def __init__(self, clk_freq, baud_rate): self.submodules.rxcore = RX(clk_freq, baud_rate) self.submodules.fifo = SyncFIFO(8, 1024) self.comb += [self.fifo.din.eq(self.rxcore.data)] self.submodules.fsm = FSM(reset_state='IDLE') self.fsm.act( 'IDLE', If( self.rxcore.ready, If( self.fifo.writable, self.fifo.we.eq(1), ), self.rxcore.ack.eq(1), NextState('READING'), ).Else(self.fifo.we.eq(0), )) self.fsm.act( 'READING', self.fifo.we.eq(0), self.rxcore.ack.eq(0), If( ~self.rxcore.ready, NextState('IDLE'), ), ) self.dout = self.fifo.dout self.re = self.fifo.re self.readable = self.fifo.readable self.rx = self.rxcore.rx self.io = {self.dout, self.re, self.readable, self.rx}
def __init__(self): self.cfu_bus = Record(cfu_bus_minimized_layout) self.cfu_cen = Signal() self.cpu_cen = Signal() self.submodules.fsm = fsm = FSM(reset_state="CPU_ENABLED") fsm.act( "CPU_ENABLED", self.cpu_cen.eq(1), self.cfu_cen.eq(0), # If CPU has prepared a command, enable CFU If( self.cfu_bus.cmd.valid, self.cfu_cen.eq(1), NextState("CFU_ENABLED"), )) fsm.act( "CFU_ENABLED", self.cfu_cen.eq(1), self.cpu_cen.eq(1), # Disable CPU if CFU is calculating response If( ~self.cfu_bus.rsp.valid & ~self.cfu_bus.cmd.valid, self.cpu_cen.eq(0), # Enable CPU and disable CFU if CPU received a response and has no next command If( self.cfu_bus.cmd.ready, self.cpu_cen.eq(1), NextState("CPU_ENABLED"), )))
def __init__(self, clk_freq, baud_rate): self.data = Signal(8) self.ready = Signal() self.ack = Signal() self.error = Signal() self.rx = Signal(reset=1) divisor = clk_freq // baud_rate rx_counter = Signal(max=divisor) self.rx_strobe = Signal() self.comb += self.rx_strobe.eq(rx_counter == 0) self.sync += \ If(rx_counter == 0, rx_counter.eq(divisor - 1) ).Else( rx_counter.eq(rx_counter - 1) ) self.rx_bitno = Signal(3) self.submodules.rx_fsm = FSM(reset_state='IDLE') self.rx_fsm.act( 'IDLE', If(~self.rx, NextValue(rx_counter, divisor // 2), NextState('START'))) self.rx_fsm.act('START', If(self.rx_strobe, NextState('DATA'))) self.rx_fsm.act( 'DATA', If(self.rx_strobe, NextValue(self.data, Cat(self.data[1:8], self.rx)), NextValue(self.rx_bitno, self.rx_bitno + 1), If(self.rx_bitno == 7, NextState('STOP')))) self.rx_fsm.act( 'STOP', If(self.rx_strobe, If(~self.rx, NextState('ERROR')).Else(NextState('FULL'), ))) self.rx_fsm.act( 'FULL', self.ready.eq(1), If(self.ack, NextState('IDLE')).Elif(~self.rx, NextState('ERROR'))) self.rx_fsm.act('ERROR', self.error.eq(1))
def migen_body(self, template): inp = template.add_pa_in_port('inp', DOptional(DInt())) trigger = template.add_pa_in_port('trigger', DOptional(DInt())) out = template.add_pa_out_port('out', DInt()) # Declare input and output ports always happy to receive/transmit data self.comb += ( inp.ready.eq(1), trigger.ready.eq(1), out.ready.eq(1), ) commander_fsm = FSM(reset_state="IDLE") self.submodules.commander_fsm = commander_fsm commander_fsm.act("IDLE", If(inp.valid == 1, NextState("LOADING"))) commander_fsm.act( "LOADING", If(trigger.valid & trigger.data == 1, NextState("RETURN")).Else( NextValue(out.data, out.data + inp.data), )) commander_fsm.act("RETURN", NextValue(out.valid, 1), NextState("IDLE"))
def migen_body(self, template): # creation of input/output ports angle = template.add_pa_in_port( 'angle', dl.DOptional(dl.DRaw(dl.DUInt(dl.DSize(ANGLE_MEMORY_WIDTH)))) ) hal_command = template.add_pa_out_port('hal_command', dl.DUInt(dl.DSize(32))) shot_completed = template.add_pa_out_port('shot_completed', dl.DBool()) # set up internal signals _rotation_command = Signal(32) self.comb += ( # declare input/output ports always happy to receive/transmit data angle.ready.eq(1) ) # define finite state machine for triggering HAL command sequences self.submodules.commander_fsm = \ commander_fsm = FSM(reset_state="STATE_PREPARATION") # waits for angle signal before kicking off HAL sequence commander_fsm.act( "STATE_PREPARATION", NextValue(shot_completed.valid, 0), If( angle.valid == 1, NextValue( _rotation_command, dl.lib.command_creator("RX", argument=angle.data) ), NextValue(hal_command.valid, 1), NextValue( hal_command.data, dl.lib.command_creator("STATE_PREPARATION") ), NextState("ROTATION") ).Else( NextValue(hal_command.valid, 0), NextState("STATE_PREPARATION") ) ) # align HAL command to rotation commander_fsm.act( "ROTATION", NextValue(hal_command.valid, 1), NextValue(hal_command.data, _rotation_command), NextValue(shot_completed.valid, 0), NextState("STATE_MEASURE") ) # align HAL command to state measure commander_fsm.act( "STATE_MEASURE", NextValue(hal_command.valid, 1), NextValue(hal_command.data, dl.lib.command_creator("STATE_MEASURE")), NextValue(shot_completed.valid, 1), NextValue(shot_completed.data, 1), NextState("STATE_PREPARATION") )
def migen_body(self, template): # creation of input/output ports shot_completed = template.add_pa_in_port('shot_completed', dl.DOptional(dl.DBool())) hal_result = template.add_pa_in_port( 'hal_result', dl.DOptional(dl.DUInt(dl.DSize(32))) ) agg_result = template.add_pa_out_port('agg_result', dl.DInt(dl.DSize(32))) # Completed is currently returning a simple 0/1 value but we make space # for an error code to be returned e.g. 255, 0b11111111 can be in the # future used to represent an error. completed = template.add_pa_out_port('completed', dl.DInt(dl.DSize(8))) next_angle = template.add_pa_out_port( 'next_angle', dl.DRaw(dl.DUInt(dl.DSize(ANGLE_MEMORY_WIDTH))) ) # generate a ROM of 10-bit angle values angles = generate_angles(RESOLUTION) self.specials.angle_memory = angle_memory = Memory( ANGLE_MEMORY_WIDTH, len(angles), init=angles, name="ANGLE_ROM" ) angle_rom_port = angle_memory.get_port(write_capable=False) self.specials += angle_rom_port # set up internal signals _shots_counter = Signal(32) _high_hal_results = Signal(32) _reset_high_hal = Signal(1) _angle_rom_index = Signal(RESOLUTION+1) self.comb += ( # declare input/output ports always happy to receive/transmit data hal_result.ready.eq(1), shot_completed.ready.eq(1), # align angle ROM address with ROM index signal angle_rom_port.adr.eq(_angle_rom_index), ) # define finite state machine for triggering angle and result signals self.submodules.rabi_aggregator_fsm = \ rabi_aggregator_fsm = FSM(reset_state="IDLE") # Logic to accumulate measurements self.sync += ( If (_reset_high_hal == 1, _high_hal_results.eq(0) ).Else ( If (hal_result.valid == 1, If ((hal_result.data & dl.lib.Masks.MEASUREMENTS.value) == 1, _high_hal_results.eq(_high_hal_results + 1) ) ) ) ) # waits for the experiment to be kicked off rabi_aggregator_fsm.act( "IDLE", NextValue(agg_result.valid, 0), NextValue(next_angle.valid, 0), NextValue(completed.valid, 0), NextValue(_shots_counter, 0), NextValue(_reset_high_hal, 1), NextState("DO_SHOTS") ) rabi_aggregator_fsm.act( "DO_SHOTS", NextValue(agg_result.valid, 0), NextValue(_reset_high_hal, 0), If (_shots_counter == REPETITIONS, NextState("CHECK_IF_COMPLETE"), NextValue(_angle_rom_index, _angle_rom_index + 1), NextValue(agg_result.data, _high_hal_results), NextValue(agg_result.valid, 1), NextValue(_reset_high_hal, 1), ).Else ( NextValue(next_angle.data, angle_rom_port.dat_r), NextValue(next_angle.valid, 1), NextState("WAIT_SHOT") ) ) rabi_aggregator_fsm.act( "WAIT_SHOT", NextValue(next_angle.valid, 0), If ((shot_completed.valid == 1) & (shot_completed.data == 1), NextValue(_shots_counter, _shots_counter + 1), NextState("DO_SHOTS"), ) ) rabi_aggregator_fsm.act( "CHECK_IF_COMPLETE", NextState("IDLE"), NextValue(agg_result.valid, 0), If(_angle_rom_index == 2 ** RESOLUTION, NextValue(completed.data, 1), NextValue(completed.valid, 1), ) )
def migen_body(self, template): _TIME_RES = 32 # Node inputs self.time_in = template.add_pa_in_port('time_in', dl.Optional(dl.UInt())) # Node outputs self.time_out = template.add_pa_out_port('time_out', dl.UInt()) self.counter_reset = template.add_pa_out_port('counter_reset', dl.Int()) # Internal signals self.pmt_reg = Signal(_TIME_RES) self.rf_reg = Signal(_TIME_RES) self.pmt_trig = Signal(1) self.rf_trig = Signal(1) self.submodules.fsm = FSM(reset_state="RESET_COUNTER") self.sync += [ If( self.pmt_trig, self.pmt_reg.eq(self.time_in.data), ).Elif(self.fsm.ongoing("RESET_COUNTER"), self.pmt_reg.eq(0)).Else(self.pmt_reg.eq(self.pmt_reg)), If( self.rf_trig, self.rf_reg.eq(self.time_in.data), ).Elif(self.fsm.ongoing("RESET_COUNTER"), self.rf_reg.eq(0)).Else(self.rf_reg.eq(self.rf_reg)) ] """FSM The FSM is used to control the readouts from the HPTDC chip and generate a time signal for the accumulator RESET_COUNTER This is the dinitial state of the FSM at the start of the experiment. It resets the "coarse counter" of the HPTDC chip to establish a TO time reference. WAIT_FOR_PMT This state holds until the PMT timestamp is available at the HPTDC chip readout (first data_ready sync pulse) WAIT_FOR_RF This state holds until the RMT timestamp is available at the HPTDC chip readout (second data_ready sync pulse) SEND_TIME In this state, the difference between t_PMT and t_RF is derived and sent to the accumulator. WAIT_ACC_LATENCY This state is used to wait for any delays on inter-node communication """ self.fsm.act( "RESET_COUNTER", self.pmt_trig.eq(0), self.rf_trig.eq(0), self.time_in.ready.eq(1), self.counter_reset.data.eq(1), # reset counters self.counter_reset.valid.eq(1), NextState("WAIT_FOR_PMT")) self.fsm.act( "WAIT_FOR_PMT", self.counter_reset.data.eq(0), self.time_in.ready.eq(1), If(self.time_in.valid, self.pmt_trig.eq(1), NextState("WAIT_FOR_RF"))) self.fsm.act( "WAIT_FOR_RF", self.time_in.ready.eq(1), If(self.time_in.valid, self.rf_trig.eq(1), NextState("SEND_TIME"))) self.fsm.act("SEND_TIME", self.time_in.ready.eq(1), self.time_out.data.eq(self.rf_reg - self.pmt_reg), self.time_out.valid.eq(1), NextState("WAIT_ACC_LATENCY")) self.fsm.act("WAIT_ACC_LATENCY", If(self.time_in.valid == 0, NextState("RESET_COUNTER")))
def __init__(self, pads): self.pads = pads self.bus = bus = Interface(adr_width=22) self.dly_io = delayf_pins() self.dly_clk = delayf_pins() # # # clk = Signal() cs = Signal() ca = Signal(48) sr_in = Signal(64) sr_out = Signal(64) sr_rwds_in = Signal(8) sr_rwds_out = Signal(8) timeout_counter = Signal(6) self.submodules.phy = phy = HyperBusPHY(pads) self.comb += [ phy.dly_io.eq(self.dly_io), phy.dly_clk.eq(self.dly_clk), ] # Drive rst_n, from internal signals --------------------------------------------- if hasattr(pads, "rst_n"): self.comb += pads.rst_n.eq(1) self.comb += [phy.cs.eq(~cs), phy.clk_enable.eq(clk)] # Data In/Out Shift Registers ------------------------------------------------- self.sync += [ sr_out.eq(Cat(Signal(32), sr_out[:32])), sr_in.eq(Cat(phy.dq.i, sr_in[:32])), sr_rwds_in.eq(Cat(phy.rwds.i, sr_rwds_in[:4])), sr_rwds_out.eq(Cat(phy.rwds.i, sr_rwds_out[:4])), ] self.comb += [ bus.dat_r.eq(Cat(phy.dq.i[-16:], sr_in[:16])), # To Wishbone phy.dq.o.eq(sr_out[-32:]), # To HyperRAM phy.rwds.o.eq(sr_rwds_out[-4:]) # To HyperRAM ] # Command generation ----------------------------------------------------------------------- self.comb += [ ca[47].eq(~self.bus.we), # R/W# ca[45].eq(1), # Burst Type (Linear) ca[16:35].eq(self.bus.adr[2:21]), # Row & Upper Column Address ca[1:3].eq(self.bus.adr[0:2]), # Lower Column Address ca[0].eq(0), # Lower Column Address ] # FSM Sequencer -------------------------------------------------------------------------------- self.submodules.fsm = fsm = FSM(reset_state="IDLE") fsm.act("IDLE", If(bus.cyc & bus.stb, NextValue(cs, 1), NextState("CA-SEND"))) fsm.act("CA-SEND", NextValue(clk, 1), NextValue(phy.dq.oe, 1), NextValue(sr_out, Cat(Signal(16), ca)), NextState("CA-WAIT")) fsm.act("CA-WAIT", NextValue(timeout_counter, 0), NextState("LATENCY")) fsm.act("LATENCY", NextValue(phy.dq.oe, 0), NextState("LATENCY-WAIT")) fsm.delayed_enter("LATENCY-WAIT", "READ-WRITE-SETUP", 3) fsm.act("READ-WRITE-SETUP", NextValue(phy.dq.oe, self.bus.we), NextValue(phy.rwds.oe, self.bus.we), NextState("READ-WRITE")) fsm.act( "READ-WRITE", NextState("READ-ACK"), If( self.bus.we, NextValue(phy.dq.oe, 1), # Write Cycle NextValue(sr_out[:32], 0), NextValue(sr_out[32:], self.bus.dat_w), NextValue(sr_rwds_out[:4], 0), NextValue(sr_rwds_out[4:], ~bus.sel[0:4]), bus.ack.eq(1), # Get next byte NextState("CLK-OFF"), If( bus.cti == 0b010, NextState("READ-WRITE"), ))) fsm.act( "READ-ACK", NextValue(timeout_counter, timeout_counter + 1), If(phy.rwds.i[3], NextValue(timeout_counter, 0), bus.ack.eq(1), If(bus.cti != 0b010, NextValue(clk, 0), NextState("CLEANUP"))), If(~self.bus.cyc | (timeout_counter > 20), NextState("CLK-OFF"))) fsm.act("CLK-OFF", NextValue(clk, 0), NextState("CLEANUP")) fsm.act("CLEANUP", NextValue(cs, 0), NextValue(phy.rwds.oe, 0), NextValue(phy.dq.oe, 0), NextState("HOLD-WAIT")) fsm.act("HOLD-WAIT", NextValue(sr_out, 0), NextValue(sr_rwds_out, 0), NextState("WAIT")) fsm.delayed_enter("WAIT", "IDLE", 10) # Signals that can be an ILA for debugging self.dbg = [ bus, sr_out, sr_in, sr_rwds_in, sr_rwds_out, cs, clk, phy.dq.i, phy.dq.o, phy.dq.oe, phy.rwds.i, phy.rwds.o, phy.rwds.oe, ]
def __init__(self, counter_width=10): """Define the state machine logic for running the input & output sequences.""" self.m = Signal(counter_width) # Global cycle-relative time. self.time_remaining = Signal( 32) # Clock cycles remaining before timeout self.time_remaining_buf = Signal(32) self.cycles_completed = Signal( 14 ) # How many iterations of the loop have completed since last start self.run_stb = Signal( ) # Pulsed to start core running until timeout or success self.done_stb = ( Signal()) # Pulsed when core has finished (on timeout or success) self.running = Signal() # Asserted on run_stb, cleared on done_stb self.timeout = Signal() self.success = Signal() self.ready = Signal() self.herald = Signal() self.is_master = Signal() self.standalone = Signal( ) # Ignore state of partner for single-device testing. self.act_as_master = Signal() self.comb += self.act_as_master.eq(self.is_master | self.standalone) self.trigger_out = Signal() # Trigger to slave # Unregistered inputs from master self.trigger_in_raw = Signal() self.success_in_raw = Signal() self.timeout_in_raw = Signal() # Unregistered input from slave self.slave_ready_raw = Signal() self.m_end = Signal( counter_width) # Number of clock cycles to run main loop for # Asserted while the entangler is idling, waiting for the entanglement cycle to # start. self.cycle_starting = Signal() self.cycle_ending = Signal() # # # self.comb += self.cycle_ending.eq(self.m == self.m_end) self.trigger_in = Signal() self.success_in = Signal() self.slave_ready = Signal() self.timeout_in = Signal() self.sync += [ self.trigger_in.eq(self.trigger_in_raw), self.success_in.eq(self.success_in_raw), self.slave_ready.eq(self.slave_ready_raw), self.timeout_in.eq(self.timeout_in_raw), ] self.sync += [ If(self.run_stb, self.running.eq(1)), If(self.done_stb, self.running.eq(0)), ] # The core times out if time_remaining countdown reaches zero, or, # if we are a slave, if the master has timed out. # This is required to ensure the slave syncs with the master self.comb += self.timeout.eq((self.time_remaining == 0) | (~self.act_as_master & self.timeout_in)) self.sync += [ If(self.run_stb, self.time_remaining.eq(self.time_remaining_buf)).Else( If(~self.timeout, self.time_remaining.eq(self.time_remaining - 1))) ] done = Signal() done_d = Signal() finishing = Signal() self.comb += finishing.eq(~self.run_stb & self.running & (self.timeout | self.success)) # Done asserted at the at the end of the successful / timedout cycle self.comb += done.eq(finishing & self.cycle_starting) self.comb += self.done_stb.eq(done & ~done_d) # Ready asserted when run_stb is pulsed, and cleared on success or timeout self.sync += [ If( self.run_stb, self.ready.eq(1), self.cycles_completed.eq(0), self.success.eq(0), ), done_d.eq(done), If(finishing, self.ready.eq(0)), ] fsm = FSM() self.submodules += fsm fsm.act( "IDLE", self.cycle_starting.eq(1), If( self.act_as_master, If( ~finishing & self.ready & (self.slave_ready | self.standalone), NextState("TRIGGER_SLAVE"), ), ).Else( If(~finishing & self.ready & self.trigger_in, NextState("COUNTER"))), NextValue(self.m, 0), self.trigger_out.eq(0), ) fsm.act("TRIGGER_SLAVE", NextState("TRIGGER_SLAVE2"), self.trigger_out.eq(1)) fsm.act("TRIGGER_SLAVE2", NextState("COUNTER"), self.trigger_out.eq(1)) fsm.act( "COUNTER", NextValue(self.m, self.m + 1), If( self.cycle_ending, NextValue(self.cycles_completed, self.cycles_completed + 1), If( self.act_as_master, If(self.herald, NextValue(self.success, 1)), NextState("IDLE"), ).Else(NextState("SLAVE_SUCCESS_WAIT")), ), self.trigger_out.eq(0), ) fsm.act("SLAVE_SUCCESS_WAIT", NextState("SLAVE_SUCCESS_CHECK")) fsm.act( "SLAVE_SUCCESS_CHECK", # On slave, checking if master broadcast success If(self.success_in, NextValue(self.success, 1)), NextState("IDLE"), )
def __init__(self, clk_freq, baud_rate): divisor = clk_freq // baud_rate self.submodules.fifo = SyncFIFO(8, 1024) self.din = self.fifo.din self.we = self.fifo.we self.writable = self.fifo.writable self.tx = Signal() self.io = {self.din, self.we, self.fifo.writable, self.tx} # strobe_counter counts down from divisor to 0, resets automatically # or when strobe-start is asserted. strobe_counter = Signal(max=divisor) strobe_start = Signal() strobe = Signal() self.comb += strobe.eq(strobe_counter == 0) self.sync += (If( strobe | strobe_start, strobe_counter.eq(divisor - 1), ).Else(strobe_counter.eq(strobe_counter - 1))) # Main bit sender FSM. bit_counter = Signal(max=8) tx_data = Signal(8) self.submodules.fsm = FSM(reset_state='IDLE') self.fsm.act( 'IDLE', If( self.fifo.readable, NextState('START'), NextValue(tx_data, self.fifo.dout), )) self.fsm.act( 'START', If( strobe, NextState('DATA'), NextValue(bit_counter, 0), ), ) self.fsm.act( 'DATA', If( strobe, If( bit_counter == 7, NextState('STOP'), ).Else(NextValue(bit_counter, bit_counter + 1)))) self.fsm.act( 'STOP', If( strobe, NextState('IDLE'), ), ) self.comb += [ # FIFO readout. self.fifo.re.eq(self.fsm.ongoing('IDLE')), # Keep resetting the counter when in IDLE. strobe_start.eq(self.fsm.ongoing('IDLE')), # TX line logic. If( self.fsm.ongoing('START'), self.tx.eq(0), ).Elif( self.fsm.ongoing('DATA'), self.tx.eq((tx_data >> bit_counter) & 1), ).Else(self.tx.eq(1), ) ]
def migen_body(self, template): # Node Inputs # Two inputs, a command and parameters. self.DAC_command = template.add_pa_in_port('DAC_command', dl.DOptional(dl.DInt())) self.DAC_param = template.add_pa_in_port('DAC_param', dl.DOptional(dl.DInt())) # Node Outputs # Returns the node status upon request self.DAC_controller_status = template.add_pa_out_port( 'DAC_controller_status', dl.DInt()) # Data to be returned to accumulator eg DAC voltage self.DAC_return_data = template.add_pa_out_port( 'DAC_return_data', dl.DInt()) # Internal signals. ##### # How long to wait for the DAC voltage to settle after a new # voltage is set self.v_settle_count = Signal(10) # Tracks the current status of this node self.node_status_internal = Signal(8) # 10 bit voltage self.DAC_voltage = Signal(10) # If self.v_settle_count is not zero it means we've updated the voltage # and are waiting for it to settle before initiating more data # collection self.sync += If(self.v_settle_count != 0, self.v_settle_count.eq(self.v_settle_count - 1)) # If the DAC_command is a request of node status immediately return # present value of node status self.comb += If( self.DAC_command.data == DAC_STATUS, self.DAC_controller_status.data.eq(self.node_status_internal), self.DAC_controller_status.valid.eq(1)) """FSM The state machine is used to handle the different commands. These will likely involve further communication with the SPI drives to the DAC IDLE This is the default hold state. It stays here while there is nothing to do. When recieving a command the state is then changed appropriately. DAC_READ_VOLTAGE This state returns the current DAC voltage. This is stored locally in DAC_voltage, however, in a real implementation this state would read the voltage directly from the DAC IC and return this value. DAC_SET_VOLTAGE This state sets DAC_voltage equal to the value sent in DAC_param. In a real implementation this state would pass the correct set of SPI commands to set the DAC voltage. SETTLE_HOLD This state is used as a hold time after the DAC voltage is written. We can assume there is a none zero settle time for the new electrode voltage to be set and any oscillations to settle. The time in this hold state is set by the self.v_settle_count value, set when moving from DAC_SET_VOLTAGE. Once self.cnt reaches 0 then the FSM moves back to IDLE. While in this state a poll of the DAC_STATUS will return _BUSY """ self.submodules.DAC_fsm = FSM(reset_state="IDLE") self.DAC_fsm.act( "IDLE", NextValue(self.DAC_command.ready, 1), NextValue(self.DAC_param.ready, 1), NextValue(self.DAC_return_data.valid, 0), If(self.DAC_command.data == DAC_GET_VOLTAGE, NextValue(self.node_status_internal, BUSY), NextState("DAC_READ_VOLTAGE")).Elif( self.DAC_command.data == DAC_SET_VOLTAGE, NextValue(self.DAC_voltage, self.DAC_param.data), NextValue(self.node_status_internal, BUSY), NextState("DAC_SET_VOLTAGE"))) self.DAC_fsm.act( "DAC_READ_VOLTAGE", NextValue(self.DAC_return_data.data, self.DAC_voltage), NextValue(self.DAC_return_data.valid, 1), NextValue(self.node_status_internal, READY), NextState("IDLE")) self.DAC_fsm.act("DAC_SET_VOLTAGE", NextValue(self.node_status_internal, BUSY), NextValue(self.v_settle_count, 0x1), NextState("SETTLE_HOLD")) self.DAC_fsm.act( "SETTLE_HOLD", If(self.v_settle_count == 0, NextValue(self.node_status_internal, READY), NextState("IDLE")))
def __init__(self, c2): txwidth = 13 txlen = Signal(max=txwidth + 1) txbuf = Signal(txwidth) rxbuf = Signal(8) rxlen = Signal(4) waitlen = Signal(7) rfull = Signal() readerror = Signal() reset_count = Signal(max=961) self._cmd = CSRStorage(8) self._stat = CSRStatus(8) self._rxbuf = CSRStatus(8) self.comb += self._rxbuf.status.eq(rxbuf) self._txdat = CSRStorage(8) c2d = TSTriple() c2ck = Signal(reset=1) self.comb += c2.c2ck.eq(c2ck) self.specials += c2d.get_tristate(c2.c2d) self._pwcon = CSRStorage(8, reset=1) self._glitchoff = CSRStorage(32) self._glitchlen = CSRStorage(8) glitchout = Signal() glitchmode = Signal() glitchtmr = Signal(32) self.comb += c2.power.eq(self._pwcon.storage[0] & glitchout) self.sync += If(self._pwcon.storage[1], self._pwcon.storage[1].eq(0), glitchmode.eq(0), glitchtmr.eq(self._glitchoff.storage)) self.sync += If(glitchtmr == 0, glitchout.eq(1)).Else( glitchtmr.eq(glitchtmr - 1), glitchout.eq(~glitchmode), If( glitchtmr == 1, If(glitchmode == 0, glitchtmr[:8].eq(self._glitchlen.storage), glitchmode.eq(1)))) # when rxbuf is read, reset the buffer full flag self.sync += If(self._rxbuf.we, rfull.eq(0)) fsm = FSM(reset_state="IDLE") self.submodules.fsm = fsm fsm.act( "IDLE", c2d.oe.eq(0), NextValue(c2ck, 1), If( self._cmd.storage == 1, # data read NextValue(self._cmd.storage, 0), NextValue(txbuf, 1), # start(1), data read (00), length (00) NextValue(txlen, 5), NextValue(rxlen, 8), NextValue(readerror, 0), NextValue(waitlen, 127), NextState("TX")).Elif( self._cmd.storage == 2, # address write NextValue(self._cmd.storage, 0), # start (1), address write (11), address NextValue(txbuf, (self._txdat.storage << 3) | 7), NextValue(txlen, 11), NextValue(rxlen, 0), NextValue(waitlen, 0), NextState("TX")).Elif( self._cmd.storage == 3, # address read NextValue(self._cmd.storage, 0), NextValue(waitlen, 0), NextValue(txbuf, 5), # start (1), address read (01) NextValue(txlen, 3), NextValue(waitlen, 0), # no wait NextValue(rxlen, 8), # read 8 bits NextValue(readerror, 0), NextState("TX")).Elif( self._cmd.storage == 4, # data write NextValue(self._cmd.storage, 0), NextValue(waitlen, 0), # start (1), data write (10), length (00), data NextValue(txbuf, (self._txdat.storage << 5) | 3), NextValue(txlen, 13), NextValue(waitlen, 127), # wait at the end NextValue(rxlen, 0), # no read NextState("TX")).Elif( self._cmd.storage == 5, # reset NextValue(self._cmd.storage, 0), NextValue(reset_count, 960), # 20us at 48MHz NextValue(c2ck, 0), NextState("RESET"))) fsm.act( "RESET", # 20us reset line low NextValue(c2ck, 0), If( reset_count == 0, NextValue(reset_count, 96), # 2us at 48MHz NextState("RESET2")).Else( NextValue(reset_count, reset_count - 1), )) fsm.act( "RESET2", # 2us reset line high NextValue(c2ck, 1), If(reset_count == 0, NextState("IDLE")).Else(NextValue(reset_count, reset_count - 1), )) fsm.act( "TX", # clk initially 1 here c2d.oe.eq(1), If( txlen == 0, If( waitlen != 0, NextState("WAIT"), ).Elif( rxlen != 0, NextState("RX"), ).Else(NextState("STOP")), NextValue(c2ck, 0)). Else( If( c2ck == 1, # clock is high, about to drop the next bit NextValue(c2d.o, txbuf[0]), NextValue(txbuf, txbuf[1:])). Else( # clock is low, about to raise it and potentially advance to the next state NextValue(txlen, txlen - 1)), NextValue(c2ck, ~c2ck))) fsm.act( "WAIT", # must enter state with c2ck already at 0 c2d.oe.eq(0), If((c2ck == 1) & (c2d.i == 1), If(rxlen != 0, NextState("RX")).Else(NextState("STOP")), NextValue(c2ck, 0)).Else( If(waitlen == 0, NextValue(readerror, 1), NextState("IDLE")).Else(NextValue(waitlen, waitlen - 1), NextValue(c2ck, ~c2ck)))) fsm.act( "RX", # must enter state with c2ck already at 0 c2d.oe.eq(0), If( c2ck == 1, # clock is high, shift in bit as it falls NextValue(rxbuf, Cat(rxbuf[1:], c2d.i)), If(rxlen == 1, NextValue(rfull, 1), NextState("STOP")), NextValue(c2ck, 0), NextValue(rxlen, rxlen - 1), ).Else(NextValue(c2ck, 1))) fsm.act( "STOP", # must enter state with c2ck already at 0 c2d.oe.eq(0), If( c2ck == 1, # stop done NextState("IDLE")).Else(NextValue(c2ck, 1))) # status register byte: # | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | # | ERR | RRDY | . | . | WAIT | RX | TX | IDLE | self.comb += self._stat.status.eq( fsm.ongoing("IDLE") | (fsm.ongoing("TX") << 1) | (fsm.ongoing("RX") << 2) | (fsm.ongoing("WAIT") << 3) | (rfull << 6) | (readerror << 7)) # for debugging, expose internals self._txlen = CSRStatus(5) self._txbuf = CSRStatus(12) self._rxlen = CSRStatus(4) self._waitlen = CSRStatus(7) self.comb += self._txlen.status.eq(txlen) self.comb += self._txbuf.status.eq(txbuf) self.comb += self._rxlen.status.eq(rxlen) self.comb += self._waitlen.status.eq(waitlen)
def __init__(self, dw=8): self.UDP_FRAG_MTU = UDP_FRAG_MTU = 1472 - 8 # The -8 is because of FRAGMENTER header self.sink = sink = stream.Endpoint([("data", dw), ("length", 32)]) self.source = source = stream.Endpoint(eth_udp_user_description(dw)) self.packetizer = packetizer = UDPFragmenterPacketizer() self.submodules += packetizer self.mf = mf = Signal(reset=0) # mf == More Fragments self.fragment_offset = fragment_offset = Signal(32, reset=0) self.identification = identification = Signal(16, reset=0) self.fragment_id = fragment_id = Signal(32, reset=0) self.comb += [ sink.connect(packetizer.sink, omit={"length"}), packetizer.sink.total_fragmets.eq(identification), packetizer.sink.fragment_id.eq(fragment_id), packetizer.source.connect(source), ] ww = dw // 8 # counter logic ;) self.foo_counter = counter = Signal(32) counter_reset = Signal() counter_ce = Signal() self.sync += \ If(counter_reset, counter.eq(0) ).Elif(counter_ce, counter.eq(counter + ww) ) bytes_in_fragment = Signal(16, reset=0) self.submodules.fsm = fsm = FSM(reset_state="IDLE") fsm.act( "IDLE", sink.ready.eq(packetizer.sink.ready), If( sink.valid, If( sink.length < UDP_FRAG_MTU, sink.connect(packetizer.sink, omit={"length"}), # TODO source.length.eq(sink.length)).Else( sink.ready.eq(0), source.length.eq(UDP_FRAG_MTU + 8), counter_reset.eq(1), NextValue(mf, 1), NextValue(fragment_offset, 0), NextValue(fragment_id, 0), NextValue(identification, identification + 1), NextValue(bytes_in_fragment, UDP_FRAG_MTU), NextState("FRAGMENTED_PACKET_SEND")))) fsm.act( "FRAGMENTED_PACKET_SEND", sink.connect(packetizer.sink, omit={"length"}), packetizer.sink.length.eq(bytes_in_fragment), source.length.eq(bytes_in_fragment + 8), If(sink.valid & packetizer.sink.ready, counter_ce.eq(1)), If( counter == (bytes_in_fragment - ww), NextValue(fragment_offset, fragment_offset + (bytes_in_fragment >> 3)), packetizer.sink.last.eq(1), If(((fragment_offset << 3) + counter + ww) == sink.length, NextValue(fragment_offset, 0), NextState("IDLE")).Else(counter_ce.eq(0), NextState("NEXT_FRAGMENT")))) fsm.act( "NEXT_FRAGMENT", counter_ce.eq(0), sink.ready.eq(0), packetizer.sink.valid.eq(0), packetizer.sink.length.eq(bytes_in_fragment), source.length.eq(bytes_in_fragment + 8), counter_reset.eq(1), If( (sink.length - (fragment_offset << 3)) > UDP_FRAG_MTU, NextValue(bytes_in_fragment, UDP_FRAG_MTU), ).Else( NextValue(bytes_in_fragment, sink.length - (fragment_offset << 3)), NextValue(mf, 0), ), NextValue(fragment_id, fragment_id + 1), NextState("FRAGMENTED_PACKET_SEND"))