Пример #1
0
def partial_vectors(dset, estimator_config_key):
    """Call all partials specified in the configuration and set up the corresponding state vector

    The list of partials to calculate is taken from the config file of the given technique. Each partial calculator is
    passed a :class:`~where.data.dataset.Dataset` with data for the modelrun and should return a tuple with the partial
    vectors and their names.

    Args:
        dset (Dataset):                 A Dataset containing model run data.
        estimator_config_key (String):  Key in config file with the name of the estimator.

    Returns:
        Dict: List of names of the partial derivatives for each partial config key.
    """
    partial_vectors = dict()
    prefix = dset.vars["pipeline"]

    # Delete values from previous iterations
    if "partial" in dset.fields:
        del dset.partial

    for config_key in estimators.partial_config_keys(estimator_config_key):
        partial_vectors[config_key] = list()
        partials = config.tech[config_key].list
        partial_data = plugins.call_all(package_name=__name__,
                                        plugins=partials,
                                        prefix=prefix,
                                        dset=dset)

        for param, (data, names, data_unit) in partial_data.items():
            param_unit_cfg = config.tech[param].unit
            if not param_unit_cfg.str:
                log.fatal(
                    f"No unit given for parameter {param!r} in {param_unit_cfg.source}"
                )

            display_unit = config.tech[param].display_unit.str
            display_unit = param_unit_cfg.str if not display_unit else display_unit
            partial_unit_str = f"{dset.unit('calc')[0]} / ({param_unit_cfg.str})"
            partial_unit = str(Unit(partial_unit_str).u)
            factor = Unit(data_unit, partial_unit)
            for values, name in zip(data.T, names):
                partial_name = f"{param}-{name}" if name else f"{param}"
                partial_vectors[config_key].append(partial_name)

                field_name = f"partial.{partial_name}"
                dset.add_float(field_name,
                               val=values * factor,
                               unit=partial_unit,
                               write_level="operational")
                dset.meta.add(partial_name,
                              display_unit,
                              section="display_units")

    return partial_vectors
Пример #2
0
def apply_postprocessors(config_key, dset):
    """Apply postprocessors for a given session

    Args:
        config_key (String):  The configuration key listing which postprocessors to apply.
        dset (Dataset):       Dataset containing analysis data.
    """
    prefix = dset.vars["pipeline"]
    postprocessors = config.tech[config_key].list
    log.info(f"Applying postprocessors")
    return plugins.call_all(package_name=__name__,
                            plugins=postprocessors,
                            prefix=prefix,
                            dset=dset)
Пример #3
0
def get(dset, param_names):
    """Call an ..

    Args:
        dset (Dataset):          Model run data.
        param_names:             Names of parameters to estimate
    """
    constraints = config.tech["estimate_constraints"].list
    constraints = plugins.call_all(package_name=__name__,
                                   plugins=constraints,
                                   prefix="todo",
                                   dset=dset,
                                   param_names=param_names)

    h = np.concatenate([c[0] for c in constraints.values()])
    sigma = np.concatenate([c[1] for c in constraints.values()])
    import IPython

    IPython.embed()
    return h, sigma
Пример #4
0
def apply_removers(config_key: str, dset: "Dataset") -> None:
    """Apply all removers for a given session

    Args:
        config_key:  The configuration key listing which removers to apply.
        dset:        Dataset containing analysis data.
    """
    prefix = dset.vars["pipeline"]
    removers = config.tech[config_key].list
    log.info(f"Applying removers")
    keep_idxs = plugins.call_all(package_name=__name__, plugins=removers, prefix=prefix, dset=dset)

    all_keep_idx = np.ones(dset.num_obs, dtype=bool)
    for remover, remover_keep_idx in keep_idxs.items():
        log.info(f"Removing {sum(np.logical_not(remover_keep_idx)):5d} observations based on {remover}")
        all_keep_idx = np.logical_and(all_keep_idx, remover_keep_idx)

    log.info(f"Keeping {sum(all_keep_idx)} of {dset.num_obs} observations")
    dset.subset(all_keep_idx)

    if dset.num_obs == 0:
        log.fatal("No observations are available.")
Пример #5
0
def apply_outlier_detectors(config_key: str, dset: "Dataset") -> np.ndarray:
    """Apply all outlier detectors for a given session

    Args:
        config_key:  The configuration key listing which detectors to apply.
        dset:        Dataset containing analysis data.
    """
    prefix = dset.vars["pipeline"]
    detectors = config.tech[config_key].list
    log.info(f"Apply outlier detectors")
    keep_idxs = plugins.call_all(package_name=__name__,
                                 plugins=detectors,
                                 prefix=prefix,
                                 dset=dset)

    all_keep_idx = np.ones(dset.num_obs, dtype=bool)
    for detector, detector_keep_idx in keep_idxs.items():
        log.info(
            f"Detecting {sum(~detector_keep_idx):5d} outliers based on {detector}"
        )
        all_keep_idx = np.logical_and(all_keep_idx, detector_keep_idx)

    log.info(f"Removing {sum(~all_keep_idx)} of {dset.num_obs} observations")
    return all_keep_idx
Пример #6
0
def test_all_plugins(plugin_package):
    """Test that call_all calls all plugins"""
    results = plugins.call_all(plugin_package)
    assert isinstance(results, dict)
    assert len(results) > 1
Пример #7
0
def calculate(config_key, dset):
    prefix = dset.vars["pipeline"]
    return plugins.call_all(package_name=__name__, plugins=config.tech[config_key].list, prefix=prefix, dset=dset)