Пример #1
0
def _main():
    basics = ts.get_stock_basics()

    frame = DataFrame()
    frame['name'] = np.nan
    # frame['pe'] = basics['pe']
    frame[COL_P_CHANGE_01] = np.nan
    frame[COL_PASTAVERAGETURNOVER] = np.nan
    frame[COL_STOPMARK] = ''

    for i, code in enumerate(leading_shares):
        frame.loc[code, 'name'] = basics.loc[code, 'name']
        hist_data = ts.get_hist_data(code)
        try:
            frame.loc[code, COL_P_CHANGE_01] = hpc(hist_data,
                                                   begin=DAY_0,
                                                   end=DAY_1)
            frame.loc[code, COL_PASTAVERAGETURNOVER] = pat(
                hist_data, PAST_AVERAGE_TURNOVER_PERIOD)
            if hist_data.index[0] != LAST_MARKET_DATE:
                frame.loc[code, COL_STOPMARK] = 'stop'
        except Exception:
            continue

        print('#####', i, '#####')

    filtered_frame = frame[(frame[COL_STOPMARK] != 'stop')]

    sorted_frame = filtered_frame.sort_values(by=COL_P_CHANGE_01)
    print(sorted_frame)

    file_name = '../logs/{date}@HeroSea.csv'.format(date=LAST_MARKET_DATE)
    # print(fileName)
    with open(file_name, 'w', encoding='utf8') as file:
        sorted_frame.to_csv(file)
Пример #2
0
def _main():
    basics = ts.get_stock_basics()

    frame = DataFrame()
    frame['name'] = basics['name']
    frame[COL_PASTCHANGE] = np.nan
    frame[COL_PASTPOSITIVE] = np.nan
    frame['pe'] = basics['pe']
    i = 0
    for code in basics.index:
        hist_data = ts.get_hist_data(code)
        try:
            frame.loc[code, COL_PASTCHANGE] = phpc(hist_data, PAST_DAY_PERIOD)
            if phpc(hist_data, PAST_POSITIVE_PERIOD) > 0:
                frame.loc[code, COL_PASTPOSITIVE] = '★'
            frame.loc[code, COL_PASTAVERAGETURNOVER] = pat(
                hist_data, PAST_AVERAGE_TURNOVER_PERIOD)
        except Exception:
            continue

        i += 1
        print('#####', i, '#####')

    sorted_frame = frame.sort_values(by=COL_PASTCHANGE)
    print(sorted_frame)

    t = time.strftime('%Y-%m-%d', time.localtime())
    file_name = '../logs/%s@rocket%s' % (t, '.csv')
    # print(fileName)
    with open(file_name, 'w', encoding='utf8') as file:
        sorted_frame.to_csv(file)
Пример #3
0
def _main():
    basics = ts.get_stock_basics()

    frame = DataFrame()
    frame['name'] = basics['name']
    frame['pe'] = basics['pe']
    frame[COL_P_CHANGE_01] = np.nan
    frame[COL_P_CHANGE_12] = np.nan
    frame[COL_PASTAVERAGETURNOVER] = np.nan
    frame[COL_STOPMARK] = np.nan
    frame[COL_SORT_KEY] = np.nan

    for i, code in enumerate(basics.index):
        hist_data = ts.get_hist_data(code)
        try:
            frame.loc[code, COL_P_CHANGE_01] = hpc(hist_data,
                                                   begin=DAY_0,
                                                   end=DAY_1)
            frame.loc[code, COL_P_CHANGE_12] = hpc(hist_data,
                                                   begin=DAY_1,
                                                   end=DAY_2)
            frame.loc[code, COL_SORT_KEY] = round(
                frame.loc[code, COL_P_CHANGE_01] *
                frame.loc[code, COL_P_CHANGE_12], 3)
            frame.loc[code, COL_PASTAVERAGETURNOVER] = pat(
                hist_data, PAST_AVERAGE_TURNOVER_PERIOD)
            if hist_data.index[0] != LAST_MARKET_DATE:
                frame.loc[code, COL_STOPMARK] = 'stop'
        except Exception:
            continue

        print('#####', i, '#####')

    filtered_frame = frame[(frame[COL_P_CHANGE_01] > 0)
                           & (frame[COL_P_CHANGE_12] < 0)
                           & (abs(frame[COL_P_CHANGE_12]) > abs(
                               frame[COL_P_CHANGE_01]))
                           & (frame[COL_PASTAVERAGETURNOVER] < 20) &
                           (frame[COL_PASTAVERAGETURNOVER] > 0.5)
                           & (frame['pe'] > 0)
                           & (frame[COL_STOPMARK] != 'stop')]

    sorted_frame = filtered_frame.sort_values(by=COL_SORT_KEY)
    print(sorted_frame)

    file_name = '../logs/{date}@EnemyChaser.csv'.format(date=LAST_MARKET_DATE)
    # print(fileName)
    with open(file_name, 'w', encoding='utf8') as file:
        sorted_frame.to_csv(file)
Пример #4
0
def _main():
    basics = ts.get_stock_basics()

    frame = DataFrame()
    frame['name'] = basics['name']
    frame['pe'] = basics['pe']
    frame[COL_PASTFAR] = np.nan
    frame[COL_PASTNEAR] = np.nan
    frame[COL_PASTAVERAGETURNOVER] = np.nan
    frame[COL_STOPMARK] = np.nan
    i = 0
    for code in basics.index:
        hist_data = ts.get_hist_data(code)
        try:
            frame.loc[code, COL_PASTFAR] = hpc(hist_data, begin=DAY_NEAR, end=DAY_FAR)
            frame.loc[code, COL_PASTNEAR] = hpc(hist_data, begin=0, end=DAY_NEAR)
            frame.loc[code, COL_PASTAVERAGETURNOVER] = pat(hist_data, PAST_AVERAGE_TURNOVER_PERIOD)
            if hist_data.index[0] != LAST_MARKET_DATE:
                frame.loc[code, COL_STOPMARK] = 'stop'
        except Exception:
            continue

        i += 1
        print('#####', i, '#####')

    filtered_frame = frame[(frame[COL_PASTFAR] < 0)
                           & (frame[COL_PASTNEAR] > 0)
                           & (frame[COL_PASTAVERAGETURNOVER] < 20) & (frame[COL_PASTAVERAGETURNOVER] > 0.5)
                           & (frame['pe'] < 100) & (frame['pe'] > 0)
                           & (frame[COL_STOPMARK] != 'stop')]

    sorted_frame = filtered_frame.sort_values(by=COL_PASTFAR)
    print(sorted_frame)

    file_name = '../logs/%s@flash%s' % (LAST_MARKET_DATE, '.csv')
    # print(fileName)
    with open(file_name, 'w', encoding='utf8') as file:
        sorted_frame.to_csv(file)