Пример #1
0
    def extract_crop(self, i, label=None, vol_size=(64, 64, 64)):
        def get_output(oname):
            name_suffix = oname + str(vol_size[0])
            output_image = self.get_imagetype_path(name_suffix)
            if not os.path.exists(output_image):
                os.makedirs(output_image)
            return output_image, name_suffix

        name = self.get_image_name(i)
        print(name)
        output_image, image_name_suffix = get_output(
            configs.get('images_crop_prefix'))
        output_labelmap, labelmap_name_suffix = get_output(
            configs.get('labelmaps_crop_prefix'))

        lmap = self.load_labelmap(i)
        if label is not None:
            labels = [label]
        else:
            labels = list(np.unique(lmap).flatten())
            labels.remove(0)

        sitk_image = self.load_sitk_image(i)
        spacing = sitk_image.GetSpacing()
        img = self.get_array_from_sitk_image(sitk_image)
        for l in labels:
            image, labelmap = extract_vol_at_label(img,
                                                   self.load_labelmap(i),
                                                   label=l,
                                                   vol_size=vol_size)
            labelmap = (labelmap == l).astype(np.uint8)

            image = sitk.GetImageFromArray(image)
            labelmap = sitk.GetImageFromArray(labelmap)
            image.SetSpacing(spacing)
            labelmap.SetSpacing(spacing)

            suffix = '_' + str(l)

            sitk.WriteImage(
                image,
                os.path.join(
                    output_image,
                    name + suffix + '_' + image_name_suffix + '.nii.gz'))
            sitk.WriteImage(
                labelmap,
                os.path.join(
                    output_labelmap,
                    name + suffix + '_' + labelmap_name_suffix + '.nii.gz'))
Пример #2
0
 def load_labelmap_crop(self, img_idx, vol_size=(64, 64, 64), label=1):
     name = self.get_image_name(img_idx)
     name_suffix = configs.get('labelmaps_crop_prefix') + str(vol_size[0])
     output = self.get_imagetype_path(name_suffix)
     path = os.path.join(
         output, name + '_' + str(label) + '_' + name_suffix + '.nii.gz')
     return self._load_image_from_disk(path)
Пример #3
0
    def setup(self):
        if self.dir_path is None:
            return

        dataset_path = Path(self.dir_path)
        image_type_paths = {
            image_type_path.name: image_type_path
            for image_type_path in dataset_path.iterdir()
        }
        image_types = list(image_type_paths.keys())
        image_types.remove('images')
        image_types = ['images'] + image_types
        for image_type in image_types:
            image_type_path = image_type_paths[image_type]
            image_type = image_type_path.name
            self.image_type_dirs.add(image_type)
            image_type = configs.get('remap_dirs',
                                     {}).get(image_type, image_type)

            for image_path in (image_type_path /
                               self.get_spacing_dirname()).glob('*' +
                                                                self.ext):
                name = image_path.name.replace(self.ext, '')
                for existing_name in self.dataframe.index:
                    if existing_name in name:  # check if subset of existing name
                        name = existing_name

                self.dataframe.loc[name,
                                   f'{image_type}_path'] = str(image_path)

        if self.images_only:
            self.dataframe = self.dataframe[['image_path']].dropna()
        else:
            self.dataframe.dropna(inplace=True)
Пример #4
0
 def load2d_slices(self, label):
     s = self.spacing
     try:
         s = s[0]
     except:
         pass
     path = os.path.join(
         self.dir_path, self.name + '_label' + str(label) + '_spacing' +
         str(s) + '_2dslices.npz')
     if os.path.exists(path):
         slices = np.load(path)
     else:
         print('{} does not exist. Extracting...'.format(path))
         self.export_2d_slices(self.dir_path, label)
         slices = np.load(path)
     return slices[configs.get('images_dir')], slices[configs.get(
         'labelmaps_dir')]
Пример #5
0
    def get_spacing_dirname(self, spacing=None):

        if spacing is None:
            spacing = self.spacing

        if type(spacing) in [int, float]:
            if isinstance(spacing, float) and spacing.is_integer():
                spacing = int(spacing)
            spacing = [spacing]

        if sum(spacing) <= 0:
            spacing_dirname = configs.get('native_images_dir')
        elif len(spacing) == 1:
            spacing_dirname = configs.get(
                'subsampled_images_dir_prefix') + str(spacing[0]) + 'mm'
        else:
            spacing_str = ''
            for s in spacing:
                spacing_str += str(s) + '-'
            spacing_str = spacing_str[:-1]
            spacing_dirname = configs.get(
                'subsampled_images_dir_prefix') + spacing_str + 'mm'

        return spacing_dirname
Пример #6
0
 def get_root_path(self):
     return configs.get('root_path')
Пример #7
0
def load_dataset(name, **kwargs):
    dataset = get_dataset_info(name)
    dataset['dir_path'] = os.path.join(configs.get('root_path'), dataset['subpath'])
    dataset.update(kwargs)
    return MIReader.from_dict(**dataset)