def console_output(self, xopt, image_file):


        self.topology_factory.update_topology(xopt)
        tup = (2*self.topology_factory.a, 2*self.topology_factory.b)
        print('The element dimensions are (um): %gx%g' % tup)
        params = self.topology_factory.get_params()
        cantilever = microfem.Cantilever(*params)
        microfem.plot_topology(cantilever, image_file)

        if self.topology_factory.is_connected is True:

            fem = microfem.PlateFEM(self.material, cantilever)
            coords = (cantilever.xtip, cantilever.ytip)
            opr = microfem.PlateDisplacement(fem, coords).get_operator()
            mode_ident = microfem.ModeIdentification(fem, cantilever, 'plate')

            w, _, vall = fem.modal_analysis(self.n_modes)
            freq = np.sqrt(w) / (2*np.pi)
            kuu = fem.get_stiffness_matrix(free=False)
            phis = [vall[:, [i]] for i in range(self.n_modes)]
            wtips = [opr @ p for p in phis]
            kfunc = lambda p, w: np.asscalar(p.T @ kuu @ p / w ** 2)
            ks = [kfunc(p, w) for p, w in zip(phis, wtips)]
            types = [mode_ident.is_mode_flexural(p) for p in phis]

            tup = ('Disp', 'Freq (Hz)', 'Stiffness', 'Flexural')
            print('\n    %-15s %-15s %-15s %-10s' % tup)
            for i in range(self.n_modes):
                tup = (i, wtips[i], freq[i], ks[i], str(types[i]))
                print('%-2d: %-15g %-15g %-15g %-10s' % tup)

            for i in range(self.n_modes):
                microfem.plot_mode(fem, vall[:, i])
    def console_output(self, xopt, image_file):
        
        self.topology_factory.update_topology(xopt)
        topology = self.topology_factory.topology
        cantilever = microfem.Cantilever(topology, self.a, self.b)
        microfem.plot_topology(cantilever, image_file)
        
        if self.topology_factory.is_connected is True:
            
            fem = microfem.PlateFEM(self.material, cantilever)
            coords = (cantilever.xtip, cantilever.ytip)
            opr = PlateDisplacement(fem, coords).get_operator()
            mode_ident = ModeIdentification(fem, cantilever)
            
            w, _, vall = fem.modal_analysis(self.n_modes)
            freq = np.sqrt(w) / (2*np.pi)
            kuu = fem.get_stiffness_matrix(free=False)
            phis = [vall[:, [i]] for i in range(self.n_modes)]
            wtips = [opr @ p for p in phis]
            ks = [np.asscalar(p.T @ kuu @ p / w ** 2) for p, w in zip(phis, wtips)]
            costs = [k / ks[0] for k in ks]
            types = [mode_ident.is_mode_flexural(p) for p in phis]
            
            tup = ('Disp', 'Freq (Hz)', 'Stiffness', 'Ratio', 'Flexural')
            print('\n    %-15s %-15s %-15s %-15s %-10s' % tup)
            for i in range(self.n_modes):
                tup = (i, wtips[i], freq[i], ks[i], costs[i], str(types[i]))
                print('%-2d: %-15g %-15g %-15g %-15g %-10s' % tup)

            for i in range(self.n_modes):
                microfem.plot_mode(fem, vall[:, i])
                
    def console_output(self, xopt, image_file):

        self.topology_factory.update_topology(xopt)
        params = self.topology_factory.get_params()
        cantilever = microfem.Cantilever(*params)
        microfem.plot_topology(cantilever, image_file)

        if self.topology_factory.is_connected is True:

            fem = microfem.PlateFEM(self.material, cantilever)
            w, _, vall = fem.modal_analysis(1)
            f = np.asscalar(np.sqrt(w) / (2 * np.pi))
            print('The first modal frequency is (Hz): %g' % f)
            microfem.plot_mode(fem, vall[:, 0])
Пример #4
0
    def to_console_final(self, xopt):

        print()
        print('--- Solution Characteristics ---')
        if self.exe_time != 0:
            print('Time (s): %g' % (self.exe_time))

        self.topology_factory.update_topology(xopt)
        topology = self.topology_factory.topology
        cantilever = microfem.Cantilever(topology, self.a, self.b)
        fn = ''.join((self.dir, '/', self.tag, '-image.png'))
        microfem.plot_topology(cantilever, fn)

        if self.topology_factory.is_connected is True:

            self.fem.update_mesh(cantilever)
            coords = (cantilever.xtip, cantilever.ytip)
            opr = PlateDisplacement(self.fem, coords).get_operator()
            mode_ident = ModeIdentification(self.fem, cantilever)

            w, _, vall = self.fem.modal_analysis(self.n_modes)
            freq = np.sqrt(w) / (2 * np.pi)
            kuu = self.fem.get_stiffness_matrix(free=False)
            phis = [vall[:, [i]] for i in range(self.n_modes)]
            wtips = [opr @ p for p in phis]
            ks = [
                np.asscalar(p.T @ kuu @ p / w**2) for p, w in zip(phis, wtips)
            ]
            costs = [k / ks[0] for k in ks]
            types = [mode_ident.is_mode_flexural(p) for p in phis]

            tup = ('Disp', 'Freq (Hz)', 'Stiffness', 'Ratio', 'Flexural')
            print('\n    %-15s %-15s %-15s %-15s %-10s' % tup)
            for i in range(self.n_modes):
                tup = (i, wtips[i], freq[i], ks[i], costs[i], str(types[i]))
                print('%-2d: %-15g %-15g %-15g %-15g %-10s' % tup)

            for i in range(self.n_modes):
                microfem.plot_mode(self.fem, vall[:, i])
Пример #5
0
#params = {'nelx': 30, 'nely': 60, 'a0': 10e-6, 'b0':10e-6}
#top = PowerTopology(params)

#params = {'nelx': 30, 'nely': 60, 'a0': 5e-6, 'b0':5e-6}
#top = NewRectangleTopology(params)
#top = NewSplitTopology(params)
#top = NewSteppedTopology(params)
#top = NewPowerTopology(params)
#top = NewTwoStructuresTopology(params)

params = {
    'support_ratio': 3.0,
    'nknx': 5,
    'nkny': 10,
    'nelx': 40,
    'nely': 80,
    'pcon1': 1.0e7,
    'pcon2': 1.0e3,
    'a0': 5.0e-6,
    'b0': 5.0e-6
}
top = NewCompactTopology(params)

for i in range(1):
    xs = 2 * np.random.random(top.ind_size) - 1.0
    top.update_topology(xs)
    cantilever = microfem.Cantilever(*top.get_params())
    #print(xs)
    print(top.xtip, top.ytip)
    microfem.plot_topology(cantilever)