Пример #1
0
def test_ecoc_probability():
    features,labels = load()
    features = features[labels < 5]
    labels = labels[labels < 5]
    raw = svm.svm_raw(kernel=svm.dot_kernel(), C=1.)
    base = ctransforms(raw, svm.svm_sigmoidal_correction())
    learner = ecoc_learner(base, probability=True)
    model = learner.train(features[::2], labels[::2])
    results = list(map(model.apply, features[1::2]))
    results = np.array(results)
    assert results.shape[1] == len(set(labels))
    assert np.mean(results.argmax(1) == labels[1::2]) > .5
Пример #2
0
def test_ecoc_learner():
    base = milk.tests.fast_classifier.fast_classifier()
    learner = milk.supervised.multi.ecoc_learner(base)
    features, labels = load()
    nlabels = len(set(labels))
    model = learner.train(features[::2],labels[::2])

    testl = np.array(model.apply_many(features[1::2]))
    assert np.mean(testl == labels[1::2]) > 1./nlabels
    assert testl.min() >= 0
    assert testl.max() < nlabels

# This failed at one point:
    learner = ecoc_learner(svm.svm_to_binary(svm.svm_raw(kernel=svm.dot_kernel(), C=1.)))
    model = learner.train(features[:200], labels[:200])
    assert (model is not None)