotate1")
        pm.connectAttr(self.blend2_att, pb_node + ".weight")
        pm.connectAttr(pb_node + ".outRotate", self.eff_loc.attr("rotate"))
        o_node = applyop.gear_mulmatrix_op(
            self.ik_ref.attr("worldMatrix"),
            self.eff_loc.attr("parentInverseMatrix"))
        dm_node1 = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node1 + ".inputMatrix")
        pm.connectAttr(dm_node1 + ".outputRotate", pb_node + ".inRotate2")
        # use blendcolors to blend scale
        bc_node = pm.createNode("blendColors")
        pm.connectAttr(self.blend_att, bc_node + ".blender")
        pm.connectAttr(dm_node + ".outputScale", bc_node + ".color2")
        pm.connectAttr(dm_node1 + ".outputScale", bc_node + ".color1")
        pm.connectAttr(bc_node + ".output", self.eff_loc.attr("scale"))

        # Twist references ---------------------------------
        pm.connectAttr(self.mid_ctl.attr("translate"),
                       self.tws1_npo.attr("translate"))
        pm.connectAttr(self.mid_ctl.attr("rotate"),
                       self.tws1_npo.attr("rotate"))
        pm.connectAttr(self.mid_ctl.attr("scale"),
                       self.tws1_npo.attr("scale"))

        o_node = applyop.gear_mulmatrix_op(
            self.eff_loc.attr("worldMatrix"),
            self.tws3_npo.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")

        pm.connectAttr(dm_node + ".outputTranslate",
                       self.tws3_npo.attr("translate"))

        pm.connectAttr(dm_node + ".outputRotate",
                       self.tws3_npo.attr("rotate"))

        attribute.setRotOrder(self.tws3_rot, "XYZ")

        # elbow thickness connection
        if self.negate:
            o_node = node.createMulNode(
                [self.elbow_thickness_att, self.elbow_thickness_att],
                [0.5, -0.5, 0],
                [self.tws1_loc + ".translateX", self.tws2_loc + ".translateX"])
        else:
            o_node = node.createMulNode(
                [self.elbow_thickness_att, self.elbow_thickness_att],
                [-0.5, 0.5, 0],
                [self.tws1_loc + ".translateX", self.tws2_loc + ".translateX"])

        # connect both tws1 and tws2  (mid tws)
        self.tws0_rot.setAttr("sx", .001)
        self.tws3_rot.setAttr("sx", .001)

        add_node = node.createAddNode(self.roundness0_att, .001)
        pm.connectAttr(add_node + ".output", self.tws1_rot.attr("sx"))

        add_node = node.createAddNode(self.roundness1_att, .001)
        pm.connectAttr(add_node + ".output", self.tws2_rot.attr("sx"))

        pm.connectAttr(self.armpit_roll_att, self.tws0_rot + ".rotateX")

        # Roll Shoulder--use aimconstraint withour uovwctor to solve
        # the stable twist

        if self.negate:
            o_node = applyop.aimCns(self.tws0_loc,
                                    self.mid_ctl,
                                    axis="-xy",
                                    wupType=4,
                                    wupVector=[0, 1, 0],
                                    wupObject=self.tws0_npo,
                                    maintainOffset=False)
        else:
            o_node = applyop.aimCns(self.tws0_loc,
                                    self.mid_ctl,
                                    axis="xy",
                                    wupType=4,
                                    wupVector=[0, 1, 0],
                                    wupObject=self.tws0_npo,
                                    maintainOffset=False)

        # Volume -------------------------------------------
        distA_node = node.createDistNode(self.tws0_loc, self.tws1_npo)
        distB_node = node.createDistNode(self.tws1_npo, self.tws3_loc)
        add_node = node.createAddNode(distA_node + ".distance",
                                      distB_node + ".distance")
        div_node = node.createDivNode(add_node + ".output",
                                      self.root.attr("sx"))

        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(self.root.attr("worldMatrix"), dm_node + ".inputMatrix")

        div_node2 = node.createDivNode(div_node + ".outputX",
                                       dm_node + ".outputScaleX")
        self.volDriver_att = div_node2 + ".outputX"

        # Divisions ----------------------------------------
        # div mid constraint to mid ctl
        o_node = applyop.gear_mulmatrix_op(
            self.mid_ctl.attr("worldMatrix"),
            self.div_mid.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputTranslate",
                       self.div_mid.attr("translate"))
        pm.connectAttr(dm_node + ".outputRotate",
                       self.div_mid.attr("rotate"))

        # at 0 or 1 the division will follow exactly the rotation of the
        # controler.. and we wont have this nice tangent + roll
        # linear scaling percentage (1) to effector (2) to elbow
        scl_1_perc = []
        scl_2_perc = []

        for i, div_cnsUp in enumerate(self.div_cnsUp):

            if i < (self.settings["div0"] + 1):
                perc = i / (self.settings["div0"] + 1.0)
            elif i < (self.settings["div0"] + 2):
                perc = .95

            perc = max(.001, min(.99, perc))

            # Roll
            if self.negate:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cnsUp, [self.tws1_rot, self.tws0_rot], 1 - perc, 20)

            else:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cnsUp, [self.tws0_rot, self.tws1_rot], perc, 20)

            pm.connectAttr(self.resample_att, o_node + ".resample")
            pm.connectAttr(self.absolute_att, o_node + ".absolute")

            scl_1_perc.append(perc / 2)
            scl_2_perc.append(perc)
        scl_1_perc.append(0.5)
        scl_2_perc.append(1)
        for i, div_cnsDn in enumerate(self.div_cnsDn):

            if i == (0):
                perc = .05
            elif i < (self.settings["div1"] + 1):
                perc = i / (self.settings["div1"] + 1.0)
            elif i < (self.settings["div1"] + 2):
                perc = .95

            perc = max(.001, min(.990, perc))

            # Roll
            if self.negate:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cnsDn, [self.tws3_rot, self.tws2_rot], 1 - perc, 20)

            else:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cnsDn, [self.tws2_rot, self.tws3_rot], perc, 20)
            pm.connectAttr(self.resample_att, o_node + ".resample")
            pm.connectAttr(self.absolute_att, o_node + ".absolute")

            scl_1_perc.append(perc / 2 + 0.5)
            scl_2_perc.append(1 - perc)
        # Squash n Stretch
        for i, div_cns in enumerate(self.div_cns):
            o_node = applyop.gear_squashstretch2_op(
                div_cns, None, pm.getAttr(self.volDriver_att), "x")
            pm.connectAttr(self.volume_att, o_node + ".blend")
            pm.connectAttr(self.volDriver_att, o_node + ".driver")
            pm.connectAttr(self.st_att[i], o_node + ".stretch")
            pm.connectAttr(self.sq_att[i], o_node + ".squash")
            # get the first mult_node after sq op
            mult_node = pm.listHistory(o_node, future=True)[1]
            # linear blend effector scale
            bc_node = pm.createNode("blendColors")
            bc_node.setAttr("color2R", 1)
            bc_node.setAttr("color2G", 1)
            bc_node.setAttr("blender", scl_1_perc[i])
            pm.connectAttr(self.eff_loc.attr("scale"), bc_node + ".color1")
            # linear blend mid scale
            bc_node2 = pm.createNode("blendColors")
            bc_node2.setAttr("color2R", 1)
            bc_node2.setAttr("color2G", 1)
            bc_node2.setAttr("blender", scl_2_perc[i])
            pm.connectAttr(self.mid_ctl.attr("scale"), bc_node2 + ".color1")
            # mid_ctl scale * effector scale
            mult_node2 = pm.createNode("multiplyDivide")
            pm.connectAttr(bc_node2 + ".output", mult_node2 + ".input1")
            pm.connectAttr(bc_node + ".output", mult_node2 + ".input2")
            # plug to sq scale
            pm.connectAttr(mult_node2 + ".output", mult_node + ".input2")

        # match IK/FK ref
        pm.connectAttr(self.bone0.attr("rotate"),
                       self.match_fk0.attr("rotate"))
        pm.connectAttr(self.bone0.attr("translate"),
                       self.match_fk0.attr("translate"))
        pm.connectAttr(self.bone1.attr("rotate"),
                       self.match_fk1.attr("rotate"))
        pm.connectAttr(self.bone1.attr("translate"),
                       self.match_fk1.attr("translate"))

        return
Пример #28
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """
        # Curves -------------------------------------------
        op = applyop.gear_curveslide2_op(self.slv_crv, self.mst_crv, 0, 1.5,
                                         .5, .5)

        pm.connectAttr(self.position_att, op + ".position")
        pm.connectAttr(self.maxstretch_att, op + ".maxstretch")
        pm.connectAttr(self.maxsquash_att, op + ".maxsquash")
        pm.connectAttr(self.softness_att, op + ".softness")

        # Division -----------------------------------------
        rootWorld_node = node.createDecomposeMatrixNode(
            self.root.attr("worldMatrix"))
        for i in range(self.settings["fkNb"]):

            # References
            u = i / (self.settings["fkNb"] - 1.0)
            if i == 0:  # we add extra 10% to the first position
                u = (1.0 / (self.settings["fkNb"] - 1.0)) / 10

            cns = applyop.pathCns(self.div_cns[i], self.slv_crv, False, u,
                                  True)

            cns.setAttr("frontAxis", 0)  # front axis is 'X'
            cns.setAttr("upAxis", 2)  # front axis is 'Z'

            # Roll
            intMatrix = applyop.gear_intmatrix_op(
                self.ik_ctl[0] + ".worldMatrix",
                self.ik_ctl[-1] + ".worldMatrix", u)

            dm_node = node.createDecomposeMatrixNode(intMatrix + ".output")
            pm.connectAttr(dm_node + ".outputRotate",
                           self.twister[i].attr("rotate"))

            pm.parentConstraint(self.twister[i],
                                self.ref_twist[i],
                                maintainOffset=True)

            pm.connectAttr(self.ref_twist[i] + ".translate",
                           cns + ".worldUpVector")

            # compensate scale reference
            div_node = node.createDivNode([1, 1, 1], [
                rootWorld_node + ".outputScaleX", rootWorld_node +
                ".outputScaleY", rootWorld_node + ".outputScaleZ"
            ])

            # Controlers
            if i == 0:
                mulmat_node = applyop.gear_mulmatrix_op(
                    self.div_cns[i].attr("worldMatrix"),
                    self.root.attr("worldInverseMatrix"))

                dm_node = node.createDecomposeMatrixNode(mulmat_node +
                                                         ".output")

                pm.connectAttr(dm_node + ".outputTranslate",
                               self.fk_npo[i].attr("t"))

            else:
                mulmat_node = applyop.gear_mulmatrix_op(
                    self.div_cns[i].attr("worldMatrix"),
                    self.div_cns[i - 1].attr("worldInverseMatrix"))

                dm_node = node.createDecomposeMatrixNode(mulmat_node +
                                                         ".output")

                mul_node = node.createMulNode(div_node + ".output",
                                              dm_node + ".outputTranslate")

                pm.connectAttr(mul_node + ".output", self.fk_npo[i].attr("t"))

            pm.connectAttr(dm_node + ".outputRotate", self.fk_npo[i].attr("r"))

            # Orientation Lock
            if i == 0:
                dm_node = node.createDecomposeMatrixNode(self.ik_ctl[0] +
                                                         ".worldMatrix")

                blend_node = node.createBlendNode(
                    [dm_node + ".outputRotate%s" % s for s in "XYZ"],
                    [cns + ".rotate%s" % s for s in "XYZ"], 0)

                self.div_cns[i].attr("rotate").disconnect()

                pm.connectAttr(blend_node + ".output",
                               self.div_cns[i] + ".rotate")

            elif i == self.settings["fkNb"] - 1:
                dm_node = node.createDecomposeMatrixNode(self.ik_ctl[-1] +
                                                         ".worldMatrix")

                blend_node = node.createBlendNode(
                    [dm_node + ".outputRotate%s" % s for s in "XYZ"],
                    [cns + ".rotate%s" % s for s in "XYZ"], 0)

                self.div_cns[i].attr("rotate").disconnect()
                pm.connectAttr(blend_node + ".output",
                               self.div_cns[i] + ".rotate")
Пример #29
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """

        # Auto bend ----------------------------
        if self.settings["autoBend"]:
            mul_node = node.createMulNode(
                [self.autoBendChain[0].ry, self.autoBendChain[0].rz],
                [self.sideBend_att, self.frontBend_att])

            mul_node.outputX >> self.ik1autoRot_lvl.rz
            mul_node.outputY >> self.ik1autoRot_lvl.rx

            self.ikHandleAutoBend = primitive.addIkHandle(
                self.autoBend_ctl, self.getName("ikHandleAutoBend"),
                self.autoBendChain, "ikSCsolver")

        # Tangent position ---------------------------------
        # common part
        d = vector.getDistance(self.guide.apos[0], self.guide.apos[-1])
        dist_node = node.createDistNode(self.ik0_ctl, self.ik1_ctl)
        rootWorld_node = node.createDecomposeMatrixNode(
            self.root.attr("worldMatrix"))

        div_node = node.createDivNode(dist_node + ".distance",
                                      rootWorld_node + ".outputScaleX")

        div_node = node.createDivNode(div_node + ".outputX", d)

        # tan0
        mul_node = node.createMulNode(self.tan0_att,
                                      self.tan0_npo.getAttr("ty"))

        res_node = node.createMulNode(mul_node + ".outputX",
                                      div_node + ".outputX")

        pm.connectAttr(res_node + ".outputX", self.tan0_npo.attr("ty"))

        # tan1
        mul_node = node.createMulNode(self.tan1_att,
                                      self.tan1_npo.getAttr("ty"))

        res_node = node.createMulNode(mul_node + ".outputX",
                                      div_node + ".outputX")

        pm.connectAttr(res_node + ".outputX", self.tan1_npo.attr("ty"))

        # Tangent Mid --------------------------------------
        if self.settings["centralTangent"]:
            tanIntMat = applyop.gear_intmatrix_op(
                self.tan0_npo.attr("worldMatrix"),
                self.tan1_npo.attr("worldMatrix"), .5)

            applyop.gear_mulmatrix_op(
                tanIntMat.attr("output"),
                self.tan_npo.attr("parentInverseMatrix[0]"), self.tan_npo)

            pm.connectAttr(self.tan_ctl.attr("translate"),
                           self.tan0_off.attr("translate"))

            pm.connectAttr(self.tan_ctl.attr("translate"),
                           self.tan1_off.attr("translate"))

        # Curves -------------------------------------------
        op = applyop.gear_curveslide2_op(self.slv_crv, self.mst_crv, 0, 1.5,
                                         .5, .5)

        pm.connectAttr(self.position_att, op + ".position")
        pm.connectAttr(self.maxstretch_att, op + ".maxstretch")
        pm.connectAttr(self.maxsquash_att, op + ".maxsquash")
        pm.connectAttr(self.softness_att, op + ".softness")

        # Volume driver ------------------------------------
        crv_node = node.createCurveInfoNode(self.slv_crv)

        # Division -----------------------------------------
        for i in range(self.settings["division"]):

            # References
            u = i / (self.settings["division"] - 1.0)
            if i == 0:  # we add extra 10% to the first vertebra
                u = (1.0 / (self.settings["division"] - 1.0)) / 10

            cns = applyop.pathCns(self.div_cns[i], self.slv_crv, False, u,
                                  True)

            cns.setAttr("frontAxis", 1)  # front axis is 'Y'
            cns.setAttr("upAxis", 0)  # front axis is 'X'

            # Roll
            intMatrix = applyop.gear_intmatrix_op(
                self.ik0_ctl + ".worldMatrix", self.ik1_ctl + ".worldMatrix",
                u)

            dm_node = node.createDecomposeMatrixNode(intMatrix + ".output")
            pm.connectAttr(dm_node + ".outputRotate",
                           self.twister[i].attr("rotate"))

            pm.parentConstraint(self.twister[i],
                                self.ref_twist[i],
                                maintainOffset=True)

            pm.connectAttr(self.ref_twist[i] + ".translate",
                           cns + ".worldUpVector")

            # compensate scale reference
            div_node = node.createDivNode([1, 1, 1], [
                rootWorld_node + ".outputScaleX", rootWorld_node +
                ".outputScaleY", rootWorld_node + ".outputScaleZ"
            ])

            # Squash n Stretch
            op = applyop.gear_squashstretch2_op(self.scl_transforms[i],
                                                self.root,
                                                pm.arclen(self.slv_crv), "y",
                                                div_node + ".output")

            pm.connectAttr(self.volume_att, op + ".blend")
            pm.connectAttr(crv_node + ".arcLength", op + ".driver")
            pm.connectAttr(self.st_att[i], op + ".stretch")
            pm.connectAttr(self.sq_att[i], op + ".squash")

            # Controlers
            if i == 0:
                mulmat_node = applyop.gear_mulmatrix_op(
                    self.div_cns[i].attr("worldMatrix"),
                    self.root.attr("worldInverseMatrix"))

                dm_node = node.createDecomposeMatrixNode(mulmat_node +
                                                         ".output")

                pm.connectAttr(dm_node + ".outputTranslate",
                               self.fk_npo[i].attr("t"))

            else:
                mulmat_node = applyop.gear_mulmatrix_op(
                    self.div_cns[i].attr("worldMatrix"),
                    self.div_cns[i - 1].attr("worldInverseMatrix"))

                dm_node = node.createDecomposeMatrixNode(mulmat_node +
                                                         ".output")

                mul_node = node.createMulNode(div_node + ".output",
                                              dm_node + ".outputTranslate")

                pm.connectAttr(mul_node + ".output", self.fk_npo[i].attr("t"))

            pm.connectAttr(dm_node + ".outputRotate", self.fk_npo[i].attr("r"))

            # Orientation Lock
            if i == 0:
                dm_node = node.createDecomposeMatrixNode(self.ik0_ctl +
                                                         ".worldMatrix")

                blend_node = node.createBlendNode(
                    [dm_node + ".outputRotate%s" % s for s in "XYZ"],
                    [cns + ".rotate%s" % s for s in "XYZ"], self.lock_ori0_att)

                self.div_cns[i].attr("rotate").disconnect()

                pm.connectAttr(blend_node + ".output",
                               self.div_cns[i] + ".rotate")

            elif i == self.settings["division"] - 1:
                dm_node = node.createDecomposeMatrixNode(self.ik1_ctl +
                                                         ".worldMatrix")

                blend_node = node.createBlendNode(
                    [dm_node + ".outputRotate%s" % s for s in "XYZ"],
                    [cns + ".rotate%s" % s for s in "XYZ"], self.lock_ori1_att)

                self.div_cns[i].attr("rotate").disconnect()
                pm.connectAttr(blend_node + ".output",
                               self.div_cns[i] + ".rotate")

        # Connections (Hooks) ------------------------------
        pm.parentConstraint(self.hip_lvl, self.cnx0)
        pm.scaleConstraint(self.hip_lvl, self.cnx0)
        pm.parentConstraint(self.scl_transforms[-1], self.cnx1)
        pm.scaleConstraint(self.scl_transforms[-1], self.cnx1)
Пример #30
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """
        # Soft condition
        soft_cond_node = node.createConditionNode(
            self.soft_attr,
            0.0001,
            4,
            0.0001,
            self.soft_attr)
        self.soft_attr_cond = soft_cond_node.outColorR

        if self.settings["ikSolver"]:
            self.ikSolver = "ikRPsolver"
        else:
            pm.mel.eval("ikSpringSolver;")
            self.ikSolver = "ikSpringSolver"

        # 1 bone chain Upv ref ===============================
        self.ikHandleUpvRef = primitive.addIkHandle(
            self.root,
            self.getName("ikHandleLegChainUpvRef"),
            self.legChainUpvRef,
            "ikSCsolver")
        pm.pointConstraint(self.ik_ctl, self.ikHandleUpvRef)
        pm.parentConstraint(self.legChainUpvRef[0], self.upv_cns, mo=True)

        # mid joints ================================================
        for xjnt, midJ in zip(self.legBones[1:3],
                              [self.mid1_jnt, self.mid2_jnt]):
            node.createPairBlend(None, xjnt, .5, 1, midJ)
            pm.connectAttr(xjnt + ".translate", midJ + ".translate", f=True)

        pm.parentConstraint(self.mid1_jnt, self.knee_lvl)
        pm.parentConstraint(self.mid2_jnt, self.ankle_lvl)

        # joint length multiply
        multJnt1_node = node.createMulNode(self.boneALenght_attr,
                                           self.boneALenghtMult_attr)
        multJnt2_node = node.createMulNode(self.boneBLenght_attr,
                                           self.boneBLenghtMult_attr)
        multJnt3_node = node.createMulNode(self.boneCLenght_attr,
                                           self.boneCLenghtMult_attr)

        # # IK 3 bones ===============================================

        self.ikHandle = primitive.addIkHandle(self.softblendLoc,
                                              self.getName("ik3BonesHandle"),
                                              self.chain3bones,
                                              self.ikSolver,
                                              self.upv_ctl)

        # TwistTest
        if [round(elem, 4)
                for elem in transform.getTranslation(self.chain3bones[1])] \
                != [round(elem, 4) for elem in self.guide.apos[1]]:
            add_nodeTwist = node.createAddNode(180.0, self.roll_att)
        else:
            add_nodeTwist = node.createAddNode(0, self.roll_att)
        if self.negate:
            mulVal = 1
        else:
            mulVal = -1
        node.createMulNode(
            add_nodeTwist + ".output", mulVal, self.ikHandle.attr("twist"))

        # stable spring solver doble rotation
        pm.pointConstraint(self.root_ctl, self.chain3bones[0])

        # softIK 3 bones operators
        applyop.aimCns(self.aim_tra,
                       self.ik_ref,
                       axis="zx",
                       wupType=4,
                       wupVector=[1, 0, 0],
                       wupObject=self.root_ctl,
                       maintainOffset=False)

        plusTotalLength_node = node.createPlusMinusAverage1D(
            [multJnt1_node.attr("outputX"),
             multJnt2_node.attr("outputX"),
             multJnt3_node.attr("outputX")])

        subtract1_node = node.createPlusMinusAverage1D(
            [plusTotalLength_node.attr("output1D"), self.soft_attr_cond], 2)

        distance1_node = node.createDistNode(self.ik_ref, self.aim_tra)
        div1_node = node.createDivNode(1.0, self.rig.global_ctl + ".sx")
        mult1_node = node.createMulNode(distance1_node + ".distance",
                                        div1_node + ".outputX")
        subtract2_node = node.createPlusMinusAverage1D(
            [mult1_node.attr("outputX"), subtract1_node.attr("output1D")], 2)
        div2_node = node.createDivNode(subtract2_node + ".output1D",
                                       self.soft_attr_cond)
        mult2_node = node.createMulNode(-1, div2_node + ".outputX")
        power_node = node.createPowNode(self.softSpeed_attr,
                                        mult2_node + ".outputX")
        mult3_node = node.createMulNode(self.soft_attr_cond,
                                        power_node + ".outputX")
        subtract3_node = node.createPlusMinusAverage1D(
            [plusTotalLength_node.attr("output1D"),
             mult3_node.attr("outputX")],
            2)

        cond1_node = node.createConditionNode(
            self.soft_attr_cond,
            0,
            2,
            subtract3_node + ".output1D",
            plusTotalLength_node + ".output1D")

        cond2_node = node.createConditionNode(mult1_node + ".outputX",
                                              subtract1_node + ".output1D",
                                              2, cond1_node + ".outColorR",
                                              mult1_node + ".outputX")

        pm.connectAttr(cond2_node + ".outColorR", self.wristSoftIK + ".tz")

        # soft blend
        pc_node = pm.pointConstraint(self.wristSoftIK,
                                     self.ik_ref,
                                     self.softblendLoc)
        node.createReverseNode(self.stretch_attr,
                               pc_node + ".target[0].targetWeight")
        pm.connectAttr(self.stretch_attr,
                       pc_node + ".target[1].targetWeight",
                       f=True)

        # Stretch
        distance2_node = node.createDistNode(self.softblendLoc,
                                             self.wristSoftIK)
        mult4_node = node.createMulNode(distance2_node + ".distance",
                                        div1_node + ".outputX")

        # bones
        for i, mulNode in enumerate([multJnt1_node,
                                     multJnt2_node,
                                     multJnt3_node]):

            div3_node = node.createDivNode(mulNode + ".outputX",
                                           plusTotalLength_node + ".output1D")

            mult5_node = node.createMulNode(mult4_node + ".outputX",
                                            div3_node + ".outputX")

            mult6_node = node.createMulNode(self.stretch_attr,
                                            mult5_node + ".outputX")

            node.createPlusMinusAverage1D(
                [mulNode.attr("outputX"), mult6_node.attr("outputX")],
                1,
                self.chain3bones[i + 1] + ".tx")

        # IK 2 bones ===============================================

        self.ikHandle2 = primitive.addIkHandle(self.softblendLoc2,
                                               self.getName("ik2BonesHandle"),
                                               self.chain2bones,
                                               self.ikSolver,
                                               self.upv_ctl)

        node.createMulNode(self.roll_att, mulVal, self.ikHandle2.attr("twist"))

        # stable spring solver doble rotation
        pm.pointConstraint(self.root_ctl, self.chain2bones[0])

        parentc_node = pm.parentConstraint(
            self.ik2b_ikCtl_ref, self.ik2b_bone_ref, self.ik2b_blend)

        node.createReverseNode(self.fullIK_attr,
                               parentc_node + ".target[0].targetWeight")

        pm.connectAttr(self.fullIK_attr,
                       parentc_node + ".target[1].targetWeight", f=True)

        # softIK 2 bones operators
        applyop.aimCns(self.aim_tra2,
                       self.ik2b_ik_ref,
                       axis="zx",
                       wupType=4,
                       wupVector=[1, 0, 0],
                       wupObject=self.root_ctl,
                       maintainOffset=False)

        plusTotalLength_node = node.createPlusMinusAverage1D(
            [multJnt1_node.attr("outputX"), multJnt2_node.attr("outputX")])

        subtract1_node = node.createPlusMinusAverage1D(
            [plusTotalLength_node.attr("output1D"), self.soft_attr_cond], 2)

        distance1_node = node.createDistNode(self.ik2b_ik_ref, self.aim_tra2)
        div1_node = node.createDivNode(1, self.rig.global_ctl + ".sx")

        mult1_node = node.createMulNode(distance1_node + ".distance",
                                        div1_node + ".outputX")

        subtract2_node = node.createPlusMinusAverage1D(
            [mult1_node.attr("outputX"), subtract1_node.attr("output1D")], 2)

        div2_node = node.createDivNode(subtract2_node + ".output1D",
                                       self.soft_attr_cond)

        mult2_node = node.createMulNode(-1, div2_node + ".outputX")

        power_node = node.createPowNode(self.softSpeed_attr,
                                        mult2_node + ".outputX")

        mult3_node = node.createMulNode(self.soft_attr_cond,
                                        power_node + ".outputX")

        subtract3_node = node.createPlusMinusAverage1D(
            [plusTotalLength_node.attr("output1D"),
             mult3_node.attr("outputX")],
            2)

        cond1_node = node.createConditionNode(
            self.soft_attr_cond,
            0,
            2,
            subtract3_node + ".output1D",
            plusTotalLength_node + ".output1D")

        cond2_node = node.createConditionNode(mult1_node + ".outputX",
                                              subtract1_node + ".output1D",
                                              2,
                                              cond1_node + ".outColorR",
                                              mult1_node + ".outputX")

        pm.connectAttr(cond2_node + ".outColorR", self.ankleSoftIK + ".tz")

        # soft blend
        pc_node = pm.pointConstraint(self.ankleSoftIK,
                                     self.ik2b_ik_ref,
                                     self.softblendLoc2)
        node.createReverseNode(self.stretch_attr,
                               pc_node + ".target[0].targetWeight")
        pm.connectAttr(self.stretch_attr,
                       pc_node + ".target[1].targetWeight",
                       f=True)

        # Stretch
        distance2_node = node.createDistNode(self.softblendLoc2,
                                             self.ankleSoftIK)

        mult4_node = node.createMulNode(distance2_node + ".distance",
                                        div1_node + ".outputX")

        for i, mulNode in enumerate([multJnt1_node, multJnt2_node]):
            div3_node = node.createDivNode(mulNode + ".outputX",
                                           plusTotalLength_node + ".output1D")

            mult5_node = node.createMulNode(mult4_node + ".outputX",
                                            div3_node + ".outputX")

            mult6_node = node.createMulNode(self.stretch_attr,
                                            mult5_node + ".outputX")

            node.createPlusMinusAverage1D([mulNode.attr("outputX"),
                                           mult6_node.attr("outputX")],
                                          1,
                                          self.chain2bones[i + 1] + ".tx")

        # IK/FK connections

        for i, x in enumerate(self.fk_ctl):
            pm.parentConstraint(x, self.legBonesFK[i], mo=True)

        for i, x in enumerate([self.chain2bones[0], self.chain2bones[1]]):
            pm.parentConstraint(x, self.legBonesIK[i], mo=True)

        pm.pointConstraint(self.ik2b_ik_ref, self.legBonesIK[2])
        applyop.aimCns(self.legBonesIK[2],
                       self.roll_ctl,
                       axis="xy",
                       wupType=4,
                       wupVector=[0, 1, 0],
                       wupObject=self.legBonesIK[1],
                       maintainOffset=False)

        pm.connectAttr(self.chain3bones[-1].attr("tx"),
                       self.legBonesIK[-1].attr("tx"))
        # foot twist roll
        pm.orientConstraint(self.ik_ref, self.legBonesIK[-1], mo=True)

        node.createMulNode(
            -1, self.chain3bones[-1].attr("tx"), self.ik2b_ik_ref.attr("tx"))

        for i, x in enumerate(self.legBones):
            node.createPairBlend(
                self.legBonesFK[i], self.legBonesIK[i], self.blend_att, 1, x)

        # Twist references ----------------------------------------

        self.ikhArmRef, self.tmpCrv = applyop.splineIK(
            self.getName("legRollRef"),
            self.rollRef,
            parent=self.root,
            cParent=self.legBones[0])

        initRound = .001
        multVal = 1

        multTangent_node = node.createMulNode(self.roundnessKnee_att, multVal)
        add_node = node.createAddNode(multTangent_node + ".outputX", initRound)
        pm.connectAttr(add_node + ".output", self.tws1_rot.attr("sx"))
        for x in ["translate"]:
            pm.connectAttr(self.knee_ctl.attr(x), self.tws1_loc.attr(x))
        for x in "xy":
            pm.connectAttr(self.knee_ctl.attr("r" + x),
                           self.tws1_loc.attr("r" + x))

        multTangent_node = node.createMulNode(self.roundnessAnkle_att, multVal)
        add_node = node.createAddNode(multTangent_node + ".outputX", initRound)
        pm.connectAttr(add_node + ".output", self.tws2_rot.attr("sx"))
        for x in ["translate"]:
            pm.connectAttr(self.ankle_ctl.attr(x), self.tws2_loc.attr(x))
        for x in "xy":
            pm.connectAttr(self.ankle_ctl.attr("r" + x),
                           self.tws2_loc.attr("r" + x))

        # Volume -------------------------------------------
        distA_node = node.createDistNode(self.tws0_loc, self.tws1_loc)
        distB_node = node.createDistNode(self.tws1_loc, self.tws2_loc)
        distC_node = node.createDistNode(self.tws2_loc, self.tws3_loc)
        add_node = node.createAddNode(distA_node + ".distance",
                                      distB_node + ".distance")
        add_node2 = node.createAddNode(distC_node + ".distance",
                                       add_node + ".output")
        div_node = node.createDivNode(add_node2 + ".output",
                                      self.root_ctl.attr("sx"))

        # comp scaling
        dm_node = node.createDecomposeMatrixNode(self.root.attr("worldMatrix"))

        div_node2 = node.createDivNode(div_node + ".outputX",
                                       dm_node + ".outputScaleX")

        self.volDriver_att = div_node2 + ".outputX"

        # Flip Offset ----------------------------------------
        pm.connectAttr(self.ankleFlipOffset_att, self.tws2_loc.attr("rz"))
        pm.connectAttr(self.kneeFlipOffset_att, self.tws1_loc.attr("rz"))
        # Divisions ----------------------------------------
        # at 0 or 1 the division will follow exactly the rotation of the
        # controler.. and we wont have this nice tangent + roll
        for i, div_cns in enumerate(self.div_cns):
            subdiv = False
            if i == len(self.div_cns) - 1 or i == 0:
                subdiv = 45
            else:
                subdiv = 45

            if i < (self.settings["div0"] + 1):
                perc = i * .333 / (self.settings["div0"] + 1.0)

            elif i < (self.settings["div0"] + self.settings["div1"] + 2):
                perc = i * .333 / (self.settings["div0"] + 1.0)
            else:
                perc = (.5
                        + (i - self.settings["div0"] - 3.0)
                        * .5
                        / (self.settings["div1"] + 1.0))

            if i < (self.settings["div0"] + 2):
                perc = i * .333 / (self.settings["div0"] + 1.0)

            elif i < (self.settings["div0"] + self.settings["div1"] + 3):
                perc = (.333
                        + (i - self.settings["div0"] - 1)
                        * .333
                        / (self.settings["div1"] + 1.0))
            else:
                perc = (.666
                        + (i
                            - self.settings["div1"]
                            - self.settings["div0"]
                            - 2.0)
                        * .333
                        / (self.settings["div2"] + 1.0))

            # we neet to offset the ankle and knee point to force the bone
            # orientation to the nex bone span
            if perc == .333:
                perc = .3338
            elif perc == .666:
                perc = .6669

            perc = max(.001, min(.999, perc))

            # Roll
            cts = [self.tws0_rot, self.tws1_rot, self.tws2_rot, self.tws3_rot]
            o_node = applyop.gear_rollsplinekine_op(div_cns, cts, perc, subdiv)

            pm.connectAttr(self.resample_att, o_node + ".resample")
            pm.connectAttr(self.absolute_att, o_node + ".absolute")

            # Squash n Stretch
            o_node = applyop.gear_squashstretch2_op(
                div_cns, None,
                pm.getAttr(self.volDriver_att),
                "x")
            pm.connectAttr(self.volume_att, o_node + ".blend")
            pm.connectAttr(self.volDriver_att, o_node + ".driver")
            pm.connectAttr(self.st_att[i], o_node + ".stretch")
            pm.connectAttr(self.sq_att[i], o_node + ".squash")

        # Visibilities -------------------------------------
        # fk
        fkvis_node = node.createReverseNode(self.blend_att)
        for ctrl in self.fk_ctl:
            for shp in ctrl.getShapes():
                pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        # ik
        for ctrl in [self.ik_ctl, self.roll_ctl, self.upv_ctl, self.line_ref]:
            for shp in ctrl.getShapes():
                pm.connectAttr(self.blend_att, shp.attr("visibility"))

        # setup leg o_node scale compensate
        pm.connectAttr(self.rig.global_ctl + ".scale", self.setup + ".scale")

        # match IK/FK ref
        pm.parentConstraint(self.legBones[0], self.match_fk0_off, mo=True)
        pm.parentConstraint(self.legBones[1], self.match_fk1_off, mo=True)
        pm.parentConstraint(self.legBones[2], self.match_fk2_off, mo=True)

        return