scatter(ytest, y_pre_test, strx='y_true($10^4$T)', stry='y_predict($10^4$T)') scatter(ytrain, y_pre_train, strx='y_true($10^4$T)', stry='y_predict($10^4$T)') def scatter2(x, y_true, y_predict, strx='y_true', stry1='y_true(GWh)', stry2='y_predict', stry="y"): fig = plt.figure() ax = fig.add_subplot(111) l1 = ax.scatter(x, y_true, marker='o', s=50, alpha=0.7, c='orange', linewidths=None, edgecolors='blue') ax.plot(x, y_true, '-', ms=5, lw=2, alpha=0.7, color='black') l2 = ax.scatter(x, y_predict, marker='^', s=50, alpha=0.7, c='green', linewidths=None, edgecolors='blue') ax.plot(x, y_predict, '-', ms=5, lw=2, alpha=0.7, color='green') # ax.plot([min(x), max(x)], [min(x), max(x)], '--', ms=5, lw=2, alpha=0.7, color='black') plt.xlabel(strx) plt.legend((l1, l2), (stry1, stry2), loc='upper left') plt.ylabel(stry) plt.show() a = np.arange(2000, 2020) scatter2(a, y[::-1], y_[::-1], strx='year', stry="y($10^4$T)", stry1='y_true($10^4$T)', stry2='y_predict($10^4$T)') # #导出 print(x_frame.iloc[:, :].columns.values[ba.support_]) store.to_pkl_sk(ba.estimator_, "model") all_import["y_predict"] = y_ store.to_csv(all_import, "predict")
param_grid3 = [{'n_estimators': [100, 200], 'learning_rate': [0.1, 0.05]}] # 2 model ref = RFECV(me2, cv=3) x_ = ref.fit_transform(x, y) gd = GridSearchCV(me2, cv=3, param_grid=param_grid2, scoring="r2", n_jobs=1) gd.fit(x_, y) score = gd.best_score_ # 1,3 model # gd = GridSearchCV(me1, cv=3, param_grid=param_grid1, scoring="r2", n_jobs=1) # gd.fit(x,y) # es = gd.best_estimator_ # sf = SelectFromModel(es, threshold=None, prefit=False, # norm_order=1, max_features=None) # sf.fit(x,y) # feature = sf.get_support() # # gd.fit(x[:,feature],y) # score = gd.best_score_ # 其他模型 # 穷举等... # 导出 # pd.to_pickle(gd,r'C:\Users\Administrator\Desktop\skk\gd_model') # pd.read_pickle(r'C:\Users\Administrator\Desktop\skk\gd_model') store.to_pkl_sk(gd) store.to_csv(x) store.to_txt(score)