nu = 20 strength = 0.5 lambda_ = 7 max_age = 10 for _ in range(1): darwin = ugp4.Darwin( constraints=library, operators=operators, mu=mu, nu=nu, lambda_=lambda_, strength=strength, max_age=max_age, ) # Evolve____________________________________________________________________________________________________________ darwin.evolve() logging.bare("This is the final population:") for individual in darwin.population: ugp4.print_individual(individual) ugp4.logging.bare(individual.fitness) ugp4.logging.bare("") # Print best individuals logging.bare("These are the best ever individuals:") ugp4.print_individual(darwin.archive.individuals, plot=True) ugp4.logging.log_cpu(ugp4.logging.INFO, "Program completed") sys.exit(0)
mu = 10 nu = 20 strength = 0.7 lambda_ = 7 max_age = 10 darwin = ugp4.Darwin( constraints=library, operators=operators, mu=mu, nu=nu, lambda_=lambda_, strength=strength, max_age=max_age, ) # Evolve and print individuals in population darwin.evolve() logging.bare("This is the final population:") for individual in darwin.population: msg = f"Solution {str(individual.id)} " ugp4.print_individual(individual, msg=msg, plot=False, score=True) # Print best individuals ugp4.print_individual(darwin.archive.individuals, msg="These are the best ever individuals:", plot=False) ugp4.logging.log_cpu(ugp4.logging.INFO, "Program completed") sys.exit(0)
operators += ugp4.GenOperator(ugp4.macro_pool_one_cut_point_crossover, 2) operators += ugp4.GenOperator(ugp4.macro_pool_uniform_crossover, 2) # Create the object that will manage the evolution mu = 10 nu = 20 strength = 0.7 lambda_ = 7 max_age = 10 darwin = ugp4.Darwin( constraints=library, operators=operators, mu=mu, nu=nu, lambda_=lambda_, strength=strength, max_age=max_age, ) # Evolve darwin.evolve() # Print best individuals logging.bare("These are the best ever individuals:") for i in darwin.archive.individuals: print(f"{i}\n\n\n") ugp4.logging.log_cpu(ugp4.logging.INFO, "Program completed") sys.exit(0)
mu = 10 nu = 20 strength = 0.7 lambda_ = 7 max_age = 10 darwin = ugp4.Darwin( constraints=library, operators=operators, mu=mu, nu=nu, lambda_=lambda_, strength=strength, max_age=max_age, ) # Evolve and print individuals in population darwin.evolve() logging.bare("Final population:") for individual in darwin.population: msg = f"Solution {str(individual.id)} " ugp4.print_individual(individual, msg=msg, plot=False) ugp4.logging.bare(f"Fitness: {individual.fitness}") ugp4.logging.bare("") # Print best individuals ugp4.print_individual(darwin.archive.individuals, msg="Archive:", plot=True, score=True) ugp4.logging.log_cpu(ugp4.logging.INFO, "Program completed") sys.exit(0)